
Documentation for matrices test.py

Francesca Bianchi

September 10, 2015

Abstract

The following documentation aims to give an overview of what different operations can be done
with the file matrices test.py. These include operations among some special infinite upper trian-
gular matrices, also in the case in which there are some unknown upper diagonals. In particular, the
file introduces two different classes, M and MX, and defines functions which take arguments from both
or either of the classes.

A quick reference
This part provides a quick guide on how to use the file. For a more detailed explanation refer to the
later sections.
The file allows to do operations with elements of a particular group. Consider

Γ =< x0, ..., x6|xixi+1xi+3 = Id >,

where Id denotes the identity element.
There is a faithful representation of Γ in the group of finite band upper triangular infinite matrices with
entries in M(3,F2), identities on the diagonal and entries on the upper diagonals with periodicity 3
(gij = gi+3,j+3 for all i, j ≥ 1 for any g in this group) (see [1]).
Each element in Γ may thus be identified with an infinite matrix of this type.
The generators are all built-in and can be called by x0,..., x6.
An upper diagonal can be described equivalently by a 3× 9 matrix with entries in F2 or by a 3-tuple of
non-negative numbers, each less than or equal to 511. Indeed, if the first 3 entries on an upper diagonal
are a1, a2, a3 ∈M(3,F2), the 3×9 matrix [a1, a2, a3] will describe the upper diagonal entirely, because of
the periodicity 3. Moreover, for k = 1, 2, 3, the matrix ((ak)ij)1≤i,j≤3 can be represented by the number
Ak = 256(ak)11 + 128(ak)12 + 64(ak)13 + 32(ak)21 + 16(ak)22 + 8(ak)23 + 4(ak)31 + 2(ak)32 + (ak)33.
Therefore, [A1, A2, A3] describes the same upper diagonal as [a1, a2, a3].
For instance,

>>> x0
M_0 ([[11, 11, 11], [17, 17, 17], [26, 26, 26], [11, 11, 0], [17, 0, 0]])
>>> print x0
M_0 ([matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 1, 0, 0, 1],
[0, 1, 1, 0, 1, 1, 0, 1, 1]]), matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 1]]), matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 1, 1, 0, 1, 1],
[0, 1, 0, 0, 1, 0, 0, 1, 0]]), matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 0],
[0, 1, 1, 0, 1, 1, 0, 0, 0]]), matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0]])])

1

Here the subscript 0 indicates that there are no zero upper diagonals before the one described by
[11, 11, 11]. Inside the brackets we find the description of the subsequent non-zero upper diagonals.
All the diagonals after [17, 0, 0] are zero.
We can multiply and take powers. For example, x3x−1

6 x25 would be

>>> x3*(x6**(-1))*(x5**2)
M_0 ([[57, 164, 83], [40, 200, 491], [1, 220, 460], [56, 465, 24], [20, 146, 369],
[3, 398, 430], [35, 162, 131], [3, 73, 256], [10, 276, 133], [36, 511, 195],
[58, 24, 390], [3, 48, 325], [6, 40, 0], [5, 0, 0]])

We can also work with elements of which only some upper diagonals are known. For instance,

>>> a=M(12,[26,26,26])
>>> b=MX(2,matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1, 0, 0, 1],
[0, 1, 1, 0, 1, 1, 0, 1, 1]]))
>>> a
M_12 ([[26, 26, 26]])
>>> b
M_2 ([[11, 11, 11]],?)
>>> a.comm(b)
M_16 ([],?)
>>> a.conj(b)
M_2 ([[11, 11, 11]],?)

Here a.comm(b) and a.conj(b) give a−1b−1ab and a−1ba respectively.
We can also produce an element from other two by adding their upper diagonals.

>>> a+b
M_2 ([[11, 11, 11]],?)

Finally, we can truncate elements in the following way:

>>> c=x0**2
>>> c
M_1 ([[26, 26, 26], [0, 0, 0], [17, 17, 17], [0, 26, 26], [11, 11, 11],
[17, 17, 0], [26, 0, 0]])
>>> c.trunc(5)
M_1 ([[26, 26, 26], [0, 0, 0], [17, 17, 17], [0, 26, 26]],?)

A more detailed guide
1 Useful procedures
The first part of the code defines some useful operations.

inversebigmatrix(B,q):
Let B be an upper triangular square matrix of arbitrary dimension, whose entries are 3 × 3 ma-
trices and whose diagonal entries are all equal to the identity. Let q be a positive integer. Then
inversebigmatrix(B,q) returns the inverse of B modulo q.

transfmn(M):
Let M = (Mij)1≤i,j≤3 be a 3 × 3 matrix with entries in F2. Then transfmn(M) returns the integer
256M11 + 128M12 + 64M13 + 32M21 + 16M22 + 8M23 + 4M31 + 2M32 +M33.

transfnm(n):
Given an integer 1 ≤ n ≤ 511, transfnm(n) returns the unique 3× 3 matrix M with entries in F2 such

2

that transfmn(M) == n.

extract(k,M):
Let M = (Mij)1≤i≤3, 1≤j≤9 be a 3× 9 matrix.
If k is an integer such that 1 ≤ k ≤ 3, extract(k,M) returns the 3× 3 matrix (Mij)1≤i≤3, 3k−2≤j≤3k.
For all other choices of k, the function returns:
’You entered a value of k out of range: k must be an integer between 1 and 3’.

comb(U1,U2,U3):
Given the 3 × 3 matrices U1, U2, U3, comb(U1,U2,U3) returns the unique 3 × 9 matrix U such that
extract(i,M) == Ui, for 1 ≤ i ≤ 3.

numm(ss):
The function numm takes a list ss of three non-negative integers less than or equal to 511 and returns the
3× 9 matrix comb(transfnm(ss[0]),transfnm(ss[1]),transfnm(ss[2])).

matt(M):
The function matt is the inverse of numm: it takes a 3× 9 matrix, reduces it modulo 2, and returns the
corresponding 3-tuple of integers.

p2(n):
Given a positive integer n, p2(n) returns max{m : 2m ≤ n}.

impp2(n):
Given a positive integer n, impp2(n) returns the unique list [ii, ..., ik], with i1 > i2 > ... > ik−1 > ik and
n = 2i1 + ...+ 2ik .

The matrices α1, β1, γ1, α2, β2, γ2, α3, β3 defined in the Proof of Proposition 2.5 in [1] are all built-in
and in the final part of the code the following function is defined.

lincomb(M):
Given a 3×9 matrixM over F2, lincomb(M) returnsM as a linear combination of α1, β1, γ1 or α2, β2, γ2
or α3, β3 if M belongs to the F2-span of one of these 3 set of matrices and returns no output otherwise.
The argument M may also be replaced by the corresponding 3-tuple of numbers.

Example 1.

>>> A=matrix([[0,1,1],[1,0,0],[1,1,1]])
>>> transfmn(A)
231
>>> transfnm(231)
matrix([[0, 1, 1],

[1, 0, 0],
[1, 1, 1]])

>>> print alpha1
[[0 0 0 0 1 1 0 1 0]
[0 1 0 1 0 0 0 0 1]
[1 1 1 0 0 0 0 1 0]]
>>> B=extract(2,alpha1)
>>> B
matrix([[0, 1, 1],

[1, 0, 0],
[0, 0, 0]])

>>> comb(A,B,transfnm(0))
matrix([[0, 1, 1, 0, 1, 1, 0, 0, 0],

[1, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0]])

3

>>> numm([1,0,231])
matrix([[0, 0, 0, 0, 0, 0, 0, 1, 1],

[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 1, 1]])

>>> matt(alpha1)
[23, 224, 138]
>>> p2(10)
3
>>> impp2(10)
[3, 1]

Example 2.

>>> A=(alpha1+beta1) %2
>>> lincomb(A)
’alpha1+beta1’
>>> >>> lincomb([11,11,11])
’alpha1+gamma1’
>>> lincomb([0,0,0])
’0’

2 The class M

2.1 Instances of M

An instance g in this class represents an infinite upper triangular matrix with the following properties:

1. Each entry is a 3× 3 matrix over F2;

2. Each diagonal entry is the identity;

3. gij = gi+3,j+3 for all i, j ≥ 1;

4. There exists n ≥ 1 such that gij = 0 for all i, j with j − i ≥ n, where 0 denotes the 3 × 3 zero
matrix.

Because of Property 3, we may define an upper diagonal by a 3× 9 matrix (see [1]).
We define an element g in M in the following way. Let U1, ..., Um be 3×9 matrices and k an integer. Then
g=M(k,U1,...,Um) defines the element of M with k zero upper diagonals followed by m diagonals de-
scribed by U1, ..., Um. The matrices U1, ..., Um may be replaced by the corresponding 3-tuples of numbers.

print g:
Assume neither U1 nor Um is the zero matrix. Then the command print g gives M_k([U1,...,Um])
and we can call k by g.k and [U1, ..., Um] by g.m.
Assume now that Ui = 0 for all i ≤ j, for some 1 ≤ j < m and that both Uj+1 and Um are non zero.
Then print g gives M_k+j([Uj+1,...,Um]).
Similarly, if Ui = 0 for all i ≥ j for some 1 < j ≤ m and neither U0 nor Uj−1 is zero, then print g gives
M_k([U1,...,Uj-1]).
Finally, if we enter g=M(k,), for some k ≥ 0, or if Ui is the zero 3 × 9 matrix for all i, then print g
gives Id.

g:
Just typing g in the shell gives the same output as print g, but with the 3 × 9 matrices replaced by
3-tuples of numbers. It is the same as print g.transfmn() (see 2.2). Note, however, that while the
latter may be used also in the file, the command g gives an output only if typed in the shell.

The generators x0, x1, x2, x3, x4, x5, x6 are all built-in.

4

Example 3.

>>> x0
M_0 ([[11, 11, 11], [17, 17, 17], [26, 26, 26], [11, 11, 0], [17, 0, 0]])
>>> len(x0.m)
5
>>> g=M(3,[0,0,0],[1,2,3],[0,0,0])
>>> print g
M_4 ([matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 1, 1]])])

>>> g.k
4
>>> g.m
[matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 1, 1]])]

>>> h=M(3,[0,0,0],[0,0,0])
>>> print h
Id

2.2 Operations within the class M

__eq__() and __ne__():
We can compare instances in M in the obvious way.
For g, h in M, g==h (resp. g!=h) returns True (resp. False) if g and h represent the same matrix and
False (resp. True) otherwise.

transfmn():
Given an instance g=M(k,U1,...,Um) of M, the command g.transfmn() returns
M_k([[n11,n12,n13],...,[nm1,nm2,nm3]]), where 0 ≤ nij ≤ 511 represents the matrix j of Ui (see
[2]).

ext(n,m):
Given g in M and n,m positive integers, g.ext(n,m) is the n×m matrix obtained from the first n rows
and first m columns of the infinite matrix represented by g.

__mul__():
Given g, h in M, g*h returns g · h.

inv():
g.inv() returns the inverse of g. If the precision parameter is large enough, the output of print
g.inv() is an element in M; otherwise, it is an element in MX (see Section 3).
The precision parameter is set by default to be equal to 1 and can be modified by overwriting the global
variable precinv (see below). Note that the value of precinv is changed locally inside some functions
in order not to lose information (for instance in conj and comm if at least one of the two arguments is in
MX). However its value is then reset to the original value.

precinv:
As mentioned above, the global variable precinv controls the maximum number of upper diagonals we
allow to be computed in the inverse. Suppose g has k(g) zero upper diagonals and m(g) non-zero upper
diagonals. Then it can be shown that g−1 has k(g) zero upper diagonals. Let m(g−1) be the number of
non-zero upper diagonals of g−1. When we type g.inv(), the function inv() will find the exact inverse
of g if k(g) +m(g−1) ≤ precinv · (k(g) +m(g)) and it will return the first precinv · (k(g) +m(g)) upper
diagonals of g−1 otherwise.
If the program is used to do operations only involving the generators, it is recommendable to set precinv

5

to 1.

__pow__():
Let n be an integer (possibly zero or negative). Then g**n returns gn. In particular, note that the
inverse of g is returned both if we type g.inv or g**(-1).

conj():
g.conj(h) returns g−1hg (it may be in MX if g**(-1) is in MX).

comm():
g.comm(h) returns g−1h−1gh (it may be in MX if g**(-1) or h**(-1) is in MX).
comm() also computes higher commutators. That is: g.comm(y0,...,yj) returns the higher commuta-
tor [g, y0, ..., yj] = [[..[g, y0], ..., yj−1], yj].

commr():
g.comm(y0,...,yj) returns the higher commutator [g, y0, ..., yj] = [g, [y0, ..., [yj−1, yj]..]. Note that
g.commr(h) is the same as g.comm(h).

__add__():
g+h returns the instance of M representing the matrix whose upper diagonals are the sum of the upper
diagonals of g and h. Note that this is not a proper sum, in that g+h has identities on the diagonal
instead of zero matrices.

trunc(n):
g.trunc(n) returns the element in MX (see Section 3), whose first n upper diagonals agree with the first
n upper diagonals of g.

trall(n):
Let n be a positive integer. Suppose we type trall(n) in the shell. All the commutators involving
elements gi of M which are then computed will treat each gi as gi.trunc(n). trall(0) resets the file
to the original state, that is, operations are computed without any truncation taking place.

Example 4.

>>> x0**(-1)
M_0 ([[11, 11, 11], [11, 11, 11], [11, 11, 11], [11, 11, 0], [11, 0, 0]])
>>> g=M(0,[11,11,11])
>>> g**(-1)
M_0 ([[11, 11, 11]],?)
>>> precinv=5
>>> x0**(-1)
M_0 ([[11, 11, 11], [11, 11, 11], [11, 11, 11], [11, 11, 0], [11, 0, 0]])
>>> g**(-1)
M_0 ([[11, 11, 11], [26, 26, 26], [17, 17, 17], [11, 11, 11], [26, 26, 26]],?)

Example 5.

>>> precinv=5
>>> a=x0.conj(x1)
>>> a
M_0 ([[23, 224, 138], [53, 27, 395], [9, 381, 248], [15, 166, 144], [56, 131, 217],
[18, 192, 79], [26, 69, 1], [14, 1, 2], [1, 2, 3], [2, 3, 0], [3, 0, 0]])
>>> a.trunc(5)
M_0 ([[23, 224, 138], [53, 27, 395], [9, 381, 248], [15, 166, 144], [56, 131, 217]],?)
>>> g=M(0,[11,11,11])
>>> g.conj(x1)

6

M_0 ([[23, 224, 138], [53, 27, 395], [16, 426, 82], [17, 104, 128], [52, 128, 11]],?)
>>> (x0.conj(x1))*(x0.comm(x1)) == x1
True
>>> x0.comm(x1,x2)==(x0.comm(x1)).comm(x2)
True
>>> x1.commr(x2,x3)
M_3 ([[28, 235, 129], [26, 26, 26], [0, 157, 106], [23, 224, 11], [46, 144, 473],
[8, 81, 194], [63, 293, 155], [4, 73, 375], [26, 223, 344], [48, 334, 18], [37, 16, 261],
[18, 72, 41], [44, 200, 2], [13, 144, 4], [16, 96, 506], [32, 424, 0], [16, 128, 365],
[0, 64, 292], [40, 64, 146], [32, 128, 292], [16, 256, 365], [32, 320, 0], [40, 0, 0]])

Example 6.

>>> g=M(0,[11,11,11])
>>> g+x0
M_1 ([[17, 17, 17], [26, 26, 26], [11, 11, 0], [17, 0, 0]])
>>> x0*g
M_1 ([[11, 11, 11], [17, 17, 17], [26, 26, 17], [11, 26, 0], [11, 0, 0]])
>>> g*x0
M_1 ([[11, 11, 11], [17, 17, 17], [26, 26, 17], [11, 0, 26], [0, 0, 11]])

3 The class MX

3.1 Instances of MX

An instance g of MX differs from one of M only for the fact that we have information about the first say
k + l upper diagonals of g, but we do not know what the other upper diagonals look like.
We define an element g in MX in the following way. Let V1, ..., Vl be 3 × 9 matrices and k an integer.
Then g=MX(k,V1,...,Vl) defines the element of MX with k zero upper diagonals followed by l diagonals
defined by V1, ..., Vl. Similarly to M, the matrices V1, ..., Vl may be replaced by the corresponding 3-tuples
of numbers.

print g:
Assume V1 is not the zero matrix. Then the command print g gives M_k([V1,...,Vl],?) and we can
call k by g.k and [V1, ..., Vl] by g.l.
Assume now that Vi = 0 for all i ≤ j, for some 1 ≤ j ≤ m. Then print g gives M_k+j([Uj+1,...,Um],?).

g:
The difference between print g and g in MX is analogous to the difference between the same commands
in M.

Example 7.

>>> g=MX(3,[0,0,0],[1,2,3],[0,0,0])
>>> print g
M_4 ([matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 1, 1]]), matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])],?)

>>> g
M_4 ([[1, 2, 3], [0, 0, 0]],?)
>>> len(g.l)
2

7

>>> h=MX(3,[0,0,0],[0,0,0])
>>> print h
M_5 ([],?)

3.2 Operations within the class MX

Except for == and !=, all the other functions listed in 2.2 can also be used with arguments belonging
to MX. The output of *, **, inv() conj(), comm(), + will in this case be an element in MX (except for
when we add an element to itself or raise it to the power 0, which gives Id).
We add here some comments. In what follows, for an arbitrary element g of this class we will write k(g)
for the number of zero upper diagonals and l(g) for the number of known upper diagonals, the first of
which is non-zero.

g*....*g versus g**n:
In MX, multiplying an element g by itself, say n times, via the command * applied repeatedly may give
information about fewer diagonals, in comparison with raising the same element to the power n via the
command g**n. This is due to the fact that we can determine 2k(g) + l(g) + 1 upper diagonals of g2.
However, if we were to multiply g by h, where h has the same number of zero diagonals and known
diagonals as g, we would be able to determine only the first k(g) + l(g) upper diagonals of gh.
For this reason, when we type g**n, the number n is first written as a sum of powers of 2, say n =

2i1 + ...+2im . Subsequently, g2
ij is computed for 1 ≤ j ≤ m by squaring ij times and then multiplication

of the factors g2
ij is performed. On the other hand, __mul__ performs multiplication termwise.

Example 8.

>>> x=MX(0,[28,235,129],[29,211,263])
>>> x*x*x*x*x*x*x*x*x*x*x*x*x*x*x*x
M_2 ([],?)
>>> x**16
M_15 ([[28, 235, 129], [0, 0, 0]],?)

g**(-1)*h*g versus g.conj(h):
The command g**(-1)*h*g returns an instance of MX, say t1, with k(t1)+ l(t1) = min(k(g)+ l(g), k(h)+
l(h)). On the other hand, g.conj(h) returns t2, with k(t2) + l(t2) = k(h) + min(k(g) + l(g) + 1, l(h)).

Example 9.

>>> w=MX(0,[28,235,129])
>>> z=MX(12,[11,11,9],[1,2,3])
>>> w**(-1)*z*w
M_1 ([],?)
>>> w.conj(z)
M_12 ([[11, 11, 9], [15, 3, 100]],?)

g**(-1)*h**(-1)*g*h versus g.comm(h):
The command g**(-1)*h**(-1)*g*h returns t1 with k(t1) + l(t1) = min(k(g) + l(g), k(h) + l(h)).
Suppose k(g) + l(g) ≥ k(h) + l(h). Then g.comm(h) returns t2 with k(t2) + l(t2) = k(g) + min(k(h) +
l(h)+1, l(g))+δ ·min(k(h)+1, k(h)+ l(h)+1− l(g)), where δ = 0 if the minimum in the last summand
is negative and 1 otherwise.
If k(g) + l(g) < k(h) + l(h), k(t2) + l(t2) = k(h) + min(k(g) + l(g) + 1, l(h)) + δ ·min(k(g) + 1, k(g) +
l(g) + 1− l(h)).

Example 10. Assume w and z are defined as in Example 9.

8

>>> z**(-1)*w**(-1)*z*w
M_1 ([],?)
>>> z.comm(w)
M_13 ([[14, 1, 103]],?)

4 Operations among classes and comparison operators
As well as multiplying, adding, taking conjugates and commutators of instances of the same class, one
can perform these operations with one element in M and one in MX. The outcome will obviously belong
to MX.

Example 11. The reader may want to compare this example with Example 5.

>>> s=MX(0,[11,11,11])
>>> s.conj(x1)
M_0 ([[23, 224, 138], [53, 27, 395]],?)

Besides, we can compare two elements of MX or one element of M and one of MX with the operators >,
<, >=, <=. The output is explained in what follows.

__gt__():
Let g be an instance of MX and h an instance of M or MX. Then g>h returns True if all the first k(g) + l(g)
upper diagonals of g agree with the first k(g) + l(g) upper diagonals of h and, in the case of h in MX,
k(g) + l(g) < k(h) + l(h).

__ge__():
Let g be an instance of MX and h an instance of M or MX. Then g>=h returns True if all the first k(g)+ l(g)
upper diagonals of g agree with the first k(g) + l(g) upper diagonals of h.

__lt__():
Let g be an instance of M or MX and h an instance of MX. Then g<h returns True if all the first k(h)+ l(h)
upper diagonals of g agree with the first k(h) + l(h) upper diagonals of h and, in the case of h in MX,
k(h) + l(h) < k(g) + l(g).

__le__():
Let g be an instance of M or MX and h an instance of MX. Then g<=h returns True if all the first k(h)+ l(h)
upper diagonals of h agree with the first k(h) + l(h) upper diagonals of g.

Example 12.

>>> s=MX(0,[11,11,11])
>>> s>=x0
True
>>> p=MX(0,[11,11,11],[1,2,3])
>>> p<s
True
>>> r=s
>>> (r>=s) and (s<=r)
True
>>> (r>s) or (r<s)
False

References
[1] N. Peyerimhoff and A. Vdovina, “Cayley graph expanders and groups of finite width”, Journal of

Pure and Applied Algebra 215, no. 11 (2011): 2780-8.

9

[2] N. Barker, N. Boston, N. Peyerimhoff and A. Vdovina, “An Infinite Family of 2-Groups with Mixed
Beauville Structures", International Mathematics Research Notices, (2014).

10

