Some lattice subgroups of $\operatorname{PU}(2,1)$

Donald CARTWRIGHT
University of Sydney

Newcastle University, June 5-11 2016.

Motivation: A fake projective plane is a compact complex surface with the same Betti numbers as the (nonfake) projective plane $\mathbb{P}^{2}(\mathbb{C})$, namely $1,0,1,0,1$, but which is not homeomorphic to $\mathbb{P}^{2}(\mathbb{C})$.

It is known that any fpp has the form $B\left(\mathbb{C}^{2}\right) / \Pi$, where Π is a cocompact discrete subgroup of $P U(2,1)$ such that
(a) Π is torsion-free,
(b) $\mu(P U(2,1) / \Pi)=1$,
(c) $\Pi /[\Pi, \Pi]$ is finite, and
(d) Π is arithmetic.

By (d), Π must be contained as a subgroup of finite index, N say, in a maximal arithmetic subgroup, $\bar{\Gamma}$ say, of $\operatorname{PU}(2,1)$. Thus

$$
\mu(P U(2,1) / \bar{\Gamma})=\frac{1}{N}
$$

Prasad and Yeung showed that this condition on a maximal arithmetic subgroup \bar{F} is extremely restrictive. There is a list of fewer than 100 possibilities for $\bar{\Gamma}$, which they wrote down not quite explicitly. Many of these can not give an fpp, because they have no torsion-free subgroup of index N. They use:

Lemma 1. Suppose that Π is a torsion-free subgroup of finite index in a group $\overline{\bar{F}}$. Let K be a finite subroup of $\bar{\Gamma}$. Then $|K|$ divides $[\bar{\Gamma}: \Pi]$.

In particular, if $\bar{\Gamma}$ has an element of order n, and n does not divide N, then $\bar{\Gamma}$ contains no torsion-free subgroup of index N.

Each of these $\bar{\Gamma}$'s is associated with a pair (k, ℓ) of fields, where k is either \mathbb{Q} or a real quadratic extension of \mathbb{Q}, and ℓ a complex quadratic extension of k, and with a central simple algebra (either a division algebra \mathcal{D} of dimension 9 over ℓ or the matrix algebra $\left.M_{3 \times 3}(\ell)\right)$ and an hermitian form (on either \mathcal{D} or ℓ^{3}). Prasad and Yeung found about 20 new fpp's by looking at these $\bar{\Gamma}$'s. Tim Steger and I completed this work by going through all the possibilities for $\bar{\Gamma}$, and finding all the Π 's of index N in $\bar{\Gamma}$ which are torsion-free with $\Pi /[\Pi, \Pi]$ finite. We showed that

- there are precisely 50 distinct fpp's,
- all of these come from $\bar{\Gamma}$'s associated with a division algebra.

There were altogether $13 \bar{\Gamma}$'s associated with six pairs (k, ℓ) of fields and the matrix algebra $M_{3 \times 3}(\ell)$. Today I am mostly talking about how we showed that no fpp's arise in these cases.

- the methods are similar to those used in the division algebra case,
- there are some new methods which simplify these cases,
- For just one of these $13 \bar{\Gamma}$'s, a torsion-free Π of the right index does exist, but $\Pi /[\Pi, \Pi]$ is infinite. The surface $B\left(\mathbb{C}^{2}\right) / \Pi$ has recently been studied by me in joint work with Yeung and Koziarz.

The action of $P U(2,1)$ on $B\left(\mathbb{C}^{2}\right)$. For

$$
F_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

define

$$
\begin{gathered}
U(2,1)=\left\{g \in M_{3 \times 3}(\mathbb{C}): g^{*} F_{0} g=F_{0}\right\} \\
P U(2,1)=U(2,1) / Z \quad \text { for } Z=\{t I:|t|=1\} \\
S U(2,1)=\{g \in U(2,1): \operatorname{det}(g)=1\}
\end{gathered}
$$

There are natural maps $S U(2,1) \rightarrow U(2,1) \rightarrow P U(2,1)$.
The action of $\operatorname{PU}(2,1)$ on $B\left(\mathbb{C}^{2}\right)=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1\right\}$:

$$
(g Z) \cdot\left(z_{1}, z_{2}\right)=\left(w_{1}, w_{2}\right) \quad \Leftrightarrow \quad g\left(\begin{array}{c}
z_{1} \\
z_{2} \\
1
\end{array}\right)=\lambda\left(\begin{array}{c}
w_{1} \\
w_{2} \\
1
\end{array}\right) \quad \text { for some } \lambda
$$

This action preserves the hyperbolic metric d on $B\left(\mathbb{C}^{2}\right)$

$$
\cosh ^{2}(d(z, w))=\frac{|1-\langle z, w\rangle|^{2}}{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}
$$

where $\langle z, w\rangle=z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}$ and $|z|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$.

For the origin $0:=(0,0)$ in $B\left(\mathbb{C}^{2}\right)$,

$$
\begin{gathered}
g .0=\left(g_{13} / g_{33}, g_{23} / g_{33}\right) \quad \text { and } \\
\cosh ^{2}(d(0, g .0))=\left|g_{33}\right|^{2}
\end{gathered}
$$

because $g^{*} F_{0} g=F_{0}$ implies that g satisfies the "column 3 condition":

$$
\left|g_{13}\right|^{2}+\left|g_{23}\right|^{2}=\left|g_{33}\right|^{2}-1
$$

The column 3 condition is seen by looking at the $(3,3)$-entry of $g^{*} F g-F=0$. From the $(1,1)$-entry of $g F^{-1} g^{*}-F^{-1}=0$, we get

$$
\left|g_{11}\right|^{2}+\left|g_{12}\right|^{2}=\left|g_{13}\right|^{2}+1, \quad \text { "the row } 1 \text { condition." }
$$

Using also

$$
g^{-1}=\frac{1}{\theta} g^{\mathrm{adj}}=F^{-1} g^{*} F
$$

where $\theta=\operatorname{det}(g)$, it is easy to prove the following:

Lemma 2. Given five complex numbers $g_{11}, g_{12}, g_{13}, g_{23}$ and g_{33} satisfying the column 3 and row 1 conditions, and given any $\theta \in \mathbb{C}$ with $|\theta|=1$, there is a unique $g \in U(2,1)$ with the given five entries and with $\operatorname{det}(g)=\theta$.

We give details for just one of the $13 \bar{\Gamma}$'s: the " $\left(\mathcal{C}_{11}, \emptyset\right)$ " case.

Let $\ell=\mathbb{Q}(\zeta)$, where ζ is a primitive 12 -th root of 1 . Then $[\ell: \mathbb{Q}]=4$, with $\zeta^{4}-\zeta^{2}+1=0$. This ℓ contains $k=\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(i)$, because $\left(\zeta^{3}\right)^{2}=-1$ and $r^{2}=3$ for $r=\zeta+\zeta^{-1}$. The following F has determinant 1:

$$
F=\left(\begin{array}{ccc}
-r-1 & 1 & 0 \\
1 & 1-r & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and entries which are algebraic integers in k.

- If $r=+\sqrt{3}$, then two eigenvalues of F are negative, and one is positive,
- if $r=-\sqrt{3}$, all three eigenvalues of F are positive.

Let \mathfrak{o}_{ℓ} denote the ring of algebraic integers in ℓ. In this case,

$$
\mathfrak{o}_{\ell}=\mathbb{Z}[\zeta]=\left\{a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}: a_{j} \in \mathbb{Z} \text { for each } j\right\} .
$$

Let

$$
\bar{\Gamma}=\left\{g \in M_{3 \times 3}\left(\mathfrak{o}_{\ell}\right): g^{*} F g=F\right\} / \mathcal{Z}
$$

where

$$
\mathcal{Z}=\left\{t I: t \in \mathfrak{o}_{\ell} \text { and }|t|=1\right\}=\left\{\zeta^{\nu} I: \nu=0, \ldots, 11\right\}
$$

The other $12 \bar{\Gamma}$'s are defined in the same way, for different k, ℓ and F.

Writing

$$
\Delta=\left(\begin{array}{ccc}
r+1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & \sqrt{r+1}
\end{array}\right)
$$

we find that $\Delta^{*} F_{0} \Delta=-(r+1) F$, and so for $\tilde{g}=\Delta g \Delta^{-1}$,

$$
g^{*} F g=F \quad \text { if and only if } \quad \tilde{g}^{*} F_{0} \tilde{g}=F_{0}
$$

So

$$
g \mathcal{Z} \mapsto \tilde{g} Z
$$

embeds \bar{F} in $P U(2,1)$. Using Prasad's Covolume Formula, we have the following

Fact: For Haar measure on $\operatorname{PU}(2,1)$ normalized in a suitable way,

$$
\mu(P U(2,1) / \bar{\Gamma})=\frac{1}{864}
$$

Here is another way of thinking of this. The embedding of $\bar{\Gamma}$ in $\operatorname{PU}(2,1)$ gives an action of $\bar{\Gamma}$ on $B\left(\mathbb{C}^{2}\right)$. Let $\mathcal{F}_{\bar{\Gamma}} \subset B\left(\mathbb{C}^{2}\right)$ be a fundamental domain for this action; for example, the Dirichlet fundamental domain

$$
\mathcal{F}_{\bar{\Gamma}}=\left\{z \in B\left(\mathbb{C}^{2}\right): d(0, z) \leq d(g .0, z) \text { for all } g \in \bar{\Gamma}\right\}
$$

Then with suitably normalized hyperbolic volume on $B\left(\mathbb{C}^{2}\right)$,

$$
\operatorname{vol}\left(\mathcal{F}_{\bar{\Gamma}}\right)=\frac{1}{864} .
$$

Question: Does $\bar{\Gamma}$ have a torsion-free subgroup Π of index 864 ?

If we can find such a subgroup with $\Pi /[\Pi, \Pi]$ is finite, then Π would be the fundamental group of a fake projective plane.

Answer: Up to conjugacy, there is a unique torsion-free subgroup of index 864 , but $\Pi /[\Pi, \Pi]=\mathbb{Z}^{2}$.

The compact complex surface $B\left(\mathbb{C}^{2}\right) / \Pi$ is a new and interesting surface, not a fake projective plane.

To give the above answer, we need to find lots of elements of $\bar{\Gamma}$.

There are column 3 and row 1 conditions on the $g=\left(g_{i j}\right)$ satisfying $g^{*} F g=F$:

$$
\left|g_{13}\right|^{2}+\left|g_{13}-(r-1) g_{23}\right|^{2}=(r-1)\left(\left|g_{33}\right|^{2}-1\right)
$$

and

$$
\left|g_{11}\right|^{2}+\left|g_{11}+(r+1) g_{12}\right|^{2}=(r+1)\left|g_{13}\right|^{2}+2
$$

Lemma 3. Given five numbers $g_{11}, g_{12}, g_{13}, g_{23}$ and g_{33} in ℓ satisfying these column 3 and row 1 conditions, and given any $\theta \in \ell$ with $|\theta|=1$, there is a unique $g \in M_{3 \times 3}(\ell)$ with $g^{*} F g=F$, the given five entries, and with $\operatorname{det}(g)=\theta$.

Lemma 4. Let $\alpha \in \mathfrak{o}_{\ell}$. Then we can write

$$
|\alpha|^{2}=P(\alpha)+Q(\alpha) r
$$

where

- $P(\alpha), Q(\alpha) \in \mathbb{Z}$,
- $P(\alpha) \geq 0$, with equality iff $\alpha=0$,
- $|Q(\alpha)| \leq \frac{1}{r} P(\alpha)$.

Writing $\alpha=a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}$, we have

$$
P(\alpha)=a_{0}^{2}+a_{0} a_{2}+a_{1}^{2}+a_{1} a_{3}+a_{2}^{2}+a_{3}^{2} \geq \frac{1}{2}\left(a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)
$$

and

$$
Q(\alpha)=a_{0} a_{1}+a_{1} a_{2}+a_{2} a_{3}
$$

With these formulas, we can write down a list of possible values of $(P(\alpha), Q(\alpha))$ with $P(\alpha) \leq B$ for a given bound B. This list starts
$(0,0),(1,0),(2,-1),(2,0),(2,1),(3,0),(4,-2),(4,-1),(4,0), \ldots$
We can also identify

$$
\left\{\alpha \in \mathfrak{o}_{\ell}: P(\alpha)=p \text { and } Q(\alpha)=q\right\}
$$

for each (p, q) in the list.
The next step in finding elements of $\bar{\Gamma}$ is to identify

$$
K=\{g \in \bar{\Gamma}: g .0=0\}
$$

(we are usually just going to write g, not $g \mathcal{Z}$, for elements of $\bar{\Gamma}$).
Now g. $0=0$ iff $\tilde{g} .0=0$ iff $\tilde{g}_{13}=\tilde{g}_{23}=0$, which holds iff $g_{13}=0$ and $g_{23}=0$. Then $\left|g_{33}\right|=1$ and wlog $g_{33}=1$. So wlog g has the form

$$
\left(\begin{array}{ccc}
g_{11} & g_{12} & 0 \\
g_{21} & g_{22} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The $g_{i j}$'s here must be in \mathfrak{o}_{ℓ}. The entries g_{11} and g_{12} must satisfy

$$
\left|g_{11}\right|^{2}+\left|g_{11}+(r+1) g_{12}\right|^{2}=2
$$

which is just the row 1 condition in the case $g_{13}=0$.
This equation has the form $|\alpha|^{2}+|\beta|^{2}=2$, where $\alpha, \beta \in \mathfrak{o}_{\ell}$. We must have $P(\alpha)+P(\beta)=2$ and $Q(\alpha)+Q(\beta)=0$. We read from our lists of (p, q) 's, etc, the possibilities for α and β. For each such α and β, we solve for g_{11} and g_{12}. Then $g_{11}, g_{12}, 0,0,1$ satisfy the row 1 and column 3 conditions, and so g_{21} and g_{22} are determined by g_{11}, g_{12} and the choice of $\theta=\operatorname{det}(g)$. Running through the possibilities for α and β, and for θ, and checking when the $g_{i j}$'s are in \mathfrak{o}_{ℓ}, we get:

Lemma 5. There are 288 elements in K, which is generated by $u \mathcal{Z}$ and $v \mathcal{Z}$ for the matrices

$$
u=\left(\begin{array}{ccc}
\zeta^{3}+\zeta^{2}-\zeta & 1-\zeta & 0 \\
\zeta^{3}+\zeta^{2}-1 & \zeta-\zeta^{3} & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{ccc}
\zeta^{3} & 0 & 0 \\
\zeta^{3}+\zeta^{2}-\zeta-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

These satisfy

$$
u^{3}=I, v^{4}=I, \text { and }(u v)^{2}=(v u)^{2}
$$

and these generators and relations give a presentation for K.

For five of the thirteen \bar{F} 's we need to look at, the calculation of K is enough to eliminate there being a torsion-free subgroup in $\bar{\Gamma}$ of the right index.

The next step in our search for elements of $\bar{\Gamma}$ is to find $g \in \bar{\Gamma}$ for which $d(0, g .0)$ is small. Since

$$
\cosh ^{2}(d(0, g .0))=\cosh ^{2}(d(0, \tilde{g} .0))=\left|\tilde{g}_{33}\right|^{2}=\left|g_{33}\right|^{2}
$$

we are just looking for $g \in \bar{\Gamma}$ with $\left|g_{33}\right|>1$ but small.
The column 3 condition for $g \in \bar{\Gamma}$ is of the form

$$
|\alpha|^{2}+|\beta|^{2}=(r-1)\left(|\gamma|^{2}-1\right)
$$

with $\alpha, \beta, \gamma \in \mathfrak{o}_{\ell}, \gamma=g_{33}$, and with $g .0=0$ if and only if $(\alpha, \beta)=(0,0)$.

Lemma 6. If $\alpha, \beta, \gamma \in \mathfrak{o}_{\ell}$ satisfy (\dagger), and if $(\alpha, \beta) \neq(0,0)$, then

$$
|\gamma|^{2} \geq 2+r, \quad \text { with equality iff } \quad|\alpha|^{2}+|\beta|^{2}=2
$$

It is now easy to find an element g of $\bar{\Gamma}$ with $\left|g_{33}\right|^{2}=2+r$. We find all possible $g_{11}, g_{12}, g_{13}, g_{23}, g_{33} \in \mathfrak{o}_{\ell}$ satisfying the column 3 and row 1 conditions and $\left|g_{33}\right|^{2}=2+r$, and apply Lemma 3 above.

We find that $\left\{g \in \bar{\Gamma}:\left|g_{33}\right|^{2}=2+r\right\}=K b K$ for

$$
b=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 \zeta^{3}-\zeta^{2}+2 \zeta+2 & \zeta^{3}+\zeta^{2}-\zeta-1 & -\zeta^{3}-\zeta^{2} \\
\zeta^{2}+\zeta & -\zeta^{3}-1 & -\zeta^{3}+\zeta+1
\end{array}\right)
$$

Lemma 7. The elements u, v and b generate $\bar{\Gamma}$.
The corresponding calculations are enough to eliminate three more of the $13 \bar{\Gamma}$'s. We are able to find elements $g \in \bar{\Gamma}$ of finite order n which does not divide the required $N=[\bar{\Gamma}: \Pi]$, and apply Lemma 1.

For the remaining 5 cases, we find a presentation of the $\bar{\Gamma}$'s. In our example case,

Proposition. The generators u, v and b, together with the relations

$$
u^{3}=v^{4}=b^{3}=1,(u v)^{2}=(v u)^{2}, v b=b v,(b u v)^{3}=(b u v u)^{2} v=1
$$

form a presentation for $\bar{\Gamma}$.

This particular $\bar{\Gamma}$ was known by various experts to be isomorphic to one of the Deligne-Mostow groups, which have nice presentations (see John Parker [2009]). Using this (and some help from John Parker), we could simplify a little the earlier presentation we had from our methods.

For all the $\bar{\Gamma}$'s we were able to get a presentation as follows.
Lemma 8. If $\alpha, \beta, \gamma \in \mathfrak{o}_{\ell}$ satisfy (\dagger), and if $(\alpha, \beta) \neq(0,0)$, then

$$
0 \leq Q(\gamma) \leq \frac{1}{r} P(\gamma) \leq Q(\gamma)+\frac{1}{r}
$$

Lemma 8 is useful for seeing explicitly the discreteness of the set of distances $d(0, g .0), g \in \bar{\Gamma}$. It implies that

$$
2 P\left(g_{33}\right)-1 \leq\left|g_{33}\right|^{2} \leq 2 P\left(g_{33}\right)
$$

Caution: The set $\left\{|\alpha|^{2}: \alpha \in \mathfrak{o}_{\ell}\right\}$ is not a discrete subset of \mathbb{R}. For example,

$$
|\zeta-1|^{2}=2-r, \quad \text { and so } \quad 0<\left|(\zeta-1)^{n}\right|^{2}=(2-\sqrt{3})^{n} \rightarrow 0
$$

Let

$$
d_{0}=0<d_{1}<d_{2}<\cdots
$$

be the distinct values taken by $d(0, g .0), g \in \bar{\Gamma}$. So $\cosh ^{2}\left(d_{n}\right)=p_{n}+q_{n} r$ for certain integers p_{n} and q_{n}. The first few $p_{n}+q_{n} r$'s are:

$$
1,2+r, 4+2 r, 6+3 r, 7+4 r, 11+6 r, \ldots
$$

We find all possible $g_{11}, g_{12}, g_{13}, g_{23}, g_{33} \in \mathfrak{o}_{\ell}$ satisfying the column 3 and row 1 conditions and $\left|g_{33}\right|^{2}=p_{n}+q_{n} r$, and then for each $\theta \in \mathfrak{o}_{\ell}$ such that $|\theta|=1$, we apply Lemma 3 to form the unique $g \in M_{3 \times 3}(\ell)$ with the five specified entries such that $g^{*} F g=F$ and $\operatorname{det}(g)=\theta$, then test whether the $g_{i j}$'s are in \mathfrak{o}_{ℓ}. In this way, we can form

$$
S_{n}=\left\{g \in \bar{\Gamma}: d(0, g .0) \leq d_{n}\right\}
$$

Then

$$
K=S_{0} \subset S_{1} \subset S_{1} \subset S_{2} \subset \cdots, \quad \text { and } \quad \bigcup_{n} S_{n}=\bar{\Gamma}
$$

Form

$$
\begin{aligned}
& \mathcal{F}_{n}=\left\{z \in B\left(\mathbb{C}^{2}\right): d(0, z) \leq d(g .0, z) \text { for all } g \in S_{n}\right\}, \\
& B\left(\mathbb{C}^{2}\right)=\mathcal{F}_{0} \supset \mathcal{F}_{1} \supset \mathcal{F}_{1} \supset \cdots \quad \text { and } \quad \bigcap_{n} \mathcal{F}_{n}=\mathcal{F}_{\bar{\Gamma}} .
\end{aligned}
$$

Let

$$
r_{n}=\max \left\{d(0, z): z \in \mathcal{F}_{n}\right\} \quad \text { and } \quad r_{\bar{\Gamma}}=\max \left\{d(0, z): z \in \mathcal{F}_{\bar{\Gamma}}\right\} .
$$

So

$$
\infty=r_{0} \geq r_{1} \geq r_{2} \geq \cdots
$$

Lemma 9. If $d_{n} \geq r_{n}$, then S_{n} generates $\bar{\Gamma}$.
Lemma 10. If $d_{n} \geq 2 r_{n}$, then
(a) $\mathcal{F}_{n}=\mathcal{F}_{\bar{\Gamma}}$ and $r_{n}=r_{\bar{\Gamma}}$.
(b) the set S_{n} of generators, together with the relations $g_{1} g_{2} g_{3}=1$ which hold for $g_{1}, g_{2}, g_{3} \in S_{n}$, form a presentation for $\bar{\Gamma}$.

Lemma 11. For the $\left(\mathcal{C}_{11}, \emptyset\right)$ example,

$$
r_{1}=r_{2}=\cdots=\frac{1}{2} d_{2}=\frac{1}{2} \cosh ^{-1}(1+\sqrt{3})
$$

so that we take $n=2$ in Lemmas 9 and 10 .

To calculate r_{n}, we have to maximize $d(0, z)$ subject to the constraints $d(0, z) \leq d(g .0, z), g \in S_{n}$. Since

$$
d(0, z)=\frac{1}{2} \log \left(\frac{1+|z|}{1-|z|}\right), \quad \text { where }|z|=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}
$$

this amounts to maximizing

$$
\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}
$$

subject to the constraints

$$
\left|g_{31} z_{1}+g_{32} z_{2}+g_{33}\right| \geq 1 \quad \text { for all } g \in S_{n}
$$

While we haven't calculated r_{n} exactly in most other lattices subgroups in our list of thirteen, we can numerically estimate these numbers with sufficient accuracy to check the condition $d_{n} \geq 2 r_{n}$.

For finitely presented groups G, Magma and other computer algebra packages have routines for finding subgroups of low index. For the five $\bar{\Gamma}$'s not yet eliminated, the index in question is not low enough for these general routines to work.

Steger and I wrote specialized C-programs to look for torsion-free subgroups of the required index. In the " $\left(\mathcal{C}_{11}, \emptyset\right)$ " example, this amounted to looking for a permutation B of $\{1, \ldots, 864\}$ with special properties corresponding to the relations satisfied by the generator b of $\bar{\Gamma}$.

This quickly found a torsion-free subgroup Π of $\bar{\Gamma}$ of index 864 , but with $\Pi /[\Pi, \Pi] \cong \mathbb{Z}^{2}$. It took many CPU-days to show that Π was the unique (up to conjugation) torsion-free subgroup of index 864.

If $\Pi \subset \bar{\Gamma}$ is torsion-free and of index 864 , then $X=B\left(\mathbb{C}^{2}\right) / \Pi$ is a compact complex surface of Euler-Poincaré characteristic 3. It is not a fake projective plane. Sai-Kee Yeung, Vincent Koziarz and I have recently studied geometric properties of X, showing in particular:

Proposition. The Picard number of X is 3. Let $\alpha: X \rightarrow T$ be the Albanese map. Then $T \cong \mathbb{C} /(\mathbb{Z}+\omega \mathbb{Z})$, where $\omega=e^{2 \pi i / 3}$, and the genus of the generic fibre of α is 19 .

This was shown by studying certain "mirrors" $M_{\alpha}=\left\{(z, w) \in B\left(\mathbb{C}^{2}\right)\right.$: $z=\alpha w\}$ and the groups $\Pi_{\alpha}=\left\{\pi \in \Pi: \pi\left(M_{\alpha}\right)=M_{\alpha}\right\}$. If $\alpha=0$, then the generator v of $\bar{\Gamma}$ fixes each point of M_{α}, and Π_{α} is a surface group of genus 4. If $\alpha=\zeta^{2}-\zeta$, then the generator u of $\bar{\Gamma}$ fixes each point of M_{α}, and Π_{α} is a surface group of genus 10 .

Where the $13 \bar{\Gamma}$'s come from.

Here are the (k, ℓ) 's which were not eliminated in [PY]:

name	k	ℓ	defining polynomial for ℓ
\mathcal{C}_{1}	$\mathbb{Q}(\sqrt{5})$	$\mathbb{Q}\left(\zeta_{5}\right)$	$\zeta^{4}+\zeta^{3}+\zeta^{2}+\zeta+1$
\mathcal{C}_{3}	$\mathbb{Q}(\sqrt{5})$	$\mathbb{Q}(\sqrt{5}, i) \cong \mathbb{Q}(z)$	$z^{4}+3 z^{2}+1$
\mathcal{C}_{8}	$\mathbb{Q}(\sqrt{2})$	$\mathbb{Q}(\sqrt{2}, i) \cong \mathbb{Q}\left(\zeta_{8}\right)$	$\zeta^{4}+1$
\mathcal{C}_{11}	$\mathbb{Q}(\sqrt{3})$	$\mathbb{Q}(\sqrt{3}, i) \cong \mathbb{Q}\left(\zeta_{12}\right)$	$\zeta^{4}-\zeta^{2}+1$
\mathcal{C}_{18}	$\mathbb{Q}(\sqrt{6})$	$\mathbb{Q}\left(\sqrt{6}, \zeta_{3}\right) \cong \mathbb{Q}(z)$	$z^{4}-2 z^{2}+4$
\mathcal{C}_{21}	$\mathbb{Q}(\sqrt{33})$	$\mathbb{Q}\left(\sqrt{33}, \zeta_{3}\right) \cong \mathbb{Q}(z)$	$z^{4}-z^{3}-2 z^{2}-3 z+9$

We can define an hermitian form on ℓ^{3} by choosing a matrix F, as follows:

We set

$$
F=\left(\begin{array}{ccc}
-x & 0 & 0 \\
0 & -x^{-1} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

in cases $\mathcal{C}_{1}, \mathcal{C}_{3}$ and \mathcal{C}_{8}, and

$$
F=\left(\begin{array}{ccc}
-x & 1 & 0 \\
1 & -2 x^{-1} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

in cases $\mathcal{C}_{11}, \mathcal{C}_{18}$ and \mathcal{C}_{21}, where x is as in the following table:

	\mathcal{C}_{1}	\mathcal{C}_{3}	\mathcal{C}_{8}	\mathcal{C}_{11}	\mathcal{C}_{18}	\mathcal{C}_{21}
r^{2}	5	5	2	3	6	33
x	$(r+1) / 2$	$(r+1) / 2$	$r+1$	$r+1$	$r+2$	$(r+5) / 2$

In each case, $\operatorname{det}(F)=1$, and all the entries of F are algebraic integers of k.

Each x is positive when r is taken as the positive square root of r^{2}, and negative when r is taken as the negative square root. There is an algebraic group G defined over k so that

$$
G(k)=\left\{g \in M_{3 \times 3}(\ell): g^{*} F g=F \text { and } \operatorname{det}(g)=1\right\}
$$

The field k has two archimedean places v^{+}and v^{-}corresponding to the embeddings $k \rightarrow \mathbb{R}$ mapping r to the positive and negative square roots of r^{2}. Taking completions of k, the above sign change of x implies that

$$
G\left(k_{v^{+}}\right) \cong S U(2,1) \quad \text { and } \quad G\left(k_{v^{-}}\right) \cong S U(3)
$$

If a different choice is made of F, so that the corresponding G behaves in this same way at v^{+}and v^{-}, then the two G^{\prime} s are k-isomorphic.

In our context Π being arithmetic means that there is a "principal arithmetic subgroup"

$$
\wedge=G(k) \cap \prod_{v \in V_{f}} P_{v}
$$

which is commensurable with $\tilde{\Pi}=\varphi^{-1}(\Pi)$, where $\varphi: S U(2,1) \rightarrow P U(2,1)$ is the natural map. Here V_{f} is the set of non-archimedean places of k, and each P_{v} is a "parahoric" subgroup of $G\left(k_{v}\right)$. We regard $G(k)$ as a subgroup of $S U(2,1)$ by a suitable conjugation. More exactly, $\Delta^{*} F_{0} \Delta=$ $-x F$ for

$$
\Delta=\left(\begin{array}{ccc}
x & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \sqrt{x}
\end{array}\right) \quad \text { or } \quad \Delta=\left(\begin{array}{ccc}
x & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & \sqrt{x}
\end{array}\right)
$$

so that $g^{*} F g=F$ implies that $\tilde{g}=\Delta g \Delta^{-1}$ satisfies $\tilde{g}^{*} F_{0} \tilde{g}=F_{0}$.

This commensurability can be expressed more explicitly: \wedge can be chosen so that $\tilde{\Pi}$ is in the normalizer Γ of \wedge in $S U(2,1)$. Both $\tilde{\Pi}$ and \wedge are of finite index in Γ.

It is shown in $[P Y]$ that $[\Gamma: \wedge]=3$.

Using $\mu(P U(2,1) / \Pi)=1$, we find that

$$
\mu(S U(2,1) / \wedge)=\frac{1}{[\varphi(\Gamma): \Pi]}
$$

But there is also Prasad's Covolume Formula, which in this context tells us that

$$
\mu(S U(2,1) / \Lambda)=\frac{1}{D} \prod_{v \in \mathcal{T}} e^{\prime}\left(P_{v}\right)
$$

where $\mathcal{T} \subset V_{f}$ is finite, the $e^{\prime}\left(P_{v}\right)$'s are certain positive integers depending on the order q_{v} of the residue field of k_{v}, and where D is as follows:

	\mathcal{C}_{1}	\mathcal{C}_{3}	\mathcal{C}_{8}	\mathcal{C}_{11}	\mathcal{C}_{18}	\mathcal{C}_{21}
D	600	32	128	864	48	12

Comparing the two formulas, we get

$$
D=[\varphi(\Gamma): \Pi] \prod_{v \in \mathcal{T}} e^{\prime}\left(P_{v}\right)
$$

Any prime dividing D is either 2,3 or 5 . This severely restricts the possibilities for the P_{v} 's. For example, under some conditions, $e^{\prime}\left(P_{v}\right)=$ $q_{v}^{2}-q_{v}+1$. It is elementary that unless $q_{v}=2, q_{v}^{2}-q_{v}+1$ is divisible by a prime $p>5$.

We find that the parahorics P_{v} must be maximal, or can be chosen to be maximal, for all v 's.

When v splits in ℓ, any two maximal parahorics are conjugate by an element of $\bar{G}\left(k_{v}\right)$.

When v does not split in ℓ, there are two conjugacy classes of maximal parahorics, "type 1" and "type 2".

We find that at most one P_{v} can be of type 2 .

When all such P_{v} 's are of type 1 , we can assume that $\varphi(\Gamma)$ is the following explicit group

$$
\bar{\Gamma}=\left\{g \in M_{3 \times 3}\left(\mathfrak{o}_{\ell}\right): g^{*} F g=F\right\} /\left\{t I: t \in \mathfrak{o}_{\ell} \text { and }|t|=1\right\}
$$

where F is defined above, and \mathfrak{o}_{ℓ} is the ring of algebraic integers in ℓ.

For each \mathcal{C}_{j} there is another possibility for the group $\varphi(\Gamma)$, corresponding to a type 2 maximal parahoric group P_{v} for a particular v. For \mathcal{C}_{21} there are two other possibilities, corresponding to a type 2 maximal parahoric group P_{v} for one or other of the two 2-adic places of $k=\mathbb{Q}(\sqrt{33})$.

A fundamental tool for [PY] is a result of Chern (called the Hirzebruch Proportionality Principle), valid for any torsion-free cocompact $\Pi \subset P U(2,1)$ and for $X=B\left(\mathbb{C}^{2}\right) / \Pi$, telling us that

$$
\chi(X)=3 \operatorname{vol}\left(\mathcal{F}_{\Pi}\right),
$$

where $\chi(X)$ is the Euler-Poincaré characteristic of X, where $\mathcal{F}_{\square} \subset B\left(\mathbb{C}^{2}\right)$ is a fundamental domain for the action of Π on $B\left(\mathbb{C}^{2}\right)$, and where vol is a suitably normalized volume on $B\left(\mathbb{C}^{2}\right)$, invariant under the action of $P U(2,1)$.

Since $\chi(X)$ is the alternating sum of the Betti numbers of X, for an fpp we have $\chi(X)=3$, and so $\operatorname{vol}\left(\mathcal{F}_{\Pi}\right)=1$.

Let Π be a subgroup of index 864 in $\bar{\Gamma}$ in the $\left(\mathcal{C}_{11}, \emptyset\right)$ case. How do we check that Π is torsion-free?

In this case, we know that $d_{2}=2 r_{2}$. Let $S=S_{2}=\{g \in \bar{\Gamma}: d(0, g .0) \leq$ $\left.d_{2}\right\}$, Then

$$
\mathcal{F}_{\bar{\Gamma}}=\mathcal{F}_{2}=\left\{z \in B\left(\mathbb{C}^{2}\right): d(0, z) \leq d(g .0, z) \text { for all } g \in S\right\}
$$

Any $g \in \bar{\Gamma}$ of finite order must fix a point x of $B\left(\mathbb{C}^{2}\right)$. Conjugating g, we may assume $x \in \mathcal{F}_{\bar{\Gamma}}$. Then $d(0, g .0) \leq 2 d(0, x) \leq 2 r_{2}=d_{2}$, so that $g \in S_{2}=S$. Such g 's lie in just 3 double cosets $K, K b K$ and $K b v^{-1} b K$.

We get a short list g_{1}, \ldots, g_{m} of conjugacy class representatives of elements of finite order. Next we pick a transversal t_{1}, \ldots, t_{864} for Π, e.g., $K \cup K b \cup K b^{2}$.

We need only check that $t_{i} g_{j} t_{i}^{-1} \notin \Pi$ for $i=1, \ldots, 864$, and $j=1, \ldots, n$.

