The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi: algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical The Knuth-Bendix algorithm and conjugacy problems in monoids Semigroup forum 2011

Fabienne Chouraqui

University of Haifa, Campus Oranim

June 8, 2016

イロン イヨン イヨン イヨン

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Let
$$M = \text{Mon}\langle X \mid l_1 = r_1, l_2 = r_2, ..., l_m = r_m \rangle$$
, with $l_i, r_i \in X^*$.

String rewriting system

• $\Re \subseteq X^* \times X^*$ is a string rewriting system.

・ロン ・回と ・ヨン ・ヨン

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Let
$$M = \operatorname{Mon}\langle X \mid I_1 = r_1, I_2 = r_2, ..., I_m = r_m \rangle$$
, with $I_i, r_i \in X^*$.

String rewriting system

• $\Re \subseteq X^* \times X^*$ is a string rewriting system.

•
$$u \rightarrow v$$
 if $u = plq$, $v = prq$ and $(l, r) \in \Re$.

・ロン ・回と ・ヨン ・ヨン

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Let
$$M = \operatorname{Mon}\langle X \mid I_1 = r_1, I_2 = r_2, ..., I_m = r_m \rangle$$
, with $I_i, r_i \in X^*$.

String rewriting system

• $\Re \subseteq X^* \times X^*$ is a string rewriting system.

•
$$u \rightarrow v$$
 if $u = plq$, $v = prq$ and $(I, r) \in \Re$.

 $\blacksquare \rightarrow^*$ denotes the reflexive and transitive closure of $\rightarrow.$

・ロト ・回ト ・ヨト ・ヨト

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Let
$$M = \operatorname{Mon}\langle X \mid I_1 = r_1, I_2 = r_2, ..., I_m = r_m \rangle$$
, with $I_i, r_i \in X^*$.

String rewriting system

• $\Re \subseteq X^* \times X^*$ is a string rewriting system.

•
$$u \rightarrow v$$
 if $u = plq$, $v = prq$ and $(I, r) \in \Re$.

 $\blacksquare \rightarrow^*$ denotes the reflexive and transitive closure of $\rightarrow.$

・ロト ・回ト ・ヨト ・ヨト

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting

Solution to the conjugac problems in monoids

The algorithm of cyclical

Let
$$M = \text{Mon}\langle X \mid l_1 = r_1, l_2 = r_2, ..., l_m = r_m \rangle$$
, with $l_i, r_i \in X^*$.

String rewriting system

• $\Re \subseteq X^* \times X^*$ is a string rewriting system.

•
$$u \rightarrow v$$
 if $u = plq$, $v = prq$ and $(l, r) \in \Re$.

 $\blacksquare \rightarrow^*$ denotes the reflexive and transitive closure of $\rightarrow.$

Example: Mon $\langle a, b \mid aba = bab \rangle$

Take
$$\Re = \{bab \rightarrow aba\}$$
.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugac problems in monoids

The algorithm of cyclical

Let
$$M = \text{Mon}\langle X \mid l_1 = r_1, l_2 = r_2, ..., l_m = r_m \rangle$$
, with $l_i, r_i \in X^*$

String rewriting system

• $\Re \subseteq X^* \times X^*$ is a string rewriting system.

•
$$u \rightarrow v$$
 if $u = plq$, $v = prq$ and $(I, r) \in \Re$.

 $\blacksquare \rightarrow^*$ denotes the reflexive and transitive closure of $\rightarrow.$

Example: Mon $\langle a, b \mid aba = bab \rangle$

Take
$$\Re = \{bab \rightarrow aba\}$$
.
 $bbabb \rightarrow^* abaab$, since
 $b \underline{bab} b \rightarrow \underline{bab} ab \rightarrow abaab$

・ロト ・回ト ・ヨト ・ヨト

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugac problems in monoids

The algorithm of cyclical

Let
$$M = \text{Mon}\langle X \mid l_1 = r_1, l_2 = r_2, ..., l_m = r_m \rangle$$
, with $l_i, r_i \in X^*$.

String rewriting system

• $\Re \subseteq X^* \times X^*$ is a string rewriting system.

•
$$u \rightarrow v$$
 if $u = plq$, $v = prq$ and $(l, r) \in \Re$.

 $\blacksquare \rightarrow^*$ denotes the reflexive and transitive closure of $\rightarrow.$

Example: Mon $\langle a, b \mid aba = bab \rangle$ *u* is irreducible if

Take $\Re = \{bab \rightarrow aba\}$. $bbabb \rightarrow^* abaab$, since $b \underline{bab} b \rightarrow \underline{bab} ab \rightarrow abaab$. there is no v s.t. $u \rightarrow v$.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Let
$$M = \text{Mon}\langle X \mid l_1 = r_1, l_2 = r_2, ..., l_m = r_m \rangle$$
, with $l_i, r_i \in X^*$.

String rewriting system

• $\Re \subseteq X^* \times X^*$ is a string rewriting system.

•
$$u \rightarrow v$$
 if $u = plq$, $v = prq$ and $(l, r) \in \Re$.

 $\blacksquare \rightarrow^*$ denotes the reflexive and transitive closure of $\rightarrow.$

	Example: Mon $\langle a, b \mid aba = bab \rangle$	<i>u</i> is irreducible if
	$Take\; \Re = \{\textit{bab} \rightarrow \textit{aba}\}.$	there is no v s.t. $u \rightarrow v$.
	<i>bbabb</i> \rightarrow^* <i>abaab</i> , since	
gacy in	b bab b $ ightarrow$ bab ab $ ightarrow$ abaab.	abaab is irreducible
	\sim \sim	

イロン スポン イヨン イヨン

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithr of cyclical

Some more definitions

• \rightarrow is *terminating* if there is no infinite sequence $u_1 \rightarrow u_2 \rightarrow \dots \rightarrow u_n \rightarrow u_{n+1} \rightarrow \dots$

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Some more definitions

- \rightarrow is *terminating* if there is no infinite sequence $u_1 \rightarrow u_2 \rightarrow ... \rightarrow u_n \rightarrow u_{n+1} \rightarrow$
- \rightarrow is *confluent* if $u \rightarrow^* v_1$ and $u \rightarrow^* v_2$, then $\exists z \text{ s.t} v_1 \rightarrow^* z$ and $v_2 \rightarrow^* z$.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Some more definitions

- \rightarrow is *terminating* if there is no infinite sequence $u_1 \rightarrow u_2 \rightarrow ... \rightarrow u_n \rightarrow u_{n+1} \rightarrow$
- \rightarrow is *confluent* if $u \rightarrow^* v_1$ and $u \rightarrow^* v_2$, then $\exists z \text{ s.t} v_1 \rightarrow^* z$ and $v_2 \rightarrow^* z$.
- \rightarrow is *locally confluent* if $u \rightarrow v_1$ and $u \rightarrow v_2$, then $\exists z \text{ s.t}$ $v_1 \rightarrow^* z \text{ and } v_2 \rightarrow^* z$.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Some more definitions

- \rightarrow is *terminating* if there is no infinite sequence $u_1 \rightarrow u_2 \rightarrow ... \rightarrow u_n \rightarrow u_{n+1} \rightarrow$
- \rightarrow is *confluent* if $u \rightarrow^* v_1$ and $u \rightarrow^* v_2$, then $\exists z \text{ s.t} v_1 \rightarrow^* z$ and $v_2 \rightarrow^* z$.
- \rightarrow is *locally confluent* if $u \rightarrow v_1$ and $u \rightarrow v_2$, then $\exists z \text{ s.t}$ $v_1 \rightarrow^* z \text{ and } v_2 \rightarrow^* z$.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Some more definitions

- \rightarrow is *terminating* if there is no infinite sequence $u_1 \rightarrow u_2 \rightarrow ... \rightarrow u_n \rightarrow u_{n+1} \rightarrow$
- \rightarrow is *confluent* if $u \rightarrow^* v_1$ and $u \rightarrow^* v_2$, then $\exists z \text{ s.t}$ $v_1 \rightarrow^* z$ and $v_2 \rightarrow^* z$.
- \rightarrow is *locally confluent* if $u \rightarrow v_1$ and $u \rightarrow v_2$, then $\exists z \text{ s.t}$ $v_1 \rightarrow^* z \text{ and } v_2 \rightarrow^* z$.

The Knuth-Bendix algorithm and conjugacy problems in monoi

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Some more definitions

- \rightarrow is *terminating* if there is no infinite sequence $u_1 \rightarrow u_2 \rightarrow ... \rightarrow u_n \rightarrow u_{n+1} \rightarrow ...$
- \rightarrow is *confluent* if $u \rightarrow^* v_1$ and $u \rightarrow^* v_2$, then $\exists z \text{ s.t} v_1 \rightarrow^* z$ and $v_2 \rightarrow^* z$.
- \rightarrow is *locally confluent* if $u \rightarrow v_1$ and $u \rightarrow v_2$, then $\exists z \text{ s.t}$ $v_1 \rightarrow^* z \text{ and } v_2 \rightarrow^* z$.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Some more definitions

- \rightarrow is *terminating* if there is no infinite sequence $u_1 \rightarrow u_2 \rightarrow ... \rightarrow u_n \rightarrow u_{n+1} \rightarrow ...$
- \rightarrow is *confluent* if $u \rightarrow^* v_1$ and $u \rightarrow^* v_2$, then $\exists z \text{ s.t} v_1 \rightarrow^* z$ and $v_2 \rightarrow^* z$.
- \rightarrow is *locally confluent* if $u \rightarrow v_1$ and $u \rightarrow v_2$, then $\exists z \text{ s.t}$ $v_1 \rightarrow^* z \text{ and } v_2 \rightarrow^* z$.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithr of cyclical

A crucial idea

Assume \rightarrow is terminating. Then, \rightarrow is confluent if and only if \rightarrow is locally confluent.

イロン スポン イヨン イヨン

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

A crucial idea

Assume \rightarrow is terminating. Then, \rightarrow is confluent if and only if \rightarrow is locally confluent.

Definition of critical pairs

• An overlap occurs in uvw if $uv \rightarrow r_1$ and $vw \rightarrow r_2$. (r_1w, ur_2) is a critical pair.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

A crucial idea

Assume \rightarrow is terminating. Then, \rightarrow is confluent if and only if \rightarrow is locally confluent.

Definition of critical pairs

- An overlap occurs in uvw if $uv \rightarrow r_1$ and $vw \rightarrow r_2$. (r_1w, ur_2) is a critical pair.
- An *inclusion* occurs in *uvw* if $v \rightarrow r_1$ and $uvw \rightarrow r_2$. (ur_1w, r_2) is a critical pair.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

A crucial idea

Assume \rightarrow is terminating. Then, \rightarrow is confluent if and only if \rightarrow is locally confluent.

Definition of critical pairs

- An overlap occurs in uvw if $uv \rightarrow r_1$ and $vw \rightarrow r_2$. (r_1w, ur_2) is a critical pair.
- An *inclusion* occurs in *uvw* if $v \rightarrow r_1$ and $uvw \rightarrow r_2$. (ur_1w, r_2) is a critical pair.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

A crucial idea

Assume \rightarrow is terminating. Then, \rightarrow is confluent if and only if \rightarrow is locally confluent.

Definition of critical pairs

- An overlap occurs in uvw if $uv \rightarrow r_1$ and $vw \rightarrow r_2$. (r_1w, ur_2) is a critical pair.
- An *inclusion* occurs in *uvw* if $v \rightarrow r_1$ and $uvw \rightarrow r_2$. (ur_1w, r_2) is a critical pair.

Example: $\Re = \{bab \rightarrow aba\}$

(abaab, baaba) is a critical pair from the overlap in babab.

・ロト ・回ト ・ヨト ・ヨト … ヨ

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

A crucial idea

Assume \rightarrow is terminating. Then, \rightarrow is confluent if and only if \rightarrow is locally confluent.

Definition of critical pairs

- An overlap occurs in uvw if $uv \rightarrow r_1$ and $vw \rightarrow r_2$. (r_1w, ur_2) is a critical pair.
- An *inclusion* occurs in *uvw* if $v \rightarrow r_1$ and $uvw \rightarrow r_2$. (ur_1w, r_2) is a critical pair.

Example: $\Re = \{bab \rightarrow aba\}$

(abaab, baaba) is a critical pair from the overlap in babab.

・ロト ・回ト ・ヨト ・ヨト … ヨ

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithr of cyclical Assume \Re is terminating. Then, \Re is confluent if and only if all the critical pairs resolve.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical Assume \Re is terminating. Then, \Re is confluent if and only if all the critical pairs resolve.

Sketch of the algorithm

■ First step: find all the critical pairs, order the pairs and add new rules to ℜ to get ℜ₁.

・ロン ・四マ ・ヨマ ・ヨマ

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical Assume \Re is terminating. Then, \Re is confluent if and only if all the critical pairs resolve.

Sketch of the algorithm

- First step: find all the critical pairs, order the pairs and add new rules to ℜ to get ℜ₁.
- Next step: find all the critical pairs in ℜ₁, order the pairs and add new rules to ℜ₁ to get ℜ₂.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical Assume \Re is terminating. Then, \Re is confluent if and only if all the critical pairs resolve.

Sketch of the algorithm

- First step: find all the critical pairs, order the pairs and add new rules to ℜ to get ℜ₁.
- Next step: find all the critical pairs in ℜ₁, order the pairs and add new rules to ℜ₁ to get ℜ₂.
- It may succeed with a finite of infinite equivalent complete rew.syst ℜ' or it may fail.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithr of cyclical

Example: $\Re = \{bab \rightarrow aba\}$

• (*abaab*, *baaba*) is a critical pair from the overlap in *babab*. $\Re_1 = \Re \cup \{ba^2ba \rightarrow aba^2b\}.$

・ロン ・四マ ・ヨマ ・ヨマ

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example: $\Re = \{bab \rightarrow aba\}$

- (*abaab*, *baaba*) is a critical pair from the overlap in *babab*. $\Re_1 = \Re \cup \{ba^2ba \rightarrow aba^2b\}.$
- two overlaps in \Re_1 : $ba^2ba b ba^2ba aba$. From the 1st, we add $ba^3ba \rightarrow aba^2b^2$ and the 2nd resolves using it.

・ロン ・四マ ・ヨマ ・ヨマ

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Example: $\Re = \{bab \rightarrow aba\}$

- (*abaab*, *baaba*) is a critical pair from the overlap in *babab*. $\Re_1 = \Re \cup \{ba^2ba \rightarrow aba^2b\}.$
- two overlaps in \Re_1 : $ba^2ba \ b \ ba^2ba \ aba$. From the 1st, we add $ba^3ba \rightarrow aba^2b^2$ and the 2nd resolves using it.
- By induction, there exists an equivalent infinite complete rew.syst: $\Re' = \{ba^n ba \rightarrow aba^2 b^{n-1}, n \ge 1\}.$

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example: $\Re = \{bab \rightarrow aba\}$

- (*abaab*, *baaba*) is a critical pair from the overlap in *babab*. $\Re_1 = \Re \cup \{ba^2ba \rightarrow aba^2b\}.$
- two overlaps in \Re_1 : $ba^2ba \ b \ ba^2ba \ aba$. From the 1st, we add $ba^3ba \rightarrow aba^2b^2$ and the 2nd resolves using it.
- By induction, there exists an equivalent infinite complete rew.syst: ℜ' = {baⁿba → aba²bⁿ⁻¹, n ≥ 1}.

\mathfrak{R}' is equivalent to \mathfrak{R} means: $u \leftrightarrow_{\mathfrak{R}} v$ if and only if $u \leftrightarrow_{\mathfrak{R}'} v$

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithr of cyclical

ightarrow is complete if

 \rightarrow is terminating and confluent.

イロン イヨン イヨン イヨン

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

\rightarrow is complete if

 \rightarrow is terminating and confluent.

If \rightarrow is complete

- Every element reduces to a unique normal form.
- There exists a simple algorithm to solve the word problem: compare the normal forms.

・ロン ・回 と ・ ヨ と ・ ヨ と

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

\rightarrow is complete if

 \rightarrow is terminating and confluent.

If \rightarrow is complete

- Every element reduces to a unique normal form.
- There exists a simple algorithm to solve the word problem: compare the normal forms.
- The monoid (group) is FP_{∞}

・ロト ・回ト ・ヨト ・ヨト

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

ightarrow is complete if

 \rightarrow is terminating and confluent.

If \rightarrow is complete

- Every element reduces to a unique normal form.
- There exists a simple algorithm to solve the word problem: compare the normal forms.
- The monoid (group) is FP_{∞}

Examples of groups with finite complete rew.syst

Coxeter groups(finite-LeChenadec, Hermiller), graphs of groups (Hermiller-Meier)...

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

ightarrow is complete if

 \rightarrow is terminating and confluent.

If \rightarrow is complete

- Every element reduces to a unique normal form.
- There exists a simple algorithm to solve the word problem: compare the normal forms.
- The monoid (group) is FP_{∞}

Examples of groups with finite complete rew.syst

Coxeter groups(finite-LeChenadec, Hermiller), graphs of groups (Hermiller-Meier)... Not known for hyperbolic or automatic groups.

The conjugacy problems in monoids

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi: algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical Let *M* be a monoid generated by *X*, let $u, v \in X^*$. **R**Conj: if there is a word $w \in X^*$ such that $uw =_M wv$.

イロン イヨン イヨン イヨン
The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical Let *M* be a monoid generated by *X*, let $u, v \in X^*$.

RConj: if there is a word $w \in X^*$ such that $uw =_M wv$.

• LConj: if there is a word $w' \in X^*$ such that $w'u =_M vw'$.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical Let M be a monoid generated by X, let $u, v \in X^*$.

- RConj: if there is a word $w \in X^*$ such that $uw =_M wv$.
- LConj: if there is a word $w' \in X^*$ such that $w'u =_M vw'$.
- Conj is an equivalence relation, while LConj and RConj are reflexive and transitive but not symmetric.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi algorithm

The

conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical Let M be a monoid generated by X, let $u, v \in X^*$.

- RConj: if there is a word $w \in X^*$ such that $uw =_M wv$.
- LConj: if there is a word $w' \in X^*$ such that $w'u =_M vw'$.
- Conj is an equivalence relation, while LConj and RConj are reflexive and transitive but not symmetric.
- Trans: if there are words w, w' in the free monoid such that $u =_M ww'$ and $v =_M w'w$. Trans is reflexive and symmetric, but not transitive.

・ロン ・回 と ・ 回 と ・ 回 と

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi: algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical Let M be a monoid generated by X, let $u, v \in X^*$.

- RConj: if there is a word $w \in X^*$ such that $uw =_M wv$.
- LConj: if there is a word $w' \in X^*$ such that $w'u =_M vw'$.
- Conj is an equivalence relation, while LConj and RConj are reflexive and transitive but not symmetric.
- Trans: if there are words *w*, *w*′ in the free monoid such that *u* =_{*M*} *ww*′ and *v* =_{*M*} *w*′*w*. Trans is reflexive and symmetric, but not transitive.
- Trans \subseteq Conj \subseteq LConj, RConj.

(ロ) (同) (E) (E) (E)

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi: algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical Let M be a monoid generated by X, let $u, v \in X^*$.

- RConj: if there is a word $w \in X^*$ such that $uw =_M wv$.
- LConj: if there is a word $w' \in X^*$ such that $w'u =_M vw'$.
- Conj is an equivalence relation, while LConj and RConj are reflexive and transitive but not symmetric.
- Trans: if there are words *w*, *w'* in the free monoid such that *u* =_{*M*} *ww'* and *v* =_{*M*} *w'w*. Trans is reflexive and symmetric, but not transitive.
- Trans \subseteq Conj \subseteq LConj, RConj.
- Trans = Conj = LConj = RConj for free monoids (Lentin-Schutzenberger).

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi: algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical Let M be a monoid generated by X, let $u, v \in X^*$.

- RConj: if there is a word $w \in X^*$ such that $uw =_M wv$.
- LConj: if there is a word $w' \in X^*$ such that $w'u =_M vw'$.
- Conj is an equivalence relation, while LConj and RConj are reflexive and transitive but not symmetric.
- Trans: if there are words *w*, *w*′ in the free monoid such that *u* =_{*M*} *ww*′ and *v* =_{*M*} *w*′*w*. Trans is reflexive and symmetric, but not transitive.
- Trans \subseteq Conj \subseteq LConj, RConj.
- Trans = Conj = LConj = RConj for free monoids (Lentin-Schutzenberger).
- Trans = Conj = LConj and solvable for a monoid with a special, finite and complete rewriting system (Otto).

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithr of cyclical

Definition of \bigcirc^i , \hookrightarrow

 u ○¹ v if v is a cyclic conjugate of u obtained by moving the first letter of u to be the last letter of v.

・ロン ・回 と ・ ヨ と ・ ヨ と

The Knuth-Bendix algorithm and conjugacy problems in monoids

Definition of \bigcirc^i . \hookrightarrow

Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

- u ○¹ v if v is a cyclic conjugate of u obtained by moving the first letter of u to be the last letter of v.
- *u* ⊖^{*i*} *v* if *v* is a cyclic conjugate of *u* obtained from *i* successive applications of ⊖¹.

・ロト ・回ト ・ヨト ・ヨト

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems i monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

- u ○¹ v if v is a cyclic conjugate of u obtained by moving the first letter of u to be the last letter of v.
- *u* ⊖^{*i*} *v* if *v* is a cyclic conjugate of *u* obtained from *i* successive applications of ⊖¹.

•
$$u \hookrightarrow v$$
 if $u \bigcirc^i \widetilde{u} \to v$.

Definition of \bigcirc^i . \hookrightarrow

(ロ) (同) (E) (E) (E)

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

- u ○¹ v if v is a cyclic conjugate of u obtained by moving the first letter of u to be the last letter of v.
- *u* ○^{*i*} *v* if *v* is a cyclic conjugate of *u* obtained from *i* successive applications of ○¹.

•
$$u \hookrightarrow v$$
 if $u \circlearrowleft^i \widetilde{u} \to v$.

Definition of \bigcirc^i . \hookrightarrow

• *u* is cyclically irreducible if there is no v s.t $u \leftrightarrow v$ (unless v a cyclic conjugate of u).

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

- u ○¹ v if v is a cyclic conjugate of u obtained by moving the first letter of u to be the last letter of v.
- *u* ○^{*i*} *v* if *v* is a cyclic conjugate of *u* obtained from *i* successive applications of ○¹.

•
$$u \hookrightarrow v$$
 if $u \circlearrowleft^i \widetilde{u} \to v$.

Definition of \bigcirc^i . \hookrightarrow

• *u* is cyclically irreducible if there is no *v* s.t $u \leftrightarrow v$ (unless *v* a cyclic conjugate of *u*).

Same definitions of $\hookrightarrow^*,$ terminating, confluent ... for \hookrightarrow

(ロ) (同) (E) (E) (E)

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

u ☉¹ v if v is a cyclic conjugate of u obtained by moving the first letter of u to be the last letter of v.

u ○^{*i*} *v* if *v* is a cyclic conjugate of *u* obtained from *i* successive applications of ○¹.

•
$$u \hookrightarrow v$$
 if $u \circlearrowleft^i \widetilde{u} \to v$.

Definition of \bigcirc^i , \hookrightarrow

• *u* is cyclically irreducible if there is no v s.t $u \leftrightarrow v$ (unless v a cyclic conjugate of u).

Same definitions of ${\hookrightarrow}^*,$ terminating, confluent ... for ${\hookrightarrow}$

 $\rho(u)$ cyclically irreducible form of u

ৰ □ ▷ ব 🗇 ▷ ব হ ▷ ব হ ▷ ব হ ⇒ ২০০০ The Knuth-Bendix algorithm and conjugacy problems in monoi

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithr of cyclical

Example: $\Re = \{ab \rightarrow bc, cd \rightarrow da\}$

• \Re is a finite complete rew.system.

イロン イヨン イヨン イヨン

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example: $\Re = \{ab \rightarrow bc, cd \rightarrow da\}$

- \Re is a finite complete rew.system.
- \hookrightarrow is not terminating, since $bcd \hookrightarrow^* bcd$. $bcd \to bda \bigcirc^2 abd \to bcd$.

イロン スポン イヨン イヨン

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendia algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Example: $\Re = \{ab \rightarrow bc, cd \rightarrow da\}$

• \Re is a finite complete rew.system.

• \hookrightarrow is not terminating, since $bcd \hookrightarrow^* bcd$. $bcd \to bda \bigcirc^2 abd \to bcd$.

A local approach: Definition of Allseq(w)

Allseq(w) is the set of all the possible sequences of cyclical reductions that begin by each word from $\{w_1, ..., w_k\}$, where $w_1 = w, w_2, ..., w_k$ are all the cyclic conjugates of w.

The Knuth-Bendix algorithm and conjugacy problems in monoids

Fabienne Chouragui

The Knuth-Bendia algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

A local approach: Definition of Allseq(w)

Allseq(w) is the set of all the possible sequences of cyclical reductions that begin by each word from $\{w_1, ..., w_k\}$, where $w_1 = w, w_2, ..., w_k$ are all the cyclic conjugates of w.

A local approach: Definition of Allseq(<i>w</i>)									
\bigcirc^1	₩ () ²		() n						
w_1	<i>W</i> ₂		wn						

イロン イヨン イヨン イヨン

The Knuth-Bendix algorithm and conjugacy problems in monoids

Fabienne Chouragui

The Knuth-Bendia algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

A local approach: Definition of Allseq(w)

Allseq(w) is the set of all the possible sequences of cyclical reductions that begin by each word from $\{w_1, ..., w_k\}$, where $w_1 = w, w_2, ..., w_k$ are all the cyclic conjugates of w.

A local approach: Definition of Allseq(<i>w</i>)									
\bigcirc^1	₩ () ²		() n						
w_1	<i>W</i> ₂		wn						

イロン イヨン イヨン イヨン

Inuth-Bendix Igorithm and conjugacy problems in monoids	A local approach: Definition of Allseq(<i>w</i>)	A loc Allse	al ap	proa	ch: [Definitio	on of
Chouraqui he inuth-Bendix Igorithm The onjugacy roblems in nonoids	Allseq(w) is the set of all the possible sequences of cyclical reductions that begin by each word from $\{w_1,, w_k\}$, where $w_1 = w, w_2,, w_k$ are all the cyclic conjugates of w.	$ \overset{\bigcirc^1}{\underset{\swarrow}{w_1}} \\ \overset{\swarrow}{w_1'} $	$w \\ \bigcirc^2 \\ w_2 \\ \downarrow \\ w'_2$		\bigcirc^n W_n \searrow W'_n		
cyclical	JO						

Solution to the conjugacy problems in monoids

The

The algorithn of cyclical

イロト イヨト イヨト イヨト

Э

nuth-Bendix Igorithm and								
conjugacy problems in monoids	A local approach: Definition of		A local approach: Definition of					
Fabionno	Allseq(<i>w</i>)	Allse	q(<i>w</i>)					
Chouraqui	Allseq (w) is the set of all the		W					
he	possible sequences of cyclical	\bigcirc^1	() ²		\bigcirc^{n}			
inuth-Bendix Igorithm	reductions that begin by each	w_1	<i>w</i> ₂		w _n			
'he	word from $\{w_1,, w_k\}$, where	\checkmark	\downarrow		\searrow			
onjugacy roblems in	$w_1 = w, w_2,, w_k$ are all the cyclic	w'_1	w_2'		w'_n			
nonoids	conjugates of <i>w</i> .	\bigcirc^1	\bigcirc^2	•••	\bigcirc^{n}			

Solution to the conjugacy problems in monoids

The

The algorithn of cyclical

・ロト ・回ト ・ヨト ・ヨト

æ

nuth-Bendix gorithm and		_					
conjugacy roblems in	A local approach: Definition of	A loc	cal ap	proa	ch: D	Definition	n of
monoids	Allseq(w)	Allse	q(<i>w</i>)				
Chouraqui	Allseq (w) is the set of all the		W				
ie	possible sequences of cyclical	\mathbb{Q}_1	\bigcirc^2		() n		
uth-Bendix orithm	reductions that begin by each	w_1	<i>w</i> ₂		Wn		
ie	word from $\{w_1,, w_k\}$, where	\checkmark	\downarrow		X		
njugacy oblems in	$w_1 = w, w_2,, w_k$ are all the cyclic	w'_1	w_2'		w'_n		
onoids	conjugates of <i>w</i> .	\mathbb{Q}_1	\bigcirc^2		\bigcirc^n		
<u></u>							

Allseq(w) terminates if

The Knuth-Be algorithm

rewriting system

there is no infinite sequence of cyclical reductions in Allseq(w).

イロン スポン イヨン イヨン

uth-Bendix orithm and							
conjugacy roblems in	A local approach: Definition of	A loca	l ap	proa	ch: D	efinition	h of
monoids Fabionno	Allseq(w)	Allseq(w)					
Chouraqui	Allseq (w) is the set of all the		w				
e	possible sequences of cyclical	\mathbb{Q}_1 (\mathcal{O}^2		() n		
uth-Bendix orithm	reductions that begin by each	w_1	W ₂	•••	Wn		
e	word from $\{w_1,, w_k\}$, where	×.	↓.		X		
njugacy oblems in	$w_1 = w, w_2,, w_k$ are all the cyclic	w'_1	w_2'		w'_n		
onoids	conjugates of <i>w</i> .	\bigcirc^1 (\mathfrak{I}^2		() n		
cyclical							

Allseq(w) converges if

rewriting system

The K alı

a unique cyclically irreducible form is achieved in Allseq(w) (up to cyclic permutation)

э

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithr of cyclical

Definition of a triple \tilde{c} -defined

Let $R_1, R_2 \in \Re$ s.t. R_1 can be applied on a cyclic conjugate of w and R_2 can be applied on another one.

・ロト ・回ト ・ヨト ・ヨト

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Definition of a triple \tilde{c} -defined

Let $R_1, R_2 \in \Re$ s.t. R_1 can be applied on a cyclic conjugate of w and R_2 can be applied on another one. The triple (w, R_1, R_2) is \tilde{c} -defined if there is a cyclic conjugate \tilde{w} of w such that both rules R_1 and R_2 can be applied on \tilde{w} .

・ロト ・回ト ・ヨト ・ヨト

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Definition of a triple \tilde{c} -defined

Let $R_1, R_2 \in \Re$ s.t. R_1 can be applied on a cyclic conjugate of w and R_2 can be applied on another one. The triple (w, R_1, R_2) is \tilde{c} -defined if there is a cyclic conjugate \tilde{w} of w such that both rules R_1 and R_2 can be applied on \tilde{w} .

When does Allseq(w) converge?

(ロ) (同) (E) (E) (E)

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Definition of a triple \tilde{c} -defined

Let $R_1, R_2 \in \Re$ s.t. R_1 can be applied on a cyclic conjugate of w and R_2 can be applied on another one. The triple (w, R_1, R_2) is \tilde{c} -defined if there is a cyclic conjugate \tilde{w} of w such that both rules R_1 and R_2 can be applied on \tilde{w} .

When does Allseq(w) converge?

Assume Allseq(w) terminates. If all the triples occurring in Allseq(w) are \tilde{c} -defined, then Allseq(w) converges.

(ロ) (同) (E) (E) (E)

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Definition of cyclical critical pairs

• A cyclical overlap occurs in xuyv if $xuy \rightarrow r_1$ and $yvx \rightarrow r_2$.

・ロン ・回 と ・ ヨ と ・ ヨ と

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Definition of cyclical critical pairs

- A cyclical overlap occurs in xuyv if $xuy \rightarrow r_1$ and $yvx \rightarrow r_2$.
- A cyclical inclusion occurs in u if u → r₁, u' → r₂, and u' is a subword of a cyclic conjugate of u.

소리가 소문가 소문가 소문가

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Definition of cyclical critical pairs

- A cyclical overlap occurs in xuyv if $xuy \rightarrow r_1$ and $yvx \rightarrow r_2$.
- A cyclical inclusion occurs in u if u → r₁, u' → r₂, and u' is a subword of a cyclic conjugate of u.

소리가 소문가 소문가 소문가

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Definition of cyclical critical pairs

- A cyclical overlap occurs in xuyv if $xuy \rightarrow r_1$ and $yvx \rightarrow r_2$.
- A cyclical inclusion occurs in u if $u \to r_1$, $u' \to r_2$, and u' is a subword of a cyclic conjugate of u.

Proposition

Let \Re be a complete and cyclically terminating rewriting system. If there are no cyclical overlaps or cyclical inclusions between the rules in \Re , then \Re is cyclically confluent.

(ロ) (同) (E) (E) (E)

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example: $\Re' = \{ba^n ba \rightarrow aba^2 b^{n-1}, n \ge 1\}$

There is a cyclical inclusion in ba²ba, since ba²ba → aba²b, bab → aba.

・ロット (四) (日) (日)

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems i monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example: $\Re' = \{ba^n ba \rightarrow aba^2 b^{n-1}, n \ge 1\}$

- There is a cyclical inclusion in ba²ba, since ba²ba → aba²b, bab → aba.
- Also, Allseq(ba^2ba) does not terminate: $ba^2ba \rightarrow aba^2b \bigcirc^1 ba^2ba...$

・ロン ・回 と ・ ヨ と ・ ヨ と

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example: $\Re' = \{ba^n ba \rightarrow aba^2 b^{n-1}, n \ge 1\}$

- There is a cyclical inclusion in ba²ba, since ba²ba → aba²b, bab → aba.
- Also, Allseq(ba^2ba) does not terminate: $ba^2ba \rightarrow aba^2b \bigcirc^1 ba^2ba...$
- Nevertheless, $\rho(ba^2ba) = aba^3$: $ba^2ba \bigcirc^1 a^2bab \rightarrow a^3ba...$

・ロン ・四マ ・ヨマ ・ヨマ

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example: $\Re' = \{ba^n ba \rightarrow aba^2 b^{n-1}, n \ge 1\}$

- There is a cyclical inclusion in ba²ba, since ba²ba → aba²b, bab → aba.
- Also, Allseq(ba^2ba) does not terminate: $ba^2ba \rightarrow aba^2b \bigcirc^1 ba^2ba...$
- Nevertheless, $\rho(ba^2ba) = aba^3$: $ba^2ba \bigcirc^1 a^2bab \rightarrow a^3ba...$

Note there is no cyclical inclusion in ba²bab

(ロ) (同) (E) (E) (E)

Example of cyclical overlap

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example: $\Re = \{xy \to zx, yz \to zx, xz^n x \to zxzy^{n-1}, n \ge 1\}$

There is a cyclical overlap in xz^2xz^3 , since $xz^2x \rightarrow zxzy$, $xz^3x \rightarrow zxzy^2$.

・ロット (四) (日) (日)

Example of cyclical overlap

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Example:
$$\Re = \{xy \to zx, yz \to zx, xz^n x \to zxzy^{n-1}, n \ge 1\}$$

There is a cyclical overlap in xz^2xz^3 , since $xz^2x \rightarrow zxzy$, $xz^3x \rightarrow zxzy^2$.

Example:
$$\Re = \{xy \rightarrow zx, yz \rightarrow zx, xz^nx \rightarrow zxzy^{n-1}, n \ge 1\}$$

The triple $(xz^2xz^3x, xz^2x \rightarrow zxzy, xz^3x \rightarrow zxzy^2)$ is \tilde{c} -defined.

・ロン ・回 と ・ ヨ と ・ ヨ と

Solution to the conjugacy problems in monoids

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Theorem

Let *M* be the finitely presented monoid Mon(X | R) and let \Re be a complete rewriting system for *M*. Let *u* and *v* be words in X^* . Assume that \hookrightarrow is terminating and confluent. Then

・ロン ・回 と ・ ヨ と ・ ヨ と
Solution to the conjugacy problems in monoids

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems i monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Theorem

Let *M* be the finitely presented monoid $Mon\langle X | R \rangle$ and let \Re be a complete rewriting system for *M*. Let *u* and *v* be words in X^* . Assume that \hookrightarrow is terminating and confluent. Then (*i*) If *u* and *v* are transposed, then $\rho(u) = \rho(v)$ (up to cyclic permutation).

Solution to the conjugacy problems in monoids

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Theorem

Let *M* be the finitely presented monoid Mon $\langle X | R \rangle$ and let \Re be a complete rewriting system for *M*. Let *u* and *v* be words in *X*^{*}. Assume that \hookrightarrow is terminating and confluent. Then (*i*) If *u* and *v* are transposed, then $\rho(u) = \rho(v)$ (up to cyclic permutation).

(ii) If $\rho(u) = \rho(v)$ (up to cyclic permutation), then u and v are left and right conjugates.

Solution to the conjugacy problems in monoids

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Theorem

Let *M* be the finitely presented monoid Mon $\langle X | R \rangle$ and let \Re be a complete rewriting system for *M*. Let *u* and *v* be words in X^* . Assume that \hookrightarrow is terminating and confluent. Then (*i*) If *u* and *v* are transposed, then $\rho(u) = \rho(v)$ (up to cyclic permutation). (*ii*) If $\rho(u) = \rho(v)$ (up to cyclic permutation), then *u* and *v* are

(ii) If $\rho(u) = \rho(v)$ (up to cyclic permutation), then u and v are left and right conjugates.

 $u \operatorname{Trans} v \Rightarrow \rho(u) = \rho(v) \Rightarrow u \operatorname{Conj} v.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Another approach of cyclic rewriting

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi: algorithm

The conjugacy problems i monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Diekert-Duncan-Myasnikov 2012

- They develop another approach of cyclic rewriting
- They apply their technique to the conjugacy problem in f.g of graphs of groups and others

・ロン ・回 と ・ ヨ と ・ ヨ と

Another approach of cyclic rewriting

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi: algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Diekert-Duncan-Myasnikov 2012

- They develop another approach of cyclic rewriting
- They apply their technique to the conjugacy problem in f.g of graphs of groups and others
- They recover the result of Epstein-Holt:

・ロン ・回 と ・ ヨ と ・ ヨ と

Another approach of cyclic rewriting

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi: algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithn of cyclical

Diekert-Duncan-Myasnikov 2012

- They develop another approach of cyclic rewriting
- They apply their technique to the conjugacy problem in f.g of graphs of groups and others
- They recover the result of Epstein-Holt:
 - a f.g virtually free group has conjugacy problem solvable in linear time

・ロット (四) (日) (日)

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

イロン イヨン イヨン イヨン

э

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

The algorithm of cyclical completion

Assume \hookrightarrow is terminating and there is a cyclical overlap or inclusion.

■ assume $w \hookrightarrow z_1$ and $w \hookrightarrow z_2$, where z_1, z_2 are cyclically irreducible and not cyclic conjugates.

・ロト ・回ト ・ヨト ・ヨト

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

The algorithm of cyclical completion

Assume \hookrightarrow is terminating and there is a cyclical overlap or inclusion.

- assume $w \hookrightarrow z_1$ and $w \hookrightarrow z_2$, where z_1, z_2 are cyclically irreducible and not cyclic conjugates.
- add a new rule $z_1 \Leftrightarrow^+ z_2$ or $z_2 \Leftrightarrow^+ z_1$

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

The algorithm of cyclical completion

Assume \hookrightarrow is terminating and there is a cyclical overlap or inclusion.

- assume $w \hookrightarrow z_1$ and $w \hookrightarrow z_2$, where z_1, z_2 are cyclically irreducible and not cyclic conjugates.
- add a new rule $z_1 \leftrightarrow^+ z_2$ or $z_2 \leftrightarrow^+ z_1$
- do the same with other cyclical overlaps and inclusions.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

The algorithm of cyclical completion

Assume \hookrightarrow is terminating and there is a cyclical overlap or inclusion.

- assume $w \hookrightarrow z_1$ and $w \hookrightarrow z_2$, where z_1, z_2 are cyclically irreducible and not cyclic conjugates.
- add a new rule $z_1 \leftrightarrow^+ z_2$ or $z_2 \leftrightarrow^+ z_1$
- do the same with other cyclical overlaps and inclusions.
- if there is a contradiction, the algorithm fails.

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendix algorithm

The conjugacy problems ir monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

The algorithm of cyclical completion

Assume \hookrightarrow is terminating and there is a cyclical overlap or inclusion.

- assume $w \hookrightarrow z_1$ and $w \hookrightarrow z_2$, where z_1, z_2 are cyclically irreducible and not cyclic conjugates.
- add a new rule $z_1 \Leftrightarrow^+ z_2$ or $z_2 \Leftrightarrow^+ z_1$
- do the same with other cyclical overlaps and inclusions.
- if there is a contradiction, the algorithm fails.
- otherwise, R⁺ is cyclically complete and cyclically equivalent to R.

\Re^+ is cyclically equivalent to \Re means: $u \operatorname{Conj}_{\Re^+} v$ iff $u \operatorname{Conj}_{\Re} v$

Application of the algorithm of cyclical completion

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi algorithm

The conjugacy problems monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example of $\langle a, b \mid aba = bab \rangle$, using another set of generators-Hermiller and Meier

• $\{a, b, \underline{ba}, \underline{ab}, \Delta = \underline{aba}\}$ The complete and finite rewriting system is $\Re = \{ab \rightarrow \underline{ab}, ba \rightarrow \underline{ba}, a\underline{ba} \rightarrow \Delta, \underline{ab}a \rightarrow \Delta, b\underline{ab} \rightarrow \Delta, \underline{ab}a \rightarrow \Delta, \underline{bab} \rightarrow \Delta, \underline{bab} \rightarrow \Delta, \Delta a \rightarrow b\Delta, \Delta b \rightarrow a\Delta, \underline{\Delta ab} \rightarrow \underline{ba}\Delta, \Delta \underline{ba} \rightarrow \underline{ab}\Delta\}.$

Application of the algorithm of cyclical completion

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi: algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example of $\langle a, b \mid aba = bab \rangle$, using another set of generators-Hermiller and Meier

• $\{a, b, \underline{ba}, \underline{ab}, \Delta = \underline{aba}\}$ The complete and finite rewriting system is $\Re = \{ab \rightarrow \underline{ab}, ba \rightarrow \underline{ba}, a\underline{ba} \rightarrow \Delta, \underline{ab}a \rightarrow \Delta, b\underline{ab} \rightarrow \Delta, \underline{bab} \rightarrow \Delta, \underline{bab} \rightarrow \Delta, \underline{bab} \rightarrow \Delta, \Delta a \rightarrow b\Delta, \Delta b \rightarrow a\Delta, \underline{\Delta ab} \rightarrow \underline{ba}\Delta, \Delta \underline{ba} \rightarrow \underline{ab}\Delta\}.$

■ $ab \rightarrow \underline{ab}$ and $ab \bigcirc^1 ba \rightarrow \underline{ba}$. That is, $ab \leftrightarrow \underline{ab}$ and $ab \leftrightarrow \underline{ba}$, where both \underline{ab} and \underline{ba} are cyclically irreducible.

(ロ) (同) (E) (E) (E)

Application of the algorithm of cyclical completion

The Knuth-Bendix algorithm and conjugacy problems in monoids

> Fabienne Chouraqui

The Knuth-Bendi: algorithm

The conjugacy problems in monoids

A cyclical rewriting system

Solution to the conjugacy problems in monoids

The algorithm of cyclical

Example of $\langle a, b \mid aba = bab \rangle$, using another set of generators-Hermiller and Meier

• $\{a, b, \underline{ba}, \underline{ab}, \Delta = \underline{aba}\}$ The complete and finite rewriting system is $\Re = \{ab \rightarrow \underline{ab}, ba \rightarrow \underline{ba}, a\underline{ba} \rightarrow \Delta, \underline{aba} \rightarrow \Delta, b\underline{ab} \rightarrow \Delta, \underline{aba} \rightarrow \Delta, \underline{bab} \rightarrow \Delta, \underline{bab} \rightarrow \Delta, \underline{\Delta ab} \rightarrow \underline{b\Delta}, \Delta b \rightarrow \underline{a\Delta}, \Delta \underline{ba} \rightarrow \underline{ba}\Delta, \Delta \underline{ba} \rightarrow \underline{ab}\Delta\}.$

■ $ab \rightarrow \underline{ab}$ and $ab \bigcirc^1 ba \rightarrow \underline{ba}$. That is, $ab \leftrightarrow \underline{ab}$ and $ab \leftrightarrow \underline{ba}$, where both \underline{ab} and \underline{ba} are cyclically irreducible.

• decide arbitrarily whether $\underline{ab} \hookrightarrow^+ \underline{ba}$ or $\underline{ba} \hookrightarrow^+ \underline{ab}$.

	The end
The Knuth-Bendix algorithm and conjugacy problems in monoids Fabienne	
Chouraqui The	
Knuth-Bendix algorithm	Thank you!
The conjugacy problems in monoids	
A cyclical rewriting system	
Solution to the conjugacy problems in monoids	
The algorithm of cyclical	< ロ > 〈 同 > 〈 言 > 〈 言 > 〈 言 > 〈 言 > 〈 言 > 〈 ら < つ < ぐ
	Fabienne Chouraqui The Knuth-Bendix algorithm and conjugacy problems in monoi