Horospherical limit points of locally symmetric spaces

Dave Witte Morris University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave Morris@uleth.ca

Abstract. Fix a point x in the symmetric space X associated to $SL(n, \mathbb{R})$. A point ξ on the visual boundary of X is a *horospherical limit point* if the $SL(n,\mathbb{Z})$ -orbit of x intersects every horoball based at ξ . In the special case of the upper half-plane model of X for n = 2, it is well known that the horospherical limit points are precisely the irrational numbers on the real line. For larger *n*, it was proved by T. Hattori that every horospherical limit point satisfies a certain irrationality property. We prove the converse, by applying a special case of Ratner's Theorem on unipotent flows that was established by S. G. Dani. Furthermore, $SL(n, \mathbb{R})$ can be replaced with any semisimple Lie group and $SL(n, \mathbb{Z})$ can be replaced with any S-arithmetic subgroup, if we replace X with the corresponding Bruhat-Tits building.

Horospherical limit points

This is joint work with G. Avramidi and K. Wortman.

Proof. $\left\{ \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} x \right\} = x + \mathbb{Z}$ hits all horiz translates of fund dom. So no other points in Γx can be in these translates. Therefore Im Γx is **bounded**.

I.e., Γx is disjoint from horoballs based at ∞ . $\Gamma \infty = \mathbb{O} \cup \{\infty\}.$

Dave Witte Morris (Univ. of Lethbridge)

Newcastle, UK, June 2016 Horospherical limit points 3/15

Newcastle, UK, June 2016

Recall

Dave Witte Morris (Univ. of Lethbridge)

Horospherical limit points

Newcastle, UK, June 2016

4/15

Prop. *Endpoints of geodesic from diagonal matrices are bad.* All bad points of ∂X : orbit of these under SL(2, \mathbb{O}).

 $G = SL(3, \mathbb{R})$ acts by isometries on symmetric space $X \sim \mathbb{R}^5$ non-positive CAT(0)curvature

 $A = \{ \text{diag mats} \}, Ax \text{ is a flat} \cong \mathbb{R}^2, \exists x.$

[Hattori 2005] Known bad points on ∂X : ∂Ax (endpoints of geodesics in Ax) and orbit of these under $SL(3, \mathbb{Q})$.

Newcastle, UK, June 2016

Theorem (Avramidi-Morris [2014], Rehn's Conjecture [2007])

Horospherical limit points

Every bad point on ∂X *is known.*

Dave Witte Morris (Univ. of Lethbridge)

Translate to Lie groups

What is a horosphere?

Ans: boundary of a horoball (or level set of Busemann function).

Fix $\xi \in \partial X$. Geodesics to ξ foliate *X*. Horospheres based at ξ foliate *X*. These foliations are orthogonal.

Tangent space of horosphere \perp *geodesic to* ξ *.*

Example ($SL(2,\mathbb{Z})$)

 $n^t = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \in \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} = N.$ $n^t z = t + z$ *N*-orbit = Nz = horizontal line = horosphere based at ∞ . gNz = horosphere based at $g\infty$.

Dave Witte Morris (Univ. of Lethbridge)

Newcastle, UK, June 2016 Horospherical limit points

Theorem (Avramidi-Morris [2014], Rehn's Conjecture [2007])

Every bad point on ∂X *is known.*

Proof. Apply **Ratner's Theorem on Unipotent Flows**. Bad points are defined by **Geometry**. but **Ratner's Theorem** is about actions of **Lie groups**, so we need to **translate** into the language of Lie groups (and interpret the result using Algebraic Groups).

Stronger version

Assume $\xi \in \partial X$ is not known to be a bad point. SL(2, \mathbb{Z}): Theorem says $g\xi = \infty \Rightarrow \text{Im } g\Gamma x$ is unbounded. Actually prove: Im $g\Gamma x$ is **dense** in \mathbb{R}^+ . I.e., $g\Gamma x \approx$ every horiz line *S* (= horosphere based at ∞).

I.e., $x \approx \Gamma q S$ if $\xi = q \infty$.

I.e., if $q \infty$ is not known to be bad, then ΓqS is dense in *X*. *qS* is dense in $\Gamma \setminus X$

Dave Witte Morris (Univ. of Lethbridge) Horospherical limit points Newcastle, UK, June 2016 6 / 15

as

SL(2, \mathbb{Z}): gNz = horosphere based at $g\infty$.

N =	$\begin{bmatrix} 1 & * & * \\ 0 & 1 & * \end{bmatrix}$,	

- $\begin{bmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{bmatrix} = A \cong \mathbb{R}^2.$ • Ax is a flat in X (for appropriate x).
- $\xi \in \partial Ax$: $\exists \{a^s\} \subset A, a^s x \to \xi$.
- $\{a^s\}^{\perp} \subseteq A$.

Horosphere based at $g\xi$ is $gN\{a^s\}^{\perp}x$.

Horospherical limit points

Contrapositive:

 $gN\{a^s\}^{\perp}x$ not dense in $\Gamma \setminus X \Rightarrow g \infty$ is known bad point.

Dave Witte Morris (Univ. of Lethbridge)

Newcastle, UK, June 2016

 $N_{1} = subgroup of N \implies \overline{\pi(gN_{1}x)} \text{ is a submfld of } \Gamma \setminus X \text{ (immersed)}$ In fact, $\exists \text{ closed subgroup } H \subseteq G$, such that $\overline{\pi(gN_{1}x)} = \pi(gHx)$. (Also, $H \supseteq N_{1} \& (gHg^{-1})_{\mathbb{Q}} \text{ dense in } gHg^{-1}$) To show: $\overline{\pi(gN\{a^{s}\}^{\perp}x)} \neq \Gamma \setminus X \Rightarrow g\xi$ is known. Ratner: $\overline{\pi(gNx)} = \pi(gHx)$, where $H \supseteq N$ and ... [Dani 1986]

Well known:
$$P \supseteq AN = \begin{bmatrix} 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix}$$
 ("Borel subgroup")
 $\Rightarrow P =$ "parabolic subgroup"
 $=$ stabilizer of point on ∂X or $= G$
 $= AN, \begin{bmatrix} * & * & * \\ * & * & * \\ 0 & 0 & * \end{bmatrix}, \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix}, G.$

Cor.
$$H = [P, P] = N, \begin{bmatrix} * & * & * \\ * & * & * \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix}, G.$$

ave Witte Morris (Univ. of Lethbridge)

```
Newcastle, UK, June 2016 10 / 1
```

Motivation

Theorem (Avramidi-Morris [2014], Rehn's Conjecture [2007])
Every bad point on ∂X is known.
Definition (Bieri-Geoghegan [2016])
$\Sigma_{\Gamma}^{0}(X;\mathbb{Z}) = \{ \text{bad points on } \partial X \} $ = $\{ \xi \in \partial X \mid \mathcal{B}_{\xi} \cap \Gamma x \text{ is nonempty} \} $ = calculated for $\Gamma = SL(n,\mathbb{Z})$. [Avramidi-Morris]
$\Sigma_{\Gamma}^{1}(X;\mathbb{Z}) = \{ \xi \in \Sigma_{\Gamma}^{0}(X;\mathbb{Z}) \mid \mathcal{B}_{\xi} \cap \Gamma x \text{ is connected} \}.$ = ??? for $\Gamma = SL(3,\mathbb{Z})$. Open problem.

Horospherical limit points

Newcastle, UK, June 2016 12 / 1

Dave Witte Morris (Univ. of Lethbridge)

Horospherical limit points Newcastle, UK, June 2016 11 / 15

Theorem (Ratner [1991])

Generalization

Thm. Bad	points	for $SL(n, \mathbb{Z})$ are:
∂Ax	and	$SL(n, \mathbb{Q})$ -orbit of these.

Natural generalization [Avramidi-Morris 2014]: G = semisimple Lie group, Γ = lattice $G_{\mathbb{Z}}$, A = maximal \mathbb{Q} -split torus,

X = symmetric space G/K.

Furthermore [Morris-Wortman 2014]:

- $\Gamma = S$ -arithmetic subgroup, X = Bruhat-Tits building $(X \times X_{p_1} \times \cdots \times X_{p_r})$
- Including characteristic *p*.
 (Analogue of Dani's Thm proved by Mohammadi [2011].)

Horospherical limit points

Dave Witte Morris (Univ. of Lethbridge)

Newcastle, UK, June 2016 13 / 15

D. W. Morris and G. Avramidi: Horospherical limit points of locally symmetric spaces, *New York J. Math.* 20 (2014) 353–366. MR 3193957 http://nyjm.albany.edu/j/2014/20-20.html

D. W. Morris and K. Wortman: Horospherical limit points of *S*-arithmetic groups, *New York J. Math.* 20 (2014) 367–376. MR 3193958 http://nyjm.albany.edu/j/2014/20-21.html

D.W.Morris: *Ratner's Theorems on Unipotent Flows*. U of Chicago Press, 2005. MR 2158954 http://arxiv.org/abs/math/0310402

D. W. Morris: *Introduction to Arithmetic Groups*. Deductive Press, 2015. MR 3307755 http://deductivepress.ca/ (free PDF)

Dave Witte Morris (Univ. of Lethbridge) Horospherical limit points

Newcastle, UK, June 2016 14 / 15

R. Bieri and R. Geoghegan: Limit sets for modules over groups on CAT(0) spaces – from the Euclidean to the hyperbolic. *Proc. London Math. Soc.* (to appear). http://arxiv.org/abs/1306.3403

15/15