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Two theorems of Sanov

[I. N. Sanov, A property of a representation of a free group (Russian),
Doklady Akad. Nauk SSSR (N. S.) 57 (1947), 657–659]

Denote A(k) =

(
1 k
0 1

)
, B(k) =

(
1 0
k 1

)
.

Theorem

The subgroup of SL2(Z) generated by A(2) and B(2) is free.

Theorem

The subgroup of SL2(Z) generated by A(2) and B(2) consists of all

matrices of the form

(
1 + 4n1 2n2

2n3 1 + 4n4

)
with determinant 1, where

all ni are arbitrary integers.
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Corollaries

Corollary

The group SL2(Z) is virtually free.

Corollary

The membership problem in the subgroup of SL2(Z) generated by A(2)
and B(2) is solvable in constant time.

This is, to the best of our knowledge, the only example of a natural (and
nontrivial) algorithmic problem in group theory solvable in constant time.
In fact, even problems solvable in sublinear time are very rare, and in
those that are, one can typically get either “yes” or “no” answer in
sublinear time, but not both.
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Open problems

Problem

(Yu. Merzlyakov) For which rational k , 0 < k < 2, is the group
generated by A(k) and B(k) free? More generally, for which algebraic
k , 0 < k < 2, is this group free?

It is well known that this group is free if |k | ≥ 2. No examples are known
where this group is free if k is rational, |k | < 2.

On the other hand, if r and s are algebraic numbers that are Galois
conjugate over Q, then the group generated by A(r) and B(r) is free if
and only if the group generated by A(s) and B(s) is. In particular, if
r = 2−

√
2, then A(r) and B(r) generate a free group.

There are many examples of rational k, 0 < k < 2, such that this group
is not free. In particular, k = m

mn+1 or k = m+n
mn , m, n ∈ Z+.
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More open problems

Problem

The subgroup membership problem for the group SL2(Q).

Problem

The subgroup membership problem for the subgroup of SL2(Q)
generated by A(k) and B(k), k ∈ Q.
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Reference

[A. Chorna, K. Geller, V. Shpilrain, On two-generator subgroups of
SL2(Z), SL2(Q), and SL2(R)]
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Our contribution: greedy algorithm

Theorem

Let M =

(
m11 m12

m21 m22

)
be a matrix from SL2(R). Call “elementary

operations” on M the following 8 operations: multiplication of M by
either A(k)±1 or by B(k)±1, on the right or on the left.

(a) If k ∈ Z and M belongs to the subgroup of SL2(Z) generated by

A(k) and B(k), then it has the form

(
1 + k2n1 kn2

kn3 1 + k2n4

)
for some

integers ni .
If k ∈ R and M belongs to the subgroup of SL2(R) generated by A(k)

and B(k), then it has the form

(
1 +

∑
i k

ini
∑

j k
jnj∑

r k
rnr 1 +

∑
s k

sns

)
where

all ni are integers and all exponents on k are positive integers.
(b) Let k ∈ Z, k ≥ 2. If M ∈ SL2(Z) and no elementary operation
reduces

∑
i,j |mij |, then either M is the identity matrix or M does not

belong to the subgroup generated by A(k) and B(k).
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Corollary 1

Corollary

The subgroup of SL2(Z) generated by A(k) and B(k), k ∈ Z, k ≥ 3, has
infinite index in the group of all matrices of the form(

1 + k2m1 km2

km3 1 + k2m4

)
with determinant 1.
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Corollary 2

Corollary

Let k ∈ Z, k ≥ 2, and let the complexity |M| of a matrix

M =

(
m11 m12

m21 m22

)
be the sum of all |mij |. There is an algorithm that

decides whether or not a given matrix M ∈ SL2(Z) is in the subgroup of
SL2(Z) generated by A(k) and B(k) (and if it does, finds a presentation
of M as a group word in A(k) and B(k)) in time O(n · log n), where
n = |M|.
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Generic-case complexity

The O(n · log n) is the worst-case complexity of this algorithm. It would
be interesting to find out what the generic-case complexity (in the sense
of [I. Kapovich, A. G. Myasnikov, P. Schupp, V. Shpilrain, Generic-case
complexity, decision problems in group theory and random walks, J.
Algebra 264 (2003), 665–694]) of this algorithm is.

Proposition 1 in [L. Bromberg, V. Shpilrain, A. Vdovina, Navigating in
the Cayley graph of SL2(Fp) and applications to hashing, Semigroup
Forum] tacitly suggests that this complexity might be, in fact, sublinear
in n = |M|.

Problem

Is the generic-case complexity of the algorithm claimed in Corollary 10
sublinear in |M|?

Unlike most algorithms with low generic-case complexity, this algorithm
has a good chance to have low generic-case complexity giving both “yes”
and “no” answers.
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Semigroups of matrices: fun facts

The semigroup generated by A(1) and B(1) is free (Nielsen (?))

The semigroup generated by A(−1) and B(−1) is free.

The semigroup generated by A(1) and B(−1) is not free: if A = A(1)
and B = B(−1), then ABA = BAB.
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More fun facts

The semigroup generated by A(1) and B(1) consists of all matrices of the

form

(
n1 n2
n3 n4

)
with determinant 1, where all ni are nonnegative

integers.

The semigroup generated by A(−1) and B(−1) consists of all matrices of

the form

(
n1 −n2
−n3 n4

)
with determinant 1, where all ni are

nonnegative integers.

The “naive” analog of Sanov’s Theorem 2 does not hold for the
semigroup generated by A(2) and B(2). Specifically, the matrix(

5 4
6 5

)
is not in that semigroup, although it is in the group generated

by A(2) and B(2).
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References

We are now switching to (finite) groups SL2(Fp) and their
sub(semi)groups.
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We are specifically interested in the girth of the Cayley graph of the
subgroup of SL2(Fp) generated by A(k) and B(k).
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Hash function

Definition

Let n ∈ Z+ and let H : {0, 1}∗ → {0, 1}n be a function that takes a bit
string of an arbitrary length to a bit string of a fixed length n. We require
a hash function H to satisfy the following conditions:

1 preimage resistance: given an output y , it is hard to find an input x
such that H(x) = y

2 second preimage resistance: given an input x1, it is hard to find
another input x2 6= x1 such that H(x1) = H(x2)

3 collision resistance: it is hard to find inputs x1 6= x2 such that
H(x1) = H(x2).
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Cayley hash functions

One can use two elements, A and B, of a semigroup S , such that the
Cayley graph of the semigroup generated by A and B belongs to an
expander family, in the hope that such a graph will have large girth and
therefore there will be no short relations (‘collisions’).

To build a hash function from the Cayley graph, a message m (a bitstring
comprised of 0’s and 1’s) corresponds to a word in the elements A and B
of S , with A corresponding to 0 and B corresponding to 1. This is
represented on the Cayley graph as a (nonbacktracking) walk; the
endpoint of the walk is the hash value.
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Tillich–Zémor hash function

Tillich and Zémor in [J.-P. Tillich and G. Zémor, Group-theoretic hash
functions, Lecture Notes Comp. Sci. 781 (1993) 90–110] use matrices
A,B from the group SL2(R), where R = F2[x ]/(p(x)) is a Galois field
F2n , where n is the degree of the irreducible polynomial p(x). They took
p(x) = x131 + x7 + x6 + x5 + x4 + x + 1.

Then, the matrices A and B are

A =

(
α 1
1 0

)
, B =

(
α α + 1
1 1

)
,

where α is a root of p(x).

This particular hash function was successfully attacked in [M. Grassl, I.
Ilić, S. Magliveras, R. Steinwandt, Cryptanalysis of the Tillich–Zémor
hash function, J. Cryptology 24 (2011) 148–156] and [C. Petit, J.
Quisquatar, Preimages for the Tillich–Zémor hash function, in SAC 10,
Lecture Notes in Comp. Sci. 6544 (2010) 282–301].
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Hashing with matrices over Fp

Use a pair of 2× 2 matrices A and B which generate a free monoid over
Z, and then reduce the entries modulo a large prime p to get matrices
over Fp.

Since there cannot be equality of two different products of positive
powers of A and B unless at least one of the entries in at least one of the
products is greater than or equal to p, this gives an explicit lower bound
on the minimum length of bit strings where a collision may occur.
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Matrices over Fp

An example of a pair of matrices over Z which generate a free monoid is

A(1) =

(
1 1
0 1

)
, B(1) =

(
1 0
1 1

)
.

These matrices are invertible and thus actually generate the group
SL2(Z). This group is not free, but the monoid generated by A(1) and
B(1) is free. Since only positive powers are used in hashing, this is all we
need.

However, a collision for the hash function corresponding to these matrices
over a large prime p was found by Tillich and Zémor in [J.-P. Tillich and
G. Zémor, Hashing with SL2, in CRYPTO 1994, Lecture Notes in Comp.
Sci. 839 (1994) 40–49] by using what they called a “lifting attack”.

38 / 52



Pairs of generators

Any pair of matrices

A(x) =

(
1 x
0 1

)
, B(y) =

(
1 0
y 1

)
,

generate a free monoid if x , y ∈ Z+. We consider the cases where
x = y = 2 and x = 1, y = 2.
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Relations over Fp

[L. Bromberg, V. Shpilrain, A. Vdovina, Navigating in the Cayley graph
of SL2(Fp) and applications to hashing, Semigroup Forum]

Note: by the pigeonhole principle, there must be relations of length
O(log p) between any two elements of SL2(Fp), but a particular relation
is typically computationally hard to find.

Theorem

There is an efficient probabilistic algorithm that finds particular relations
of the form w(A(2),B(2)) = 1, where w is a group word of length
O(log p), and the matrices A(2) and B(2) are considered over Fp.

The proof uses Sanov’s Theorem 2 and Tillich–Zémor’s “lifting attack”.
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Semigroup vs group relations

This does not affect the security of the hash function based on A(2) and
B(2) since only positive powers of A(2) and B(2) are used, and the
group relations produced by the algorithm will involve both negative and
positive powers with overwhelming probability.

Note that the number of matrices in the above form which are
representable by positive words is negligible. In fact, the number of
distinct elements represented by all freely reducible words in A(2) and
B(2) of length n ≥ 2 is 4 · 3n−1, while the number of distinct elements
represented by positive words of length n ≥ 2 is 2n.
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Girth of the Cayley graph generated by A(k) and B(k)

For hashing, we use only positive powers, so we need only consider
products of positive powers of A(k) and B(k). We note that entries in a
matrix of a length n product of positive powers of A(k) and B(k) grow
fastest (as functions of n) in the alternating product of A(k) and B(k).
This is summarized in the following proposition.

Proposition

Let wn(a, b) be an arbitrary positive word of even length n, and let
Wn = wn(A(k),B(k)), with k ≥ 2. Let Cn = (A(k) · B(k))n/2. Then:
(a) the sum of entries in any row of Cn is at least as large as the sum of
entries in any row of Wn; (b) the largest entry of Cn is at least as large
as the largest entry of Wn.
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Lower bound on girth

No entry of (C (2))n is larger than p as long as n < log
3+

√
8
p. Since

C (2) = A(2)B(2) is a product of two generators, (C (2))n has length 2n
as a word in the generators A(2) and B(2).

Therefore, no two positive words of length ≤ m in the generators A(2)
and B(2) (considered as matrices over Fp) can be equal as long as

m < 2 log
3+

√
8
p = log√

3+
√

8
p.

In particular, the girth of the Cayley graph of the semigroup generated by
A(2) and B(2) (considered as matrices over Fp) is at least
log√

3+
√

8
p ≈ log2.4 p. For example, if p is on the order of 2256, there will

be no collisions of the form u(A(1),B(2)) = v(A(1),B(2)) if positive
words u and v are of length less than 203.
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Problem

Problem

Determine which semigroup words in the matrices A(1),B(2) will exhibit
the fastest growth of their entries.

This problem is of interest also because if the alternating product again
gives fastest growth, then a similar calculation as was done for A(2),B(2)

would show a lower bound with a smaller log base
√

2 +
√

3, which is
about 1.93. This would mean that for p on the order of 2256, there will
be no collisions of the form u(A(1),B(2)) = v(A(1),B(2)) if positive
words u and v are of length less than 269. This is a stronger lower bound
than for the A(2),B(2) case.
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Thank you
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