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Motivation: A fake projective plane is a compact complex surface with

the same Betti numbers as the (nonfake) projective plane P2(C), namely

1, 0, 1, 0, 1, but which is not homeomorphic to P2(C).

It is known that any fpp has the form B(C2)/Π, where Π is a cocompact

discrete subgroup of PU(2,1) such that

(a) Π is torsion-free,

(b) µ(PU(2,1)/Π) = 1,

(c) Π/[Π,Π] is finite, and

(d) Π is arithmetic.
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By (d), Π must be contained as a subgroup of finite index, N say, in a

maximal arithmetic subgroup, Γ̄ say, of PU(2,1). Thus

µ(PU(2,1)/Γ̄) =
1

N
.

Prasad and Yeung showed that this condition on a maximal arithmetic

subgroup Γ̄ is extremely restrictive. There is a list of fewer than 100

possibilities for Γ̄, which they wrote down not quite explicitly. Many of

these can not give an fpp, because they have no torsion-free subgroup

of index N . They use:

Lemma 1. Suppose that Π is a torsion-free subgroup of finite index in

a group Γ̄. Let K be a finite subroup of Γ̄. Then |K| divides [Γ̄ : Π].

In particular, if Γ̄ has an element of order n, and n does not divide N ,

then Γ̄ contains no torsion-free subgroup of index N .
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Each of these Γ̄’s is associated with a pair (k, `) of fields, where k is

either Q or a real quadratic extension of Q, and ` a complex quadratic

extension of k, and with a central simple algebra (either a division algebra

D of dimension 9 over ` or the matrix algebra M3×3(`)) and an hermitian

form (on either D or `3). Prasad and Yeung found about 20 new fpp’s

by looking at these Γ̄’s. Tim Steger and I completed this work by going

through all the possibilities for Γ̄, and finding all the Π’s of index N in Γ̄

which are torsion-free with Π/[Π,Π] finite. We showed that

• there are precisely 50 distinct fpp’s,

• all of these come from Γ̄’s associated with a division algebra.
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There were altogether 13 Γ̄’s associated with six pairs (k, `) of fields and

the matrix algebra M3×3(`). Today I am mostly talking about how we

showed that no fpp’s arise in these cases.

• the methods are similar to those used in the division algebra case,

• there are some new methods which simplify these cases,

• For just one of these 13 Γ̄’s, a torsion-free Π of the right index does

exist, but Π/[Π,Π] is infinite. The surface B(C2)/Π has recently been

studied by me in joint work with Yeung and Koziarz.
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The action of PU(2,1) on B(C2). For

F0 =

1 0 0
0 1 0
0 0 −1

 ,
define

U(2,1) = {g ∈M3×3(C) : g∗F0g = F0},

PU(2,1) = U(2,1)/Z for Z = {tI : |t| = 1},

SU(2,1) = {g ∈ U(2,1) : det(g) = 1}.

There are natural maps SU(2,1)→ U(2,1)→ PU(2,1).

The action of PU(2,1) on B(C2) = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}:

(gZ).(z1, z2) = (w1, w2) ⇔ g

z1
z2
1

 = λ

w1
w2
1

 for some λ.
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This action preserves the hyperbolic metric d on B(C2)

cosh2(d(z, w)) =
|1− 〈z, w〉|2

(1− |z|2)(1− |w|2)
.

where 〈z, w〉 = z1w̄1 + z2w̄2 and |z|2 = |z1|2 + |z2|2.

For the origin 0 := (0,0) in B(C2),

g.0 = (g13/g33, g23/g33) and

cosh2(d(0, g.0)) = |g33|2

because g∗F0g = F0 implies that g satisfies the “column 3 condition”:

|g13|2 + |g23|2 = |g33|2 − 1.
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The column 3 condition is seen by looking at the (3,3)-entry of

g∗Fg − F = 0. From the (1,1)-entry of gF−1g∗ − F−1 = 0, we get

|g11|2 + |g12|2 = |g13|2 + 1, “the row 1 condition.”

Using also

g−1 =
1

θ
gadj = F−1g∗F,

where θ = det(g), it is easy to prove the following:

Lemma 2. Given five complex numbers g11, g12, g13, g23 and g33

satisfying the column 3 and row 1 conditions, and given any θ ∈ C with

|θ| = 1, there is a unique g ∈ U(2,1) with the given five entries and with

det(g) = θ.
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We give details for just one of the 13 Γ̄’s: the “(C11, ∅)” case.

Let ` = Q(ζ), where ζ is a primitive 12-th root of 1. Then [` : Q] = 4, with

ζ4−ζ2 +1 = 0. This ` contains k = Q(
√

3) and Q(i), because (ζ3)2 = −1

and r2 = 3 for r = ζ + ζ−1. The following F has determinant 1:

F =

−r − 1 1 0
1 1− r 0
0 0 1

 .
and entries which are algebraic integers in k.

• If r = +
√

3, then two eigenvalues of F are negative, and one is

positive,

• if r = −
√

3, all three eigenvalues of F are positive.
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Let o` denote the ring of algebraic integers in `. In this case,

o` = Z[ζ] = {a0 + a1ζ + a2ζ
2 + a3ζ

3 : aj ∈ Z for each j}.

Let

Γ̄ = {g ∈M3×3(o`) : g∗Fg = F}/Z,

where

Z = {tI : t ∈ o` and |t| = 1} = {ζνI : ν = 0, . . . ,11}.

The other 12 Γ̄’s are defined in the same way, for different k, ` and F .

Writing

∆ =

r + 1 −1 0
0 1 0
0 0

√
r + 1

 ,
we find that ∆∗F0∆ = −(r + 1)F , and so for g̃ = ∆g∆−1,

g∗Fg = F if and only if g̃∗F0g̃ = F0.
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So

gZ 7→ g̃Z

embeds Γ̄ in PU(2,1). Using Prasad’s Covolume Formula, we have the

following

Fact: For Haar measure on PU(2,1) normalized in a suitable way,

µ(PU(2,1)/Γ̄) =
1

864
.

Here is another way of thinking of this. The embedding of Γ̄ in PU(2,1)

gives an action of Γ̄ on B(C2). Let FΓ̄ ⊂ B(C2) be a fundamental domain

for this action; for example, the Dirichlet fundamental domain

FΓ̄ = {z ∈ B(C2) : d(0, z) ≤ d(g.0, z) for all g ∈ Γ̄}.

Then with suitably normalized hyperbolic volume on B(C2),

vol(FΓ̄) =
1

864
.
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Question: Does Γ̄ have a torsion-free subgroup Π of index 864?

If we can find such a subgroup with Π/[Π,Π] is finite, then Π would be

the fundamental group of a fake projective plane.

Answer: Up to conjugacy, there is a unique torsion-free subgroup of

index 864, but Π/[Π,Π] = Z2.

The compact complex surface B(C2)/Π is a new and interesting surface,

not a fake projective plane.
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To give the above answer, we need to find lots of elements of Γ̄.

There are column 3 and row 1 conditions on the g = (gij) satisfying

g∗Fg = F :

|g13|2 + |g13 − (r − 1)g23|2 = (r − 1)(|g33|2 − 1),

and

|g11|2 + |g11 + (r + 1)g12|2 = (r + 1)|g13|2 + 2.

Lemma 3. Given five numbers g11, g12, g13, g23 and g33 in ` satisfying

these column 3 and row 1 conditions, and given any θ ∈ ` with |θ| = 1,

there is a unique g ∈M3×3(`) with g∗Fg = F , the given five entries, and

with det(g) = θ.
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Lemma 4. Let α ∈ o`. Then we can write

|α|2 = P (α) +Q(α)r,

where

• P (α), Q(α) ∈ Z,

• P (α) ≥ 0, with equality iff α = 0,

• |Q(α)| ≤ 1
rP (α).

Writing α = a0 + a1ζ + a2ζ
2 + a3ζ

3, we have

P (α) = a2
0 + a0a2 + a2

1 + a1a3 + a2
2 + a2

3 ≥
1

2

(
a2

0 + a2
1 + a2

2 + a2
3

)
,

and

Q(α) = a0a1 + a1a2 + a2a3.
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With these formulas, we can write down a list of possible values of
(P (α), Q(α)) with P (α) ≤ B for a given bound B. This list starts

(0,0), (1,0), (2,−1), (2,0), (2,1), (3,0), (4,−2), (4,−1), (4,0), . . .

We can also identify

{α ∈ o` : P (α) = p and Q(α) = q}
for each (p, q) in the list.

The next step in finding elements of Γ̄ is to identify

K = {g ∈ Γ̄ : g.0 = 0}.
(we are usually just going to write g, not gZ, for elements of Γ̄).

Now g.0 = 0 iff g̃.0 = 0 iff g̃13 = g̃23 = 0, which holds iff g13 = 0
and g23 = 0. Then |g33| = 1 and wlog g33 = 1. So wlog g has the formg11 g12 0

g21 g22 0
0 0 1


15



The gij’s here must be in o`. The entries g11 and g12 must satisfy

|g11|2 + |g11 + (r + 1)g12|2 = 2,

which is just the row 1 condition in the case g13 = 0.

This equation has the form |α|2 + |β|2 = 2, where α, β ∈ o`. We must

have P (α) + P (β) = 2 and Q(α) + Q(β) = 0. We read from our lists

of (p, q)’s, etc, the possibilities for α and β. For each such α and β,

we solve for g11 and g12. Then g11, g12, 0, 0, 1 satisfy the row 1 and

column 3 conditions, and so g21 and g22 are determined by g11, g12 and

the choice of θ = det(g). Running through the possibilities for α and β,

and for θ, and checking when the gij’s are in o`, we get:
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Lemma 5. There are 288 elements in K, which is generated by uZ and

vZ for the matrices

u =

ζ3 + ζ2 − ζ 1− ζ 0
ζ3 + ζ2 − 1 ζ − ζ3 0

0 0 1

 and v =

 ζ3 0 0
ζ3 + ζ2 − ζ − 1 1 0

0 0 1

 .
These satisfy

u3 = I, v4 = I, and (uv)2 = (vu)2,

and these generators and relations give a presentation for K.

For five of the thirteen Γ̄’s we need to look at, the calculation of K is

enough to eliminate there being a torsion-free subgroup in Γ̄ of the right

index.
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The next step in our search for elements of Γ̄ is to find g ∈ Γ̄ for which

d(0, g.0) is small. Since

cosh2(d(0, g.0)) = cosh2(d(0, g̃.0)) = |g̃33|2 = |g33|2,

we are just looking for g ∈ Γ̄ with |g33| > 1 but small.

The column 3 condition for g ∈ Γ̄ is of the form

|α|2 + |β|2 = (r − 1)(|γ|2 − 1), (†)

with α, β, γ ∈ o`, γ = g33, and with g.0 = 0 if and only if (α, β) = (0,0).

Lemma 6. If α, β, γ ∈ o` satisfy (†), and if (α, β) 6= (0,0), then

|γ|2 ≥ 2 + r, with equality iff |α|2 + |β|2 = 2.

It is now easy to find an element g of Γ̄ with |g33|2 = 2 + r. We find

all possible g11, g12, g13, g23, g33 ∈ o` satisfying the column 3 and row 1

conditions and |g33|2 = 2 + r, and apply Lemma 3 above.

18



We find that {g ∈ Γ̄ : |g33|2 = 2 + r} = KbK for

b =

 1 0 0
−2ζ3 − ζ2 + 2ζ + 2 ζ3 + ζ2 − ζ − 1 −ζ3 − ζ2

ζ2 + ζ −ζ3 − 1 −ζ3 + ζ + 1

 .

Lemma 7. The elements u, v and b generate Γ̄.

The corresponding calculations are enough to eliminate three more of
the 13 Γ̄’s. We are able to find elements g ∈ Γ̄ of finite order n which
does not divide the required N = [Γ̄ : Π], and apply Lemma 1.

For the remaining 5 cases, we find a presentation of the Γ̄’s. In our
example case,

Proposition.The generators u, v and b, together with the relations

u3 = v4 = b3 = 1, (uv)2 = (vu)2, vb = bv, (buv)3 = (buvu)2v = 1,

form a presentation for Γ̄.
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This particular Γ̄ was known by various experts to be isomorphic to one
of the Deligne-Mostow groups, which have nice presentations (see John
Parker [2009]). Using this (and some help from John Parker), we could
simplify a little the earlier presentation we had from our methods.

For all the Γ̄’s we were able to get a presentation as follows.

Lemma 8. If α, β, γ ∈ o` satisfy (†), and if (α, β) 6= (0,0), then

0 ≤ Q(γ) ≤
1

r
P (γ) ≤ Q(γ) +

1

r
.

Lemma 8 is useful for seeing explicitly the discreteness of the set of
distances d(0, g.0), g ∈ Γ̄. It implies that

2P (g33)− 1 ≤ |g33|2 ≤ 2P (g33).

Caution: The set {|α|2 : α ∈ o`} is not a discrete subset of R. For
example,

|ζ − 1|2 = 2− r, and so 0 < |(ζ − 1)n|2 = (2−
√

3)n → 0.
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Let

d0 = 0 < d1 < d2 < · · ·

be the distinct values taken by d(0, g.0), g ∈ Γ̄. So cosh2(dn) = pn + qnr

for certain integers pn and qn. The first few pn + qnr’s are:

1, 2 + r, 4 + 2r, 6 + 3r, 7 + 4r, 11 + 6r, . . .

We find all possible g11, g12, g13, g23, g33 ∈ o` satisfying the column 3 and

row 1 conditions and |g33|2 = pn+qnr, and then for each θ ∈ o` such that

|θ| = 1, we apply Lemma 3 to form the unique g ∈M3×3(`) with the five

specified entries such that g∗Fg = F and det(g) = θ, then test whether

the gij’s are in o`. In this way, we can form

Sn = {g ∈ Γ̄ : d(0, g.0) ≤ dn}.
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Then

K = S0 ⊂ S1 ⊂ S1 ⊂ S2 ⊂ · · · , and
⋃
n
Sn = Γ̄.

Form

Fn = {z ∈ B(C2) : d(0, z) ≤ d(g.0, z) for all g ∈ Sn},

B(C2) = F0 ⊃ F1 ⊃ F1 ⊃ · · · and
⋂
n
Fn = FΓ̄.

Let

rn = max{d(0, z) : z ∈ Fn} and rΓ̄ = max{d(0, z) : z ∈ FΓ̄}.

So

∞ = r0 ≥ r1 ≥ r2 ≥ · · ·
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Lemma 9. If dn ≥ rn, then Sn generates Γ̄.

Lemma 10. If dn ≥ 2rn, then

(a) Fn = FΓ̄ and rn = rΓ̄.

(b) the set Sn of generators, together with the relations g1g2g3 = 1 which

hold for g1, g2, g3 ∈ Sn, form a presentation for Γ̄.

Lemma 11. For the (C11, ∅) example,

r1 = r2 = · · · =
1

2
d2 =

1

2
cosh−1(1 +

√
3),

so that we take n = 2 in Lemmas 9 and 10.
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To calculate rn, we have to maximize d(0, z) subject to the constraints

d(0, z) ≤ d(g.0, z), g ∈ Sn. Since

d(0, z) =
1

2
log

(
1 + |z|
1− |z|

)
, where |z| =

√
|z1|2 + |z2|2,

this amounts to maximizing

|z1|2 + |z2|2

subject to the constraints

|g31z1 + g32z2 + g33| ≥ 1 for all g ∈ Sn.

While we haven’t calculated rn exactly in most other lattices subgroups

in our list of thirteen, we can numerically estimate these numbers with

sufficient accuracy to check the condition dn ≥ 2rn.
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For finitely presented groups G, Magma and other computer algebra

packages have routines for finding subgroups of low index. For the five

Γ̄’s not yet eliminated, the index in question is not low enough for these

general routines to work.

Steger and I wrote specialized C-programs to look for torsion-free sub-

groups of the required index. In the “(C11, ∅)” example, this amounted

to looking for a permutation B of {1, . . . ,864} with special properties

corresponding to the relations satisfied by the generator b of Γ̄.

This quickly found a torsion-free subgroup Π of Γ̄ of index 864, but with

Π/[Π,Π] ∼= Z2. It took many CPU-days to show that Π was the unique

(up to conjugation) torsion-free subgroup of index 864.
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If Π ⊂ Γ̄ is torsion-free and of index 864, then X = B(C2)/Π is a compact

complex surface of Euler-Poincaré characteristic 3. It is not a fake

projective plane. Sai-Kee Yeung, Vincent Koziarz and I have recently

studied geometric properties of X, showing in particular:

Proposition. The Picard number of X is 3. Let α : X → T be the

Albanese map. Then T ∼= C/(Z + ωZ), where ω = e2πi/3, and the genus

of the generic fibre of α is 19.

This was shown by studying certain “mirrors” Mα = {(z, w) ∈ B(C2) :

z = αw} and the groups Πα = {π ∈ Π : π(Mα) = Mα}. If α = 0, then the

generator v of Γ̄ fixes each point of Mα, and Πα is a surface group of

genus 4. If α = ζ2− ζ, then the generator u of Γ̄ fixes each point of Mα,

and Πα is a surface group of genus 10.
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Where the 13 Γ̄’s come from.

Here are the (k, `)’s which were not eliminated in [PY]:

name k ` defining polynomial for `

C1 Q(
√

5) Q(ζ5) ζ4 + ζ3 + ζ2 + ζ + 1

C3 Q(
√

5) Q(
√

5, i) ∼= Q(z) z4 + 3z2 + 1

C8 Q(
√

2) Q(
√

2, i) ∼= Q(ζ8) ζ4 + 1

C11 Q(
√

3) Q(
√

3, i) ∼= Q(ζ12) ζ4 − ζ2 + 1

C18 Q(
√

6) Q(
√

6, ζ3) ∼= Q(z) z4 − 2z2 + 4

C21 Q(
√

33) Q(
√

33, ζ3) ∼= Q(z) z4 − z3 − 2z2 − 3z + 9

We can define an hermitian form on `3 by choosing a matrix F , as follows:
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We set

F =

−x 0 0
0 −x−1 0
0 0 1

 ,
in cases C1, C3 and C8, and

F =

−x 1 0
1 −2x−1 0
0 0 1

 ,
in cases C11, C18 and C21, where x is as in the following table:

C1 C3 C8 C11 C18 C21

r2 5 5 2 3 6 33

x (r + 1)/2 (r + 1)/2 r + 1 r + 1 r + 2 (r + 5)/2

In each case, det(F ) = 1, and all the entries of F are algebraic integers
of k.
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Each x is positive when r is taken as the positive square root of r2,

and negative when r is taken as the negative square root. There is an

algebraic group G defined over k so that

G(k) = {g ∈M3×3(`) : g∗Fg = F and det(g) = 1}.

The field k has two archimedean places v+ and v− corresponding to the

embeddings k → R mapping r to the positive and negative square roots

of r2. Taking completions of k, the above sign change of x implies that

G(kv+) ∼= SU(2,1) and G(kv−) ∼= SU(3).

If a different choice is made of F , so that the corresponding G behaves

in this same way at v+ and v−, then the two G’s are k-isomorphic.
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In our context Π being arithmetic means that there is a “principal arith-

metic subgroup”

Λ = G(k) ∩
∏
v∈Vf

Pv

which is commensurable with Π̃ = ϕ−1(Π), where ϕ : SU(2,1)→ PU(2,1)

is the natural map. Here Vf is the set of non-archimedean places of k,

and each Pv is a “parahoric” subgroup of G(kv). We regard G(k) as a

subgroup of SU(2,1) by a suitable conjugation. More exactly, ∆∗F0∆ =

−xF for

∆ =

x 0 0
0 1 0
0 0

√
x

 or ∆ =

x −1 0
0 1 0
0 0

√
x


so that g∗Fg = F implies that g̃ = ∆g∆−1 satisfies g̃∗F0g̃ = F0.
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This commensurability can be expressed more explicitly: Λ can be chosen

so that Π̃ is in the normalizer Γ of Λ in SU(2,1). Both Π̃ and Λ are of

finite index in Γ.

It is shown in [PY] that [Γ : Λ] = 3.

Using µ(PU(2,1)/Π) = 1, we find that

µ(SU(2,1)/Λ) =
1

[ϕ(Γ) : Π]
.
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But there is also Prasad’s Covolume Formula, which in this context tells

us that

µ(SU(2,1)/Λ) =
1

D

∏
v∈T

e′(Pv),

where T ⊂ Vf is finite, the e′(Pv)’s are certain positive integers depending

on the order qv of the residue field of kv, and where D is as follows:

C1 C3 C8 C11 C18 C21

D 600 32 128 864 48 12

Comparing the two formulas, we get

D = [ϕ(Γ) : Π]
∏
v∈T

e′(Pv).
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Any prime dividing D is either 2, 3 or 5. This severely restricts the

possibilities for the Pv’s. For example, under some conditions, e′(Pv) =

q2
v − qv + 1. It is elementary that unless qv = 2, q2

v − qv + 1 is divisible by

a prime p > 5.

We find that the parahorics Pv must be maximal, or can be chosen to

be maximal, for all v’s.

When v splits in `, any two maximal parahorics are conjugate by an

element of G(kv).

When v does not split in `, there are two conjugacy classes of maximal

parahorics, “type 1” and “type 2”.

We find that at most one Pv can be of type 2.
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When all such Pv’s are of type 1, we can assume that ϕ(Γ) is the following

explicit group

Γ̄ = {g ∈M3×3(o`) : g∗Fg = F}/{tI : t ∈ o` and |t| = 1},

where F is defined above, and o` is the ring of algebraic integers in `.

For each Cj there is another possibility for the group ϕ(Γ), corresponding

to a type 2 maximal parahoric group Pv for a particular v. For C21 there

are two other possibilities, corresponding to a type 2 maximal parahoric

group Pv for one or other of the two 2-adic places of k = Q(
√

33).
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A fundamental tool for [PY] is a result of Chern (called the Hirze-

bruch Proportionality Principle), valid for any torsion-free cocompact

Π ⊂ PU(2,1) and for X = B(C2)/Π, telling us that

χ(X) = 3vol(FΠ),

where χ(X) is the Euler-Poincaré characteristic of X, where FΠ ⊂ B(C2)

is a fundamental domain for the action of Π on B(C2), and where vol

is a suitably normalized volume on B(C2), invariant under the action

of PU(2,1).

Since χ(X) is the alternating sum of the Betti numbers of X, for an fpp

we have χ(X) = 3, and so vol(FΠ) = 1.
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Let Π be a subgroup of index 864 in Γ̄ in the (C11, ∅) case. How do we

check that Π is torsion-free?

In this case, we know that d2 = 2r2. Let S = S2 = {g ∈ Γ̄ : d(0, g.0) ≤
d2}, Then

FΓ̄ = F2 = {z ∈ B(C2) : d(0, z) ≤ d(g.0, z) for all g ∈ S}.

Any g ∈ Γ̄ of finite order must fix a point x of B(C2). Conjugating g,

we may assume x ∈ FΓ̄. Then d(0, g.0) ≤ 2d(0, x) ≤ 2r2 = d2, so that

g ∈ S2 = S. Such g’s lie in just 3 double cosets K, KbK and Kbv−1bK.

We get a short list g1, . . . , gm of conjugacy class representatives of ele-

ments of finite order. Next we pick a transversal t1, . . . , t864 for Π, e.g.,

K ∪Kb ∪Kb2.

We need only check that tigjt
−1
i 6∈ Π for i = 1, . . . ,864, and j = 1, . . . , n.
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