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1. Counting conjugacy classes

Let G be a group with finite generating set X .

I Standard growth of G : number of elements in the ball (or sphere) of

radius n in the Cayley graph of G w.r.t. X .

I Conjugacy growth of G : number of conjugacy classes intersecting the ball

(or sphere) of radius n in the Cayley graph of G w.r.t. X .
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Counting conjugacy classes

Let G be a group with finite generating set X .

I Let [g ] be the conjugacy class of g ∈ G

and let |g |c be the length of the

shortest h ∈ [g ], with respect to X .

I The strict conjugacy growth function is then

cG ,X (n) := ]{[g ] ∈ G | |g |c = n}

and the cumulative one is

ccG ,X (n) := ]{[g ] ∈ G | |g |c ≤ n}
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Conjugacy vs. standard growth

Standard growth Conjugacy growth

Type pol., int., exp. pol., int.∗, exp.

Quasi-isometry invariant yes no∗∗

Rate of growth

∗ Bartholdi, Bondarenko, Fink.

∗∗ Hull-Osin (2013): conjugacy growth not quasi-isometry invariant.

4 / 43



Conjugacy vs. standard growth

Standard growth Conjugacy growth

Type pol., int., exp. pol., int.∗, exp.

Quasi-isometry invariant yes no∗∗

Rate of growth

∗ Bartholdi, Bondarenko, Fink.

∗∗ Hull-Osin (2013): conjugacy growth not quasi-isometry invariant.

4 / 43



Conjugacy vs. standard growth

Standard growth Conjugacy growth

Type pol., int., exp. pol., int.∗, exp.

Quasi-isometry invariant yes no∗∗

Rate of growth

∗ Bartholdi, Bondarenko, Fink.

∗∗ Hull-Osin (2013): conjugacy growth not quasi-isometry invariant.

4 / 43



Conjugacy growth in geometry

A slight modification of the conjugacy growth function (including only the

non-powers) appears in geometry:

- counting the primitive closed geodesics of bounded length on a compact

manifold M of negative curvature and exponential volume growth gives, via

quasi-isometries, good (exponential) asymptotics for the conjugacy growth of

the fundamental group of M (Margulis, . . . ).
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Conjugacy growth asymptotics

I Rivin (2000), Coornaert (2005): asymptotics for the free groups.

I Guba-Sapir (2010): asymptotics for BS(1, n) and other HNN-extensions,

the Heisenberg group on two generators, diagram groups etc.

I Conjecture (Guba-Sapir): most groups of standard exponential growth

should have exponential conjugacy growth. Exclude the Osin or Ivanov

type ‘monsters’ !
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Conjugacy growth asymptotics

I Breuillard-Cornulier (2010): uniform exponential conjugacy growth for

f.g. solvable (non virt. nilpotent) groups.

I Breuillard-Cornulier-Lubotzky-Meiri (2011): uniform exponential

conjugacy growth for f.g. linear (non virt. nilpotent) groups.

I Hull-Osin (2014): all acylindrically hyperbolic groups have exponential

conjugacy growth.
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Growth rates

Let a(n) = |SX (n)| be the number of elements of length n in G wrt X .

The standard growth rate of G wrt X is

α = αG ,X = lim sup
n→∞

n
√

a(n).

Since a(n + m) ≤ a(n)a(m), we have (Fekete’s Lemma)

α = lim sup
n→∞

n
√

a(n) = lim
n→∞

n
√

a(n) = inf
n

n
√

a(n).
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Conjugacy growth rates

Let c(n) be the number of conjugacy classes of length n in G wrt X .

The conjugacy growth rate of G wrt X is

γ = γG ,X = lim sup
n→∞

n
√

c(n).

Observation: Conjugacy growth is NOT submultiplicative.

Question (Breuillard, Cornulier, Lubotzky, Meiri):

lim inf
n→∞

n
√

c(n) ≤ lim sup
n→∞

n
√

c(n) ≤ lim
n→∞

n
√

a(n)

Can the first inequality be strict?
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Conjugacy vs. standard growth

Standard growth Conjugacy growth

Type pol., int., exp. pol., int., exp.

Quasi-isometry invariant yes no

Rate of growth limit exists ???
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Growth rates from power series

Let (ai )i≥0 be a sequence of integers and f (z) =
∑∞

i=0 aiz
i be a complex power

series. The radius of convergence of f is

RC(f ) = sup{r ∈ R | f (z) converges ∀ z ∈ D(0, r)},

and

RC(f ) =
1

lim supi→∞
i
√
ai

=
1

α
,

so one can determine exponential growth rate of the sequence (ai )i≥0 via the

radius of convergence of its formal power series.
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Radius of convergence for rational series

For any rational function f (z) = P(z)
Q(z)

the radius of convergence RC(f ) of f is

the smallest absolute value of a pole of f , i.e. the smallest absolute value of a

zero of Q(z).

Question: When are conjugacy growth series for groups rational?

12 / 43



Radius of convergence for rational series

For any rational function f (z) = P(z)
Q(z)

the radius of convergence RC(f ) of f is

the smallest absolute value of a pole of f , i.e. the smallest absolute value of a

zero of Q(z).

Question: When are conjugacy growth series for groups rational?

12 / 43



The conjugacy growth series

Let G be a group with finite generating set X .

I The conjugacy growth series of G with respect to X records the number of

conjugacy classes of every length. It is

σ(G ,X )(z) :=
∞∑
n=0

c(G ,X )(n)zn,

where c(n) = c(G ,X )(n) is the number of conjugacy classes of length n.
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2. Conjugacy growth for

I Hyperbolic groups

I Graph products

I Generalized Baumslag-Solitar groups

I Wreath products
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Hyperbolic groups
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Asymptotics of conjugacy growth in the free group Fr

Idea: take all cyclically reduced words of length n, whose number

is (2r − 1)n + 1 + (r − 1)[1 + (−1)n], and divide by n.

Coornaert (2005): For the free group Fk , the primitive (non-powers) conjugacy

growth function is given by

cp(n) ∼ (2r − 1)n+1

2(r − 1)n
= K

(2r − 1)n

n
,

where K = 2r−1
2(r−1)

.

In general, when powers are included, one cannot divide by n.
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Asymptotics of conjugacy growth in hyperbolic groups

Theorem. (Coornaert - Knieper, Antoĺın - C.)

Let G be a non-elementary word hyperbolic group. Then there are positive

constants A,B and n0 such that

A
αn

n
≤ cc(n) ≤ B

αn

n

for all n ≥ n0, where α is the growth rate of G .

MESSAGE:.

The number of conjugacy classes in the ball of radius n is asymptotically the

number of elements in the ball of radius n divided by n.
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Bounds for the conjugacy growth

Let cp(n) := ]{primitive [g ] ∈ G | |g |c ≤ n} be the primitive cumulative

conjugacy growth.

Theorem (Coornaert and Knieper, GAFA 2002)

Let G be a non-elementary word hyperbolic. Then there are positive constants

A and n0 such that for all n ≥ n0

A
αn

n
≤ cp(n).

Theorem (Coornaert and Knieper, IJAC 2004)

Let G be a torsion-free non-elementary word hyperbolic group. Then there are

positive constants B and n1 such that for all n ≥ n1

cp(n) ≤ B
αn

n
.
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Conjugacy growth for all hyperbolic groups (Antoĺın-C.)

1. Allow torsion and modify the upper bound of Coornaert and Knieper:

(i) use the fact that there exists m <∞ such that all finite subgroups F ≤ G

satisfy |F | ≤ m.

(ii) most (≥ n
m

) cyclic permutations of a primitive conjugacy representative of

length n correspond to different elements of length n in G .

2. Find conjugacy growth upper bound for all conjugacy classes, i.e. include

the non-primitive classes in the count.

�
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Consequences

Corollary (AC)

For any hyperbolic group G with generating set X we have

lim
n→∞

n
√

c(n) = γG ,X = αG ,X .
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Conjugacy growth series in virt. cyclic groups: Z, Z2 ∗ Z2

In Z the conjugacy growth series is the same as the standard one:

σ(Z,{1,−1})(z) = 1 + 2z + 2z2 + · · · =
1 + z

1− z
.

In Z2 ∗ Z2 a set of conjugacy representatives is 1, a, b, ab, abab, . . . , so

σ(Z2∗Z2,{a,b})(z) = 1 + 2z + z2 + z4 + z6 · · · =
1 + 2z − 2z3

1− z2
.
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The conjugacy growth series in free groups

• Rivin (2000, 2010): the conjugacy growth series of Fk is not rational:

σ(z) =

∫ z

0

H(t)

t
dt, where

H(x) = 1 + (k − 1)
x2

(1− x2)2
+
∞∑
d=1

φ(d)

(
1

1− (2k − 1)xd
− 1

)
.
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This is combinatorics, not group theory!

Let L be a set of words, ak the number of words of length k in L, and

fL(t) =
∑

k≥1 akt
k the generating function of L.

Assume L is closed under taking powers and cyclic permutations of words.

Then the generating function for language L/∼ of cyclic representatives of L is

∫ z

0

∑
k≥1 φ(k)fL(tk)

t
dt,

and the growth rates of L and L/∼ are the same.
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Rivin’s formula for free groups

For Rivin’s formula: take L to be the cyclically reduced words in the free group.

Compare the general formula

∫ z

0

∑
d≥1 φ(d)fL(td)

t
dt

with Rivin’s formula

σ(z) =

∫ z

0

H(t)

t
dt, where

H(x) = 1 + (k − 1)
x2

(1− x2)2
+
∞∑
d=1

φ(d)

(
1

1− (2k − 1)xd
− 1

)
.
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Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if

G is virtually cyclic.

⇒

Theorem (Antoĺın-C., IMRN 2016)

If G is non-elementary hyperbolic, then the conjugacy growth series is

transcendental.

⇐

Theorem (C., Hermiller, Holt, Rees, IJM 2016)

Let G be a virtually cyclic group. Then the conjugacy growth series of G is

rational.

NB: Both results hold for all symmetric generating sets of G .
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Analytic combinatorics at work

The transcendence of the conjugacy growth series for non-elementary

hyperbolic groups follows from the bounds

A
αn

n
≤ c(n) ≤ B

αn

n

together with

Lemma (Flajolet: Trancendence of series based on bounds).

Suppose there are positive constants A,B, h and an integer n0 ≥ 0 s.t.

A
ehn

n
≤ an ≤ B

ehn

n

for all n ≥ n0. Then the power series
∑∞

i=0 anz
n is not algebraic.
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Graph Products
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Graph Products

I Let Γ = (V ,E) be a simple graph with vertex set V and edge set E .

I For each vertex v of Γ, let Gv be a group.

I The graph product of the groups Gv with respect to Γ is the quotient of

their free product by the normal closure of the relators [gv , gw ] for all

gv ∈ Gv , gw ∈ Gw for which {v ,w} ∈ E .

Note: indecomposable graph products are acylindrically hyperbolic.

(Minasyan-Osin)

28 / 43



Graph Products

I Let Γ = (V ,E) be a simple graph with vertex set V and edge set E .

I For each vertex v of Γ, let Gv be a group.

I The graph product of the groups Gv with respect to Γ is the quotient of

their free product by the normal closure of the relators [gv , gw ] for all

gv ∈ Gv , gw ∈ Gw for which {v ,w} ∈ E .

Note: indecomposable graph products are acylindrically hyperbolic.

(Minasyan-Osin)

28 / 43



Graph products

Theorem (C. - Mercier, 2016)

Let G be a graph product and assume that for each vertex group Gv the

conjugacy and standard growth rates are the same, i.e. αGv = γGv .

Then the conjugacy and standard growth rates of G are the same, i.e.

αG = γG .

Corollary. The conjugacy growth rate of a right-angled Artin/Coxeter group is

the same as its standard growth rate.
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Corollary. The conjugacy growth rate of a right-angled Artin/Coxeter group is

the same as its standard growth rate.
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Graph product decomposition

Let G be a graph product, and let v ∈ V . The group G can be decomposed as

an amalgamated product as follows:

GV\{v} ∗ (GN(v) × Gv )

GN(v)
W7

jj
�&

44
,

where N(v) represents the neighbors of v and the two inclusions are admissible.
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Graph product decomposition

Lemma (Lewin, Alonso (1991))

Let A, B and C ≤ A,B be groups with symmetric generating sets X , Y and Z ,

respectively. Assume that C is admissible in both A and B.

Let G = A ∗C B have generating set W := X ∪ Z .

Then

1

f(G ,W )
=

1

f(A,X )
+

1

f(B,Y )
− 1

f(C ,Z)
,

where f(G ,W ) is the standard growth series of G wrt W .
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Lemma on standard growth rates

Let G be a graph product, let v ∈ V be a vertex, and let A = GV\{v},

B = GN(v), C = G{v}. Then

G = A ∗
B

(B × C).

Let U be the admissible right transversal of B in A: since A = BU, we have

fA(z) = fB(z)fU(z). Also, B is admissible in B × C with transversal C , so

fG =
fB fAfC

fB fC + fA − fAfC
= fB

fU fC
fC + fU − fU fC

.

In particular, RC(fG ) = inf{|z | : fC (z) + fU(z)− fU(z)fC (z) = 0}.
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Lemma (on conjugacy representatives)

Let ui ∈ U and ci ∈ C be nontrivial geodesics, 1 ≤ i ≤ n. Then the elements

u1c1 · · · uncn, (1)

are of minimal length in their conjugacy class in G .

Moreover, two such elements are conjugate iff they are cyclically conjugate.
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Lemma (growth rate of cyclic representatives)

The growth rate of the set of cyclic representatives of the set u1c1 · · · uncn is

the smallest absolute value of z ∈ C such that

fC (z) + fU(z)− fU(z)fC (z) = 0,

which is the same as RC(fG ) = inf{|z | : fC (z) + fU(z)− fU(z)fC (z) = 0}.
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Groups acting on trees
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(Super-)Generalized Baumslag-Solitar groups

I We consider fundamental groups of graphs of groups with all vertex and

edge groups fg abelian.

These contain all GBS groups.

I A generalized Baumslag-Solitar (GBS) group is the fundamental group of

a graph of groups with all vertex groups fg free abelian (of same rank).

Equivalently, a GBS is a group which acts on a tree with all vertex and

edge stabilizers fg free abelian.

Examples:

1. BS(n,m) = 〈a, t | tant−1 = am〉 are not acylindrically hyperbolic unless

m = 0 or n = 0 (Osin).

2. BS(1, n) is solvable, but BS(2, 3) = 〈a, t | ta2t−1 = a3〉 is not.
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Generalized Baumslag-Solitar groups

Theorem (C. - Coulon, 2016)

The fundamental group of a graph of groups with all vertex groups fg abelian

has exponential conjugacy growth if it has exponential standard growth.

Proposition

The conjugacy and standard growth rates are the same for BS(1, p), where

p > 2 is a prime.
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Wreath products
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Wreath products

Theorem (Mercier, 2016)

The conjugacy and standard growth rates are the same for groups of the form

G o L, where G is any group and L is a group whose Cayley graph is a tree.

∗ Also, explicit computations of conjugacy growth series.
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Infinitely generated wreath products

Bacher - de la Harpe (2016)

Explicit computations of the conjugacy growth series of

I Sym(N), the finitary symmetric group of the natural numbers,

I Alt(N), the finitary alternating group of the natural numbers,

I H oX Sym(X ), where H is finite and X is an infinite set,

I ...
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Musings, open questions

1. Can we find good bounds for the conjugacy growth of (some)

relatively/acylindrically hyperbolic groups?

2. Compute the conjugacy growth series for other groups: surface, Artin,

Coxeter ...

3. Are there groups with algebraic conjugacy growth series?
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Musings, open questions

4. How do the growth functions and growth series studied here behave when

we change the set of generators?

Stoll: The rationality of the standard growth series depends on the

generating set.

5. Are there groups, besides the abelian and virtually cyclic ones, with

rational conjugacy growth series?
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Thank you!
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