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Abstract. In these lecture notes we introduce some curvature
notions on graphs. After a brief discussion of Gaussian curvature
of surfaces we introduce three curvature notions which can be de-
fined in the discrete setting of graphs: combinatorial curvature of
surface tessellations, Ollivier Ricci curvature based on notions of
Optimal Transport Theory and, finally, Gromov hyperbolicity cap-
turing global aspects of negative curvature. Problems inserted in
the text help to become more familiar with these curvature notions
and to learn more about them.
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1. Introduction

Curvature is a fundamental concept in Differential Geometry. In
the case of surfaces in 3-dimensional Euclidean space, the Gaussian
curvature at a given point of a surface is the product κ1κ2 of the prin-
cipal curvatures (with signs corresponding to a given normal vector N).
These principal curvatures are determined by two (orthogonal) direc-
tions X1, X2, in which the surface bends most. In other words, we take
the affine plane spanned by a tangent vector X and N and intersect
this plane with the surface. The result is a curve which can be approx-
imated, up to second order, at the point of the surface by a circle. The
reciprocal value of the radius of this circle is the normal curvature in
direction X . Rotating this tangent direction X leads to two orthogonal
directions in which this normal curvature assumes extremal values. As
illustrated in Figure 1, the corresponding normal curvatures are then
the principal curvatures κ1, κ2 at this point of the surface.
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Figure 1. Illustration of principal curvatures1

The Theorema Egregium (Outstanding Theorem) of Gauss states
that Gaussian curvature, even though defined orginally through the
embedding of the surface in 3-dimensional Euclidean space, is indeed
a local intrinsic quantity of the surface and does therefore not change
under local isometric deformations. This is confirmed by the fact that
a plane has the same constant Gaussian curvature as a rotational in-
variant cylinder in R3, namely the Gaussian curvature of both surfaces
is zero. The principal curvatures of a 2-dimensional sphere of radius
r > 0 are both +1/r and this sphere has therefore constant Gaussian
curvature 1/r2.
A surface has negative Gaussian curvature at points where the sur-

face looks, locally, like a saddle (in which case the two principal curva-
tures κ1, κ2 have opposite signs). The three cases (positive curvature,
negative curvature and vanishing curvature) are illustrated in Figure
2.

Figure 2. Surfaces of positive Gaussian curvature, neg-
ative Gaussian curvature and vanishing Gaussian curva-
ture2

1Picture taken from http://brickisland.net/cs177fa12/?p=214
2Picture taken from https://i1.wp.com/www.thephysicsmill.com/blog/

wp-content/uploads/comparison_of_curvatures.png.
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Another important illustration of positive, neg-
ative and vanishing Gaussian curvature of a sur-
face is given via the shapes of triangles, in par-
ticular the sum of their interior angles. By tri-
angles we mean geodesic triangles, that is, the
three sides between their vertices are geodesics3.
While the sum of the interior angles of any ge-
odesic triangle in the Euclidean plane is always
equal to π, this sum is strictly larger than π
in the case of positive Gaussian curvature and
strictly smaller than π in the case of negative
Gaussian curvature. This fact is illustrated in
Figure 3.

C. F. Gauss4

(1777-1855)

Figure 3. Triangles in positive Gaussian curvature,
negative Gaussian curvature and vanishing Gaussian cur-
vature5

In fact, the local Gauss-Bonnet Theorem tells us that, for a geodesic
triangle ∆ with interior angles α, β, γ, the difference α + β + γ − π is
equal to the integral of the Gaussian curvature over the interior of the
triangle. The local Gauss-Bonnet Theorem leads to the following fun-
damental result for closed orientable surfaces (that is, compact surfaces
without boundary):

3We call a curve c : I → X from an interval I ⊂ R to a metric space (X, d) a
geodesic if we have for all s, t ∈ I, d(c(s), c(t)) = |t− s|.

4Picture taken from Wikipedia
5Picture taken from https://advances.sciencemag.org/content/2/5/

e1501495/tab-figures-data
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Theorem 1.1 (Global Gauss-Bonnet Theorem). Let S ⊂ R3 be a
closed orientable surface with Gaussian curvature function K : S → R.
Then we have

(1)

∫

S

Kdvol = 2πχ(S),

where χ(S) is the Euler characteristic of S, that is, for a given trian-
gulation of S with vertices V , edge E and faces F ,

(2) χ(S) = |V | − |E|+ |F |.
It should be noted that the Euler characteristic (2) is a purely topo-

logical invariant of the surface and does not depend on the choice of the
triangulation. The formula (1) relates a geometric quantity of the sur-
face, namely the Gaussian curvature function, which is very sensitive
to deformations of the surface, to a robust combinatorial topological
global invariant, the Euler characteristic.

Problem 1.2. Let S ⊂ R3 be a surface with a triangulation by geodesic
triangles. Derive the equation (1) in Theorem 1.1 from the local Gauss-
Bonnet Theorem.

The observation that Gaussian curvature is an
intrinsic quantity of a surface or, more gen-
erally, a Riemannian manifold, lead to the
fundamentally important Riemannian curva-
ture tensor, which was introduced in Bernhard
Riemann’s 1827 Inaugural Lecture ”Über die
Hypthesen, welche der Geometrie zu Grunde
liegen”6. The Riemannian curvature tensor is
the ”father” of all subsequent curvature notions
like, e.g., sectional curvature, Ricci curvature
and scalar curvature.

B. Riemann7

(1826-1866)

The Ricci curvature is of fundamential importance in Einstein’s The-
ory of General Relativity. We will not discuss these curvature notions
in detail but like to point out that they all coincide in the case of
2-dimensional Riemannian manifolds, that is, surfaces.
It is natural and challenging to introduce suitable curvature concepts

for spaces different from smooth Riemannian manifolds. In this lecture
notes, we will consider the setting of combinatorial graphs and will
discuss three specific curvature concepts, namely,

6English translation: ”On the Hypothesis which lie at the Foundation of
Geometry.”

7Picture taken from Wikipedia
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(i) Combinatorial curvature,
(ii) Ollivier Ricci curvature,
(iii) Gromov hyperbolicity.

A newly introduced curvature notion in a new context passes the first
justification round if it exhibits one or more particular fundamental
curvature properties which are known to hold the smooth setting of
Riemannian manifolds. Combinational curvature is a local concept
and is defined on the vertices of a surface tessellation. It is designed in
such a way that it leads to a discrete version of the above mentioned
global Gauss-Bonnet Theorem. Ollivier Ricci curvature is defined on
pairs of vertices of a general combinatorial graph and is based on the
general theory of Optimal Transport. This curvature notion reflects the
fact that, in case of positive Ricci curvature, the average distance of
corresponding points in closeby small metric balls of a surface is smaller
than the distance between their centres. Finally, Gromov hyperbolicity
is a global property of a metric space reflecting the fact that, in the
case of negative sectional curvature, geodesic triangles are thinner and
more inward bent than Euclidean triangles, a fact which can be also
observed in Figure 3 above.
The emphasis in these notes is on the concept of Ollivier Ricci curva-

ture for the simple reason that this particular discrete curvature notion
is one of the author’s own research fields. We refer the readers to the
very recommendable survey [25] containing further information about
three different curvature notions for graphs (combinatorial curvature,

Bakry-Émery curvature and Ollivier Ricci curvature).

Let us finish this Introduction by presenting a model space of con-
stant negative Gaussian curvature, the hyperbolic plane.

Example 1.3 (The hyperbolic plane as surface of constant negative
curvature). A well-known model of constant Gaussian curvature K =
−1 is the hyperbolic plane H2, represented by the upper half plane
H

2 = {z ∈ C
2 | Im(z) > 0} with distance function dH2 given by (see

[26])

(3) dH2(z, w) = ln
|z − w̄|+ |z − w|
|z − w̄| − |z − w| .

It is easy to see that the curve c : R → H2, c(t) = x + eti is a geo-
desic connecting the boundary points 0 and ∞. Note that the set of
boundary points at infinity, given by ∂H2 = R ∪ {∞}, do not belong
to the hyperbolic plane and are infinitely far away8. Any two distinct

8∂H2 = R ∪ {∞} carries the topology of a circle with xn → ∞ if and only if
|xn| → ∞.
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boundary points can be connected by a bi-infinite geodesic which as-
sumes the shape of a Euclidean semicirle or a vertical line meeting the
boundary perpendicularly (see Figure 4 for various geodesics ending in
z ∈ ∂H2).

y−axis

0 z

y

x−axis

x

Figure 4. A horocycle (red) through x, y ∈ H
2 and

centered at z ∈ ∂H2 and asymptotic geodesics ending in
z partitioning the hyperbolic plane

Moreover, for any triple x, y, z ∈ ∂H2 = R∪{∞} of distinct boundary
points there exists a hyperbolic isometry φ : H2 → H

2 which extends
continuously to the boundary such that φ(x) = −1, φ(y) = 1, φ(z) =
∞. These three boundary points −1, 1,∞ ∈ ∂H2 form, together with
their three connecting bi-infinity geodesics, an ideal geodesic triangle.
The local Gauss-Bonnet Theorem tells us that this triangle must have
finite area π since all interior angles are equal to 0. A triangle of H2 is
called ideal if all of its vertices lie in the boundary ∂H2.
It is also useful to know that hyperbolic circles in H2 have the shape

of Euclidean circles (where hyperbolic and Euclidean radii are different
as are the hyperbolic and Euclidean centres of these circles).
Finally, let us introduce asymptotic geodesics and horocycles: Ge-

odesic rays ending at the same boundary point are called asymptotic.
The set of all bi-infinite geodesics ending at a fixed boundary point
z ∈ ∂H2 partition the hyperbolic plane and the curves orthogonal to
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them are called horocycles centered at z ∈ ∂H2. In the case z ∈ R, the
associated horocycles are Euclidean circles touching the boundary at
z (see Figure 4), and in the case z = ∞, the associated horocycles are
horizontal lines parallel to the x-axis.
Let x, y ∈ H2 be two points lying on the same horocycle centered at

z ∈ ∂H2 and cx, cy : [0,∞) → H2 be two asymptotic geodesic rays with
start- and end-points cx(0) = x, cy(0) = y and cx(∞) = cy(∞) = z, as
illustrated in Figure 4. Then it can be shown that the function

f(t) = dH2(cx(t), cy(t))

is strictly monotone decreasing with limt→∞ f(t) = 0. In other words,
the geodesic rays cx(t), cy(t) are farthest apart at t = 0 and become
closer to each other as t → ∞.

Problem 1.4. Let a < b and consider the geodesics c1(t) = a+ eti and
c2(t) = b+ eti in the upper half plane model of the hyperbolic plane H2.
Then c1 and c2 are two asymptotic geodesics with common end-point
∞ ∈ ∂H2, and c1(t) and c2(t) lie on the same horocycle centered at ∞
for every t ∈ R. Verify that the function

f(t) = dH2(c1(t), c2(t))

is strictly monotone decreasing with limt→∞ f(t) = 0.

2. Combinatorial curvature

A given surface S can be tessellated by polygons such that every
polygon is topologically trivial, that is, its closure is homeomorphic to
a closed disc. If all polygons of such a tessellation are triangles we
have a triangulation T of the surface. Given such a triangulation, we
can carry out the following mathematical construction: We assign to
every triangle in T a corresponding equilateral Euclidean triangle of
side length one and glue their sides together in accordance with the
combinatorial structure of the tessellation T . Note that the resulting
space ST is locally Euclidean (that is every point has a neighbourhood
isometric to a small disc in R2), except for the vertices of the Euclidean
triangles. If less than 6 Euclidean triangles meet at such a vertex, say
k < 6, then the angles of the triangles around that vertex add up to
k π

3
< 2π. If more than 6 Euclidean triangles meet at such a vertex,

say k > 6, then the angles of the triangles around that vertex add up
to k π

3
> 2π. If it is precisely 6 Euclidean triangles, then their angles

add up to 2π and ST is also locally Euclidean at that vertex. From
these considerations it makes sense that the discrete analogue of the
”Gaussian” curvature in this space is concentrated in the vertices of ST

and is given by the angle excess 2π− k π
3
(see Figure 5 for illustration).
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Figure 5. Triangle arrangement with positive vertex
curvature 2π − 4π

3
= 2π

3
and with negative vertex curva-

ture 2π − 8π
3
= −2π

3

These considerations give rise to the following general definition,
which agrees with definitions given by various authors, amongst them
Stone [37], Woess [41] and Higuchi [22].

Definition 2.1. Let T be a tessellation of a surface S and G =
(V,E, F ) be the combinatorial representation of T , that is, we think
of the faces f ∈ F as regular Euclidean polygons of side length one

with interior angles equals (|f |−2)
|f |

π, where |f | denotes the degree of the

face f , that is, its number of sides. The combinatorial curvature of G
is a function K : V → R on the vertices and is defined by

K(x) = 2π −
∑

f : x∈f

|f | − 2

|f | π,

where we mean by x ∈ f that x ∈ V is a vertex of the face f ∈ F .

Before we discuss interesting global consequences of this local curva-
ture notion in the next section, we would like to mention that related
curvature considerations are very useful in a specific topic of Combina-
torial Group Theory called Small Cancellation Theory. This research
area is based on the concept of van Kampen diagrams and it relies on
very closely related arguments involving combinatorial curvature no-
tions (see, for example, [31, Section V.3]). A central problem in this
area is the solution of the word problem, that is, whether a given word in
the generators of a finitely presented group coincides with the identity
element of the group.
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2.1. Global results about combinatorial curvature. Our first re-
sult is the following discrete version of the global Gauss-Bonnet Theo-
rem, which is generally known as a kind of folklore result. (The special
case of S equals a sphere was already proved by René Descartes

(1596-1650)):

Theorem 2.2 (Discrete Global Gauss-Bonnet Theorem). Let G =
(V,E, F ) be a combinatorial representation of a surface S and K :
V → R be its combinatorial curvature. Then we have

∑

x∈V

K(x) = 2πχ(S).

Problem 2.3. Show that

(4) K(x) = 2π

(

1− |x|
2

+
∑

f :x∈f

1

|f |

)

,

where |x| denoted the degree of the vertex x, that is, the number of
edges emanating from x, and prove the Discrete Global Gauss-Bonnet
Theorem.

A fundamental result in Differential Geometry about Riemannian
manifolds with strictly positive Ricci curvature is the following Theo-
rem by Bonnet-Myers (see, e.g., [17, Theorem 9.3.1]):

Theorem 2.4 (Bonnet-Myers Theorem). Let (M, g) be a complete
connected n-dimensional Riemannian manifold with Ricci curvature9

bounded below by 1/r2 > 0, that is

Ricp(v) ≥
1

r2
‖v‖2 ∀ v ∈ TpM.

Then M is a compact manifold with diameter bounded by

diam(M) = max{d(x, y) | x, y ∈ M} ≤ πr

where πr is the diameter of the n-dimensional round sphere of constant
Ricci curvature 1/r2 (that is, the round sphere of radius r).

In 1976, Stone [37] investigated the possibility of a discrete analogue
of this fundamental result from Differential Geometry and, similarly in
spirit, Higuchi conjectured in 2001 that strictly positive combinatorial
curvature of a tessellation of a surface S homeomorphic to a subset of

9If you are not familiar with Ricci curvature of n-dimensional Riemannian mani-
folds you may just consider the 2-dimensional case when this simplifies to Gaussian
curvature of surfaces.
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the sphere should imply finiteness of this tessellation (see [22, Conjec-
ture 3.2] and also [16, Conjecture 1.6]). This conjecture was proved in
2007 by DeVos and Mohar:

Theorem 2.5 (see [16, Theorem 1.7]). Let G = (V,E, F ) be a tessel-
lation of a closed oriented surface S with strictle positive combinatorial
curvature. Then S is homeomorphic to the 2-dimensional sphere and
G is finite. Moreover, if G is not a prism or an antiprism then

(5) |V | ≤ 3444.

Problem 2.6. Prisms and antiprims are finite graphs illustrated in
Figure 6. The number of their vertices can be arbitrarily large. We
can think of them as being tessellations of the sphere with two faces of
possibly very high degree k ≥ 3 while the others are just triangles or
quadrilaterals. Calculate the combinatorial curvatures of these exam-
ples for arbitrary k.

Figure 6. Examples of prisms and antiprisms

The story does not end here. Various mathematicians were curious
whether the upper bound |V | ≤ 3444 in Theorem 2.5 can be improved
and, if so, what upper bound will be the optimal value. This problem
was finally settled by L. Ghidelli in 2017:

Theorem 2.7 (see [20, Theorem 3.1]). Let G = (V,E, F ) be as in
Theorem (2.5). Then the upper bound in (5) can be improved to

(6) |V | ≤ 208.

Moreover this estimate is the optimal one.
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Remark 2.8. Optimality of (6) is guaranteed by the fact that there
are planar graphs with strictly positive combinatorial curvature in all
vertices and precisely 208 vertices. One such example is presented in
Figure 7, which is taken from [20, Figure 18.1]. The planar graph given
there can also be viewed as a tessellation of S2 with two large faces of
degrees 39 containing north and south pole and all other faces forming a
belt of a fixed width around the equator. This example was discovered
in 2011 by Ghidelli in private communications with J. Sneddon and
later independently rediscovered by Oldridge [34].

Figure 7. A planar graph with |V | = 208 and strictly
positive combinatorial curvature in all vertices. Its faces
have the degrees 3, 5, 7, 39.

2.2. Outlook into further research and developments. A planar
tessellation is a topological embedding ϕ : (V,E) → S of a simple
graph into the surface S which can be either R2 or the 2-dimensional
sphere, with some specific conditions on the connected components
of the complement of the embedded image, the so-called faces (see,
e.g., [27]). As before, F denotes the set of these faces. Let PC≥0

denote the class of all planar tessellations (V,E, F ) with non-negative
combinatorial curvature K(x) in all vertices x ∈ V . It was shown in
[7, 8] that for each G = (V,E, F ) ∈ PC≥0 the number of vertices with
strictly positive combinatorial curvature is finite. As a consequence,
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the total curvature

K(G) =
∑

x∈V

K(x)

of any such graph must be finite. B. Hua and Y. Su investigated the
following two natural questions:

1. What is the maximal number of strictly positively curved ver-
tices of infinite graphs in PC≥0?

2. What are the total curvatures K(G) which can be achieved by
infinite graphs G in PC≥0?

They addressed Question 1 in [24] and proved that the maximal number
of strictly positively curved vertices is 132 and that every infinite graph
in PC≥0 with this maximal number must contain 12 disjoint 11-gons.
With regards to Question 2, they proved in [23] that the achievable total
curvature values are precisely jπ

6
with 0 ≤ j ≤ 12 and they presented

examples of infinite graphs in PC≥0 for each of these values.
With this glimpse into recent research on combinatorial curvature,

we end this section and move on to the next topic: Ollivier Ricci cur-
vature.

3. Ollivier Ricci curvature

Ollivier Ricci curvature starts from the following characterisation of
positive Ricci curvature in the smooth setting of Riemannian manifolds
(see von Renesse/Sturm [40]): Small spheres are closer (in transporta-
tion distance) than their centres are. Yann Ollivier explains this in his
article [35] as follows: Consider two very close points x, y in a Rie-
mannian manifold defining a tangent vector at x. Let w be another
tangent vector and w′ be the tangent vector at y parallel to w at x.
Following the geodesics issuing from x in direction w and from y in di-
rection w′, the geodesics will get closer in the case of positive curvature.
Ricci curvature along (xy) is this phenomenon, averaged in all direc-
tions w at x. This fact is illustrated in Figure 8, comparing the round
2-sphere (positive Ricci curvature) to the Euclidean plane (vanishing
Ricci curvature).
Ollivier introduced a Ricci curvature in metric spaces motivated by

this Ricci curvature property about small balls. These balls define
probability measures (supported and equidistributed on the balls) and
their distance can be measured using the Wasserstein transportation
distance from Optimal Transport Theory. We present his ideas in the
setting of connected graphs G = (V,E). This curvature notion for
graphs features also in various contexts of applied research, for example:
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yx

x y

Figure 8. In the 2-sphere, corresponding points in
small metric balls Bǫ(x), Bǫ(y) in parallel directions have
smaller distance than d(x, y). In the Euclidean plane,
they have the same distance d(x, y).

(i) studying complex biological networks, such as cancer, brain con-
nectivity, phylogenetic trees,

(ii) quantifying systemic risk and fragility of financial systems,
(iii) investigating node degree, the clustering coefficient and global

measures on the internet topology,
(iv) studying the congestion phenomenon in wireless networks under

the heat-diffusion protocol,
(v) fast approximation of the tree-width of a graph and applica-

tions to determining whether a Quadratic Unconstrained Bi-
nary Optimization problem is solvable on the D-Wave quantum
computer, and

(vi) studying the problem of quantum gravity.

These fields of applications are taken from [13].

Let us finish this introduction by mentioning
that Yann Ollivier, a mathematician by train-
ing, is currently a research scientist at the Face-
book Artificial Intelligence Lab in Paris, work-
ing chiefly on neural networks. You can find
more information about him via his website at
http://www.yann-ollivier.org/ where also
his picture is taken from.

Yann Ollivier
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3.1. Fundamental concepts: Transport plans, Wasserstein met-

ric and Ollivier Ricci curvature. Let G = (V,E) be a connected
graph. A probability measure µ on G can be understood as a function
µ : V → [0, 1] with

∑

x∈V

µ(x) = 1.

The set of all probability measures on G is denoted by P1(V ).
Now we introduce the notion of a transport plan and its cost which

leads naturally to a distance function on the space P1(V ) of probability
measures:

Definition 3.1. Let G = (V,E) be a connected graph and µ, ν ∈ P1(V )
be two probability measures. A transport plan from µ to ν is a map
π : V × V → [0, 1] such that

µ(x) =
∑

y∈V

π(x, y) ∀ x ∈ V

and

ν(y) =
∑

x∈V

π(x, y) ∀ y ∈ V.

The value π(x, y) is then the mass transported from x to y along a
geodesic (at cost d(x, y)π(x, y)), and the (total) cost of the transport
plan π is defined as

cost(π) :=
∑

x,y∈V

d(x, y)π(x, y).

The set of all transport plans from µ to ν is denoted by Π(µ, ν) and the
1-Wasserstein distance10 between µ and ν is defined as

W1(µ, ν) := inf
π∈Π(µ,ν)

cost(π).

A transport plan π ∈ Π(µ, ν) is called optimal if we have

W1(µ, ν) = cost(π).

(Note, however, that there might be more than one optimal transport
plan for a given pair of probability measures.)

It can be checked that W1 : P1(V ) × P1(V ) → [0,∞) is a distance
function which simplifies to the combinatorial distance function on G if

10The p-Wasserstein distance is given by a different cost-function, namely
Wp(µ, ν) := infπ∈Π(µ,ν)

∑

x,y∈V d(x, y)pπ(x, y).
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we embed the vertex set V into P1(V ) via Dirac measures : The Dirac
measure δx ∈ P1(V ) of a vertex x ∈ V is given by

δx(y) = δxy,

and we obviously have

W1(δx, δy) = d(x, y)

via the transport plan π(z, w) = δx(z)δy(w).

Example 3.2 (A transport plan). Consider two probability measures
µ and ν on a finite connected graph G = (V,E) with 8 vertices V =
{a, b, c, d, e, f, g, h} as illustrated in Figure 9.

a b

c d

e

h

f

g

ν

5/12

1/3

1/4

a b

c d

e

h

f

g

µ

1/2

1/6

1/3

Figure 9. Probability distributions µ, ν on G

We can transfer µ to ν in the following way:

• send 1
3
from b to f over a distance of 2,

• send 5
12

from a to e over a distance of 2,

• send 1
6
from c to g over a distance of 3, and

• send 1
12

from a to g over a distance of 4.

The transport plan is then given by π(b, f) = 1/3, π(a, e) = 5/12,
π(c, g) = 1/6, and π(a, g) = 1/12 with π vanishing for all other vertex-
combinations. The cost of this transport plan is then given by

cost(π) =
∑

x, y ∈ V π(x, y)d(x, y) =

2π(b, f) + 2π(a, e) + 3π(c, g) + 4π(a, g)

=
2

3
+

10

12
+

3

6
+

4

12
=

7

3
.

Recall that we have W1(µ, ν) = infπ∈Π(µ,ν) cost(π) and we can therefore
conclude that W1(µ, ν) ≤ 7

3
. In order to conclude W1(µ, ν) = 7

3
we

need to show that the above transport plan π is optimal. There is no
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obvious immediate way to prove this since there are infinitely many
possibilities to transport the probability measure µ to ν. In the next
section we will learn a powerful tool to show that a given transport
plan is optimal, namely duality.

Our next aim is to introduce Ollivier Ricci curvature for a con-
nected graph G = (V,E). For that we first need to introduce prob-
ability measures representing metric balls around vertices. These balls
should be small but they should not be trivial (their radius needs to
be positive). Since our distances are integers, we choose the radius 1,
which means that the balls include the centre vertex x ∈ V and all
its neighbours y ∼ x. The set of all involved vertices is then denoted
by B1(x) = {y ∈ V | d(x, y) ≤ 1}. To allow some flexibility in the
probability measure associated to B1(x), we do not choose equidistri-
bution on all involved vertices, but introduce a parameter p ∈ [0, 1],
which is the probability at the centre, and the probabilities 1−p

|x|
at each

of the neighbours. Since these probabilities can be viewed as transi-
tion probabilities from the vertex x of a random walk, we can think of
p as the probability that the random walker doesn’t move. For that
reason, we call the parameter p the idleness parameter. In conclusion,
we introdure for every idleness p ∈ [0, 1] and every vertex x ∈ V the
probability measure

(7) µx
p(y) =











p if y = x,
1−p
|x|

if y ∼ x,

0 otherwise.

For any pair x, y ∈ V , x 6= y, the ratio W1(µx
p, µy

p)/d(x, y) tells us
whether the optimal transport cost to move the weighted ball B1(x)
to B1(y) is larger or smaller than the distance between their centres.
In the former case we have W1(µx

p, µy
p)/d(x, y) > 1, and in the latter

case we have W1(µx
p, µy

p)/d(x, y) < 1 and Ollivier Ricci curvature is
then defined as follows:

Definition 3.3. Let G = (V,E) be a connected graph and x, y ∈ V .
For any idleness value p ∈ [0, 1], we define the Ollivier Ricci curvature
Kp(x, y) as

Kp(x, y) := 1− W1(µx
p, µy

p)

d(x, y)
,

where µx
p is given in (7).
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Problem 3.4. Let G = (V,E) be a connected graph, p ∈ [0, 1], and

x = x0 ∼ x1 ∼ · · · ∼ xn = y

be a geodesic, that is, d(x, y) = n. Show the following inequality

Kp(x, y) ≥ min
j∈{0,1,...,n−1}

Kp(xj , xj+1)

using the fact that W1 : P1(V )×P1(V )× [0,∞) is a distance function.

Let us mention the following useful consequence of Problem 3.4: Any
lower bound of Ollivier Ricci curvature Kp(x, y) for all x, y ∈ V , x 6= y,
is automatically also a lower bound of Ollivier Ricci curvature on the
edges, where we define the Ollivier Ricci curvature of an edge e =
{x, y} ∈ E as

Kp(e) = Kp(x, y).

Because of this fact, we consider often only Ollivier Ricci curvature on
the edges of a graph and view it then as a local invariant of the graph.

Example 3.5 (Ollivier Ricci curvature of a k-regular tree). Let Tk =
(V,E) be the infinite k-regular tree, k ≥ 2. Figure 10 illustrates the
neighbourhood of an edge b ∼ c for the case k = 7. By choosing the
idleness p = 1

k+1
, the probability measure µx

p is equidistribution on
the vertices of the 1-ball B1(x) ⊂ V around x ∈ V . Let us calculate
W1(µb

p, µc
p): The masses p = 1

k+1
on the vertices of B1(b) need to be

transported to the vertices of B1(c). One way of doing this is as follows:
there are k−2 neighbours of b (the filled red ones in Figure 10), whose
masses p = 1

k+1
need to travel over a distance 3 to k−2 neighbours of c

(the empty red ones in Figure 10). Moreover, the masses p = 1
k+1

on the
vertices a, b, c in Figure 10 need to be shifted over to the vertices b, c, d,
and this comes always with a cost of 3p = 3

k+1
. Any such transport

plan π yields a total cost of

cost(π) = (k − 2)3p+ 3p = 3
k − 1

k + 1
.

It is intuitively convincing (and indeed true) that no other transport
plan can do better. Assuming that the above transport strategy is
optimal, we conclude

K1/(k+1)(b, c) = 1−W1(µb
p, µc

p) = 1− 3
k − 1

k + 1
=

4− 2k

k + 1
,

which means that T2 has vanishing Ollivier Ricci curvature (at idleness
p = 1

3
) and Tk has strictly negative Ollivier Ricci curvature (at idleness

p = 1
k+1

) for all k ≥ 3.
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a

b c   

d

Figure 10. Neighbourhood of the edge b ∼ c in a k-
regular tree

Remark 3.6. In the previous example it is not clear whether splitting
up the masses at the vertices of B1(b) into smaller quantities and send-
ing these smaller quantities in different directions to possibly different
vertices ofB1(c) might lead to a better transport plan. A transport plan
which does not do that and only transfers the total masses from their
original vertices to target vertices is called a transport map. The ques-
tion about existence of optimal transport maps is the so-called Monge
problem, since it was Gaspard Monge (1746-1818) who raised this
problem back in 1781. It is easy to construct examples of probability
measures which do not allow transport maps at all. The more general
concept of optimal transport plans provides a solution to overcome this
problem, and this more general concept was proposed 1942 by Leonid

V. Kantorovich (1912-1986). It is known, however, that in the case
of equal masses at all original and target vertices (in our case equals
p = 1

k+1
) there exists an optimal transport plan which is realised by a

transport map. See Ambrosio’s article [1] for more on this issue and
its history.

3.2. Duality principle. Calculating W1(µ, ν) is a Linear Optimiza-
tion Problem for which a duality principle applies. To formulate this
duality principle we need to introduce the notion of 1-Lipschitz func-
tions.

Definition 3.7. A function φ : V → R on a graph G = (V,E) is called
1-Lipschitz if

|φ(x)− φ(y)| ≤ d(x, y) ∀ x, y ∈ V.

The set of all 1-Lipschitz functions on G is denoted by 1− Lip(G).
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Theorem 3.8 (Duality principle). Let G = (V,E) be a connected graph
and µ, ν ∈ P1(V ). Then we have
(8)

W1(µ, ν) = inf
π∈Π(µ,ν)

∑

x,y∈V

d(x, y)π(x, y) = sup
φ∈1−Lip(G)

∑

x∈V

φ(x)(µ(x)−ν(x)).

Every function φ ∈ 1− Lip(G) which assumes the supremum on the
right hand side of (8) is called an optimal Kantorovich potential.

Let us show how the duality principle can be used to prove optimality
of a given transport plan:

Example 3.9 (Duality principle to prove optimality). Recall the trans-
port plan π : V × V → [0, 1] from Example 3.2 which lead to a total
cost of

cost(π) =
7

3
.

In order to prove that this cost is optimal and that we have W1(µ, ν) =
7
3
, we need to find a suitable 1-Lipschitz function φ0 : V → R such that

(9)
∑

x∈V

φ0(x)(µ(x)− ν(x)) =
7

3
.

Then equation (8) implies that π is optimal since then

7

3
=
∑

x∈V

φ0(x)(µ(x)−ν(x)) ≤ sup
φ∈1−Lip(G)

∑

x∈V

φ(x)(µ(x)−ν(x)) = W1(µ, ν).

One the other hand we know from Example 3.2 that

7

3
= cost(π) ≥ W1(µ, ν),

and, putting everything together, we conclude

W1(µ, ν) = cost(π) =
7

3
.

A 1-Lipschitz function φ0 satisfying (9) is presented in Figure 11. It
is easy to check that this function is 1-Lipschitz. (By the triangle
inequality, is suffices to check that the function changes its value by at
most 1 along every edge!)
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a b

c d

e

h

f

g

Φ0

1

2 1

0

0

−1

−1

−2

Figure 11. An optimal Kantorovich potential Φ0

We obtain
∑

x∈V

φ0(x)(µ(x)− ν(x))

= φ0(a)
1

2
+ φ0(b)

1

3
+ φ0(c)

1

6
− φ0(f)

1

3
− φ0(g)

1

4

= 1 +
1

3
+

1

6
+

1

3
+

2

4
=

7

3
,

which implies optimality of the transport plan π.

The strategy to calculate the Ollivier Ricci curvature Kp(x, y) in
an explicit example is now as follows: firstly, choose a transport plan
π ∈ Π(µx

p, µy
p) which seems to be a particularly good candidate for

optimality and calculate its cost; secondly, find a 1-Lipschitz function
which show that the chosen transport plan π is optimal; finally, use this
fact to calculate W1(µx

p, µy
p) and Kp(x, y) = 1−W1(µx

p, µy
p)/d(x, y).

Problem 3.10. A graph G = (V,E) is called strongly regular with
parameters (ν, k, λ, µ)11, if

(i) |V | = ν,
(ii) G is k-regular, that is, |x| = k for all x ∈ V ,
(iii) each pair of adjacent vertices has precisely λ common neigh-

bours and
(iv) each pair of non-adjacent vertices has precisely µ common neigh-

bours.

11We always assume (λ, ν) 6= (0, 0) for, otherwise, the graph would have to be a
set of isolated vertices or a set of isolated edges.
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The girth of a graph G is the length of a shortest cycle. It is easy to
see that strongly regular graph can only have girth(G) = 3 (if λ > 0)
girth(G) = 4 (if λ = 0 and µ ≥ 2) and girth(G) = 5 (if λ = 0 and
µ = 1). For example, the Petersen graph in Figure 12 is strongly
regular with parameters (10, 3, 0, 1).

Figure 12. The Petersen graph

Prove the following result for every strongly regular graph G = (V,E)
of girth 5: For any pair x, y ∈ V of adjacent vertices we have

K0(x, y) =
2

k
− 1.

Conclude from this that a girth-5 strongly regular graph with vanishing
Ollivier Ricci curvature K0 must be the pentagon.
You can use the following fact without proof: Any 1-Lipschitz func-

tion f0 : V0 → R on a subset V0 ⊂ V can be extended to a 1-Lipschitz
function on V , that is, there exists a 1-Lipschitz function f : V → R

such that f(x) = f0(x) for all x ∈ V0.

Remark 3.11. Surprisingly, there is no complete classification of all
strongly regular graphs. In not yet published joint work with D. Cush-
ing, R. Kangaslampi and Sh. Liu [14], we showed K0(x, y) = 0 for all
pairs x, y ∈ V of adjacent vertices in girth-4 strongly regular graphs
G = (V,E), and we conjecture that all girth-3 strongly regular graphs
have non-negative K0-curvature.

3.3. Global results about Ollivier Ricci curvature. Let us recall
the Bonnet-Myers Theorem from the previous chapter:
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Theorem 2.4 (Bonnet-Myers Theorem). Let (M, g) be a complete
connected n-dimensional Riemannian manifold with Ricci curvature
bounded below by 1/r2 > 0, that is

Ricp(v) ≥
1

r2
‖v‖2 ∀ v ∈ TpM.

Then M is a compact manifold with diameter bounded by

(10) diam(M) = max{d(x, y) | x, y ∈ M} ≤ πr

where πr is the diameter of the n-dimensional round sphere of constant
Ricci curvature 1/r2 (that is, the round sphere of radius r).

Interestingly, this theorem has a very natural discrete counterpart for
k-regular graphs using Ollivier Ricci curvature with idleness p = 1

k+1
.

Before we discuss this analogue, we want to mention the following
rigidity result in the smooth setting of Riemannian manifolds due to
Cheng [9]:

Theorem 3.12 (Cheng’s Rigidity Theorem). Let (M, g) be a com-
plete connected n-dimensional Riemannian manifold with Ricci curva-
ture bounded below by 1/r2 > 0, that is

Ricp(v) ≥
1

r2
‖v‖2 ∀ v ∈ TpM.

If we have
diam(M) = πr

then (M, g) is isometric to the n-dimensional round sphere of radius r.

This result tells us that equality in the Bonnet-Myers diameter es-
timate (10) necessarily implies that the Riemannian manifold is the
round sphere. This statement is called a rigidity result since it is a full
classification of all objects satisfying a relatively weak condition.
It is natural to ask for a discrete counterpart of this rigidity re-

sult. The first problem to solve is to find a discrete analogue of the
n-dimensional round sphere. A natural candidate is the k-dimensional
hypercube:

Definition 3.13. The k-dimensional hypercube Qk = (V,E) is the
following graph: The vertex set of Qk consists of all k-tuples in {0, 1}k.
As a consequence, we have |V | = 2k. Two vertices x, y ∈ {0, 1}k are
adjacent iff their Hamming distance is 1, that is, these k-tuples differ
in precisely one entry.

Wemay think of the k-tuples representing vertices x of the hypercube
Qk as a set of coordinates of the vertex x in Rk, and two vertices are
then connected by an edge if they differ in just one coordinate.
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The Ollivier Ricci curvature K1/(k+1)(x, y) of every edge x ∼ y of a
k-dimensional hypercube is known to be (see [29])

(11) K1/(k+1)(x, y) =
2

k + 1
.

This formula is also derived in Section 2.1 of [36] by Ollivier and Vil-
lani. They discuss suitable curvature notions and a Brunn-Minkowski
Inequality for the hypercube in this article.

Problem 3.14. Derive the formula (11) for the curvature of the hy-
percube Qk via the following steps:

(i) Check that K1/2(x, y) = 1 for the edge x ∼ y in Q1.
(ii) Let G = (Vg, EG) and H = (VH , EH) be two regular graphs with

vertex degrees dG and dH, respectively. Let x1 ∼ x2 be an edge
in G and y ∈ VH . Use the formula

(12) KG×H
1/(dG+dH+1)((x1, y), (x2, y)) =

dG + 1

dG + dH + 1
KG

1/(dG+1)(x1, x2)

(from [3, Corollary 1.3]) without proof and the fact that Qk+1 =
Qk ×Q1 to give an induction proof of (11).

Let us now present the following discrete version of the Bonnet-Myers
Theorem:

Theorem 3.15 (Discrete Bonnet-Myers Theorem for Ollivier Ricci
curvature). Let G = (V,E) be a connected k-regular graph with Ollivier
Ricci curvature bounded below by K0 > 0, that is

K1/(k+1)(x, y) ≥ K0 ∀x ∼ y.

Then G is finite with diameter bounded by

(13) diam(G) = max{d(x, y) | x, y ∈ V } ≤ 2k

(k + 1)K0
.

Note that in the case of the k-dimensional hypercube Qk we have K0 =
2/(k+1) and (2k)/((k+1)K0) = k is the diameter of Ck. This shows
that the inequality (13) cannot be improved.

Problem 3.16. Prove the discrete Bonnet-Myers Theorem for Ollivier
Ricci curvature, using the following fact for Dirac δ-measures of any
pair of vertices x, y ∈ V :

W1(δx, δy) ≤ W1(δx, µx
p) +W1(µx

p, µy
p) +W1(µy

p, δy),

since W1 is a distance function on P1, and the statement in Problem
3.4.
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Note that the statement in Theorem 3.15 for connected k-regular
graphs G with strictly positive Ollivier Ricci curvature can be refor-
mulated as the inequality

(14) diam(G) ≤ 2k

(k + 1) infx∼y K1/(k+1)(x, y)
.

We also know that (14) holds with equality in the case of the k-
dimensional hypercube Qk. It is natural to ask whether there is also
a discrete analogue of the Cheng Rigidity Theorem. The first guess
would be the following conjecture:

Conjecture (First try!). If (14) holds with equality for a connected
k-regular graph G with strictly positive Ollivier Ricci curvature then
this graph must be isomorphic to Qk.

It turns out that this conjecture is false. Indeed, there are other
families of graphs satisfying (14) with equality. One such example are
the cocktail party graphs CP (k) with 2k vertices u1, . . . , uk, v1, . . . , vk
where all vertices are adjacent unless they share the same index. The
name cocktail party graph stems from the following interpretation: the
vertices correspond to guests of a cocktail party; the participants are k
couples and, at arrival, they shake hands (hand-shaking is represented
by edges between the corresponding vertices); now, each guest shakes
hands with all other guests except for their own spouse. Another way
of describing cocktail party graphs CP (k) is as follows: we start with a
complete graphK2k of 2k vertices, that is, there is an edge between each
pair of vertices; then we remove from this graph a perfect matching,
that is a set of k edges which do not share any vertices with each
other (these edges describe the couples in the party). In particular,
the cocktail party graph CP (4) with 8 edges is the one-skeleton of the
octahedron, where opposite vertices correspond to couples.
It is natural to ask whether it is possible to completely classify all

regular connected graphs with strictly positive Ollivier Ricci curvature
satisfying (14) with equality. In [12], we call these graphs Bonnet-Myers
sharp graphs and prove the following result:

Theorem 3.17 (see [12]). Let G be a connected k-regular self-centered12

graph with strictly positive Ollivier Ricci curvature such that (14) holds
with equality. Then G is one of the following:

1. hypercubes Qk, k ≥ 1,
2. cocktail party graphs CP (k), k ≥ 3,

12A graph G = (V,E) is called self-centered if, for every vertex x ∈ V , there
exists a vertex x ∈ V such that d(x, x) = diam(G).



CURVATURE NOTIONS ON GRAPHS 25

3. the Johnson graphs J(2k, k), k ≥ 3,
4. even-dimensional demi-cubes Q2k

(2), k ≥ 3,
5. the Gosset graph,

and Cartesian product G1 ×G2 × · · · ×G− k of 1.-5. satisfying

d1
diam(G1)

=
d2

diam(G2)
= · · · = dk

diam(Gk)
,

where di is the vertex degree of the graph Gi.

The Johnson graph J(6, 3) and the Gosset graph are illustrated in
Figure 13. We conjecture that the self-centeredness assumption is not
necessary and can be removed but this seems to be a very challenging
problem.

Figure 13. The Johnson graph J(6, 3) and the Gosset graph13

Challenge. Let G = (V,E) be a finite connected k-regular graph. The
(normalized) Laplacian ∆G is a linear operator defined on functions
f : V → R as follows:

∆Gf(x) := f(x)− 1

k

∑

y∼x

f(y).

This operator has real eigenvalues which can be ordered with their mul-
tiplicities as

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN ≤ 2,

where N = |V | and the eigenvalue λ1 = 0 is simple and the corre-
sponding eigenfunctions are precisely the non-trivial constant functions.

13Picture taken from https://en.wikipedia.org/wiki/Gosset_graph#

/media/File:E7_graph.svg
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(You don’t need to prove this fact!) Show the following fact: If the Ol-
livier Ricci curvature of G = (V,E) is bounded below by K0 > 0, that
is,

K1/(k+1)(x, y) ≥ K0 ∀x ∼ y,

(we know then from Theorem 3.15 that G is finite), then the first pos-
itive eigenvalue of ∆G satisfies

λ2 ≥
k + 1

k
K0.

3.4. Outlook into further research and developments. The ap-
peal of Ollivier Ricci curvature for graphs is that this curvature notion
can be calculated reasonably well in concrete examples while, at the
same time, there are striking analogies with curvature phenomena in
the smooth setting of Riemannian manifolds. A natural question is,
for given pair of distinct vertices x, y, the dependence of the curvature
Kp(x, y) on the idleness parameter p ∈ [0, 1]. This was investigated
for edges x ∼ y in [3] and for arbitrary pairs x, y of vertices with
d(x, y) ≥ 2 in [11]: in fact, the function [0, 1] ∋ p 7→ Kp(x, y) is con-
cave and piecewise linear with at most three linear parts (and at most
two linear parts in the case of adjacent vertices in regular graphs). A
slight modification of Ollivier Ricci curvature measuring the slope near
p = 1 was introduced by Lin/Lu/Yau in [29].
A very useful interactive web-tool (see Figure 14) to calculate various

kinds of graph curvatures has been developed by G. Stagg and D.
Cushing. This tool is ideal to test conjectures and to obtain deeper
insights into various curvature notions. Details about this tool can be
found in [13]. This tool is freely accessible through

https://www.mas.ncl.ac.uk/graph-curvature/

Ollivier Ricci curvature is not the only successful utilisation of Op-
timal Transport Theory to introduce a Ricci curvature notion in new
settings. Sturm [38] and Lott/Villani [30] (see Figure 15 below, pictures
taken from Wikipedia) used Optimal Transport Theory to generalise
Ricci curvature from the smooth setting of Riemannian manifolds to
general metric measure spaces. This approach is based on the observa-
tion, proved in [40], that a global lower Ricci curvature bound of a Rie-
mannian manifold (M, g) by a constant K is equivalent to K-convexity
of the Boltzmann-Shannon entropy functional on the space of probabil-
ity measures on M along geodesics with respect to the W2-Wasserstein
distance. The K-convexity property in the space of probability mea-
sures can be defined for general metric measure spaces which are geo-
desic and is used in [38, 30] to introduce a general synthetic notion of
Ricci curvature which is stable under Gromov-Hausdorff convergence.
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Figure 14. Graph curvature calculator by G. Stagg and
D. Cushing

This new approach to curvature opened the door to a currently highly
active and exciting research field.

Figure 15. Karl-Theodor Sturm, John W. Lott and
Cédric Villani

As mentioned before, the generalisation to metric measure spaces
due to Sturm and Lott/Villani requires them to be geodesic spaces14.
On the other hand, graphs equipped with the combinatorial distance

14A metric space (X, d) is called geodesic if any pair x, y ∈ X can be joined by a
geodesic c : I → X with I = [a, b] ⊂ R a closed interval and x = c(a) and y = c(b),
that is, d(c(s), c(t)) = |t− s| for all s, t ∈ I.
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are discrete spaces and fail to be geodesic. A discrete curvature notion
for finite Markov chains (and therefore combinatorial graphs as par-
ticular examples) in the spirit of Sturm and Lott/Villani was given by
Erbar/Maas in [19]. Their global discrete curvature notion is called en-
tropic curvature and is based on a modification of the W2-Wasserstein
distance. This curvature notion behaves well under taking Cartesian
products but it is very difficult to explicitely calculate entropic curva-
ture in concrete examples (even in the simplest case if the underlying
space is just two points).
These comments conclude the section on Ollivier Ricci curvature and

we move on into the last curvature notion, which is non-local in nature:
Gromov hyperbolicity.

4. Gromov hyperbolicity

Cayley graphs and Gromov hyperbolicity play a central role in a
highly research active area called Geometric Group Theory. We will
introduce these concepts and will see that Gromov hyperbolicity is a
kind of a global negative curvature notion for unbounded connected
graphs or, more generally, for geodesic metric spaces.

4.1. Cayley graphs and δ-hyperbolic graphs. Let us start with
the definition of Cayley graphs.

Definition 4.1. Let Γ be a group with a finite set S of generators
such that e 6∈ S and if s ∈ S then also s−1 ∈ S. The Cayley graph
Cay(Γ, S) = (V,E) of Γ with respect to S is the graph with V = Γ and
two vertices γ1, γ2 ∈ Γ are connected by an edge if and only if there
exists s ∈ S such that γ2 = γ1s.

Cayley graphs can be viewed as realisations of a group Γ as a metric
space with the combinatorial distance function d : Γ×Γ → N∪ {0} on
the vertex set of Cay(Γ, S) = (V,E). They form a very interesting class
of graphs since there is another tool besides combinatorics available to
work with them, namely algebra and, in particular, group theory and
representation theory.
Note that every edge of a Cayley graph corresponds to an element s

of S and can therefore be labelled by s. Moreover, if ord(s) ≥ 3, then
the edge corresponding to γ ∼ γs can be understood as being directed
from γ to γs. In the case ord(s) = 2 we have s = s−1 and the Cayley
graph Cay(Γ, S) has then precisely one undirected edge between γ and
γs.
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Figure 16. Cay(S4, {(1 2), (2 3), (3 4)})

Example 4.2. The Cayley graph of the symmetric group S4 with gen-
erator set S = {(1 2), (2 3), (3 4)} is illustrated in Figure 16. Since all
generators have order 2, the edges, labelled by a = (1 2), b = (2 3) and
c = (3 4), are undirected.

Proposition 4.3. All Cayley graphs are vertex transitive and con-
nected.

Proof. Let Cay(Γ, S) = (V,E). For γ1, γ2 ∈ V = Γ let

φ : V → V, φ(γ) = γ2γ
−1
1 γ.

It is easy to see that φ is a graph automorphism and that we have
φ(γ1) = γ2. This shows vertex transitivity.
By vertex transitivity, it suffices to show that e ∈ Γ = V can be con-

nected to any other vertex γ ∈ Γ = V . By the definition of generators,
we can write γ in the form

γ = s1s2 · · · sN
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with s1, s2, . . . , sN ∈ S. Then the path

e ∼ s1 ∼ s1s2 ∼ s1s2s3 ∼ · · · ∼ s1s2 · · · sN = γ

connects e with γ. This proves that a Cayley graph is connected. �

Problem 4.4. Construct the Cayley graph Cay(D12, S) where D2n is
the dihedral group given by

D2n = {s, r | s2 = rn = e, ris = srn−i for 1 ≤ i ≤ n− 1},
and

S = {s, sr, sr2, sr4}.
Check also that S is a symmetric set of generators of D12.

Now we introduce the notion of Gromov hyper-
bolicity. It is a fundamental concept which was
introduced by M. Gromov in his seminal pa-
per [21] and which turned out to have profound
consequences. While we need this notion in the
setting of combinatorial graphs, we start with
its definition in the context of a geodesic metric
space15 (X, d).

Mikhail Gromov16

In short, Gromov hyperbolicity is the property that there exists a
constant δ ≥ 0 such that any geodesic triangle is δ-thin, that is, every
side of the triangle is contained in the δ-neighbourhodds of the other
two sides. This property is illustrated in Figure 17 below.

Definition 4.5 (Gromov hyperbolicity for geodesic metric spaces).
A geodesic metric space (X, d) is called δ-hyperbolic if we have the
following for any geodesic triangle ∆ = c1 ∪ c2 ∪ c3: The side ci are
completely contained in the union of the δ-tubes around the sides cj and
ck, where {i, j, k} = {1, 2, 3}. In other words, we have

ci ⊂ Tδ(cj) ∪ Tδ(ck)

where
Tδ(c) = {x ∈ X | ∃ x0 ∈ c : d(x0, x) ≤ δ}.

A geodesic metric space (X, d) is called Gromov hyperbolic if it is δ-
hyperbolic for some δ ≥ 0.

15Recall that a metric space (X, d) is called geodesic if any pair x, y ∈ X can be
joined by a geodesic c : I → X with I = [a, b] ⊂ R a closed interval and x = c(a)
and y = c(b), that is, d(c(s), c(t)) = |t− s| for all s, t ∈ I.

16Picture taken from https://en.wikipedia.org/wiki/Mikhail_

Leonidovich_Gromov#/media/File:Gromov_Mikhail_Leonidovich.jpg
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Figure 17. Illustration of Gromov hyperbolicity17

Before we provide two examples of Gromov hyperbolic spaces, we
first like to address the issue that combinatorial graphs G = (V,E) are
discrete objects and, therefore, as metric spaces with the integer valued
combinatorial distance function they are not geodesic. One way to
overcome this problem is to view G as a metric graph with all its edges
realised as line segments of length 1 and to extend the combinatorial
distance function to arbitray points on these edges in a natural way.
Another way to solve this problem is to stick with the combinatorial
nature of G = (V,E) and to define geodesics in G as maps c : {k, k +
1, . . . , l} → V such that d(c(i), c(j)) = |j − i| for all i, j ∈ {k, . . . , l}.
We denote the set of vertices contained in c by V (c), that is, V (c) =
{c(i) | i ∈ {k, . . . , l}}. We then modify Definition 4.5 in this context
the following way:

Definition 4.6 (Gromov hyperbolicity for combinatorial graphs). A
connected graph G = (V,E) is called δ-hyperbolic if we have the fol-
lowing for any geodesic triangle ∆ = c1 ∪ c2 ∪ c3: The vertices of the
side ci are completely contained in the union of the δ-tubes around the
sides cj and ck, where {i, j, k} = {1, 2, 3}. In other words, we have

V (ci) ⊂ Tδ(cj) ∪ Tδ(ck)

where
Tδ(c) = {x ∈ V | ∃ x0 ∈ V (c) : d(x0, x) ≤ δ}.

A connected graph G = (V,E) is called Gromov hyperbolic if it is
δ-hyperbolic for some δ ≥ 0.

17Picture taken from https://commons.wikimedia.org/wiki/File:Delta_

thin_triangle_condition.svg.
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Figure 18. 0-hyperbolicity of a tree

Let us now discuss two important examples:

Example 4.7 (Trees as Gromov hyperbolic spaces). Let T = (V,E)
be a tree. Then any triangle ∆ = c1 ∪ c2 ∪ c3 with vertices x, y, z ∈ V
is a Y -shaped structure – as illustrated in Figure 18 – with uniquely
defined mid point o ∈ V such that ∆ consists of three paths pxo, pyo, pzo
(with puv the unique path in T from u ∈ V to v ∈ V ) such that

c1 = pxo ∪ pyo,

c2 = pyo ∪ pzo,

c3 = pzo ∪ pxo.

Therefore, we have ci ⊂ cj ∪ ck for any choice {i, j, k} = {1, 2, 3} and
T is 0-hyperbolic.

Example 4.8 (The hyperbolic plane as Gromov hyperbolic space).
Let us consider R2 with the Euclidean distance (the Euclidean plane)
and the hyperbolic plane H2, represented by the upper half plane H2 =
{z ∈ C2 | Im(z) > 0} with hyperbolic metric dH2 given by (see [26])

dH2(z, w) = ln
|z − w̄|+ |z − w|
|z − w̄| − |z − w| .

Both spaces are geodesic metric spaces. The Euclidean plane R
2 is

obviously not Gromov hyperbolic: Choose the right-angled Euclidean
triangle with vertices x = (0, 0), y = (c, 0) and z = (0, c), c > 0.
Then the point (c/2, c/2) lies on the side connecting y and z and this
point has obviously Euclidean distance c/2 to the other two sides of
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Figure 19. Gromov hyperbolicity of the hyperbolic plane

this triangle (which are parts of the x- and y-axis). Since c > 0 can be
arbitrary large, the Euclidean plane is not Gromov hyperbolic.
We show now, in contrast, that the hyperbolic plane is Gromov hy-

perbolic. As in the Euclidean case, it is true that any (geodesic) triangle
in (H2, dH2) contains a unique (hyperbolic) incircle touching all three
sides if the triangle.
We first show that the radius of this incircle is bounded by 1

2
ln 3 for

any triangle in (H2, dH2): Every triangle ∆ sits completely inside an
ideal triangle ∆∞ with all its vertices in ∂H2. Obviously, the radius of
the incircle of ∆∞ is greater or equal to the radius of the incircle of
∆ and we only need to show the upper bound of the inradius for ideal
triangles. On the other hand, any ideal triangle is isometric to the
ideal triangle ∆0 with its vertices at −1, 1, and ∞. Recall that hyper-
bolic circles in H2 have the shape of Euclidean circles. The hyperbolic
incircle of the ideal triangle ∆0 is the blue circle in Figure 19. Note
that this blue circle is invariant under Euclidean reflection along the
imaginary axis which happens to be a hyperbolic isometry. Therefore,
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the hyperbolic centre of this incircle lies on the imaginary axis and the
vertical Euclidean line segment rfom u = i to 3i is a geodesic diameter
of the incircle. We have

dH2(i, 3i) = ln
4 + 2

4− 2
= ln 3,

and the hyperbolic radius of this incircle is, therefore, r = 1
2
ln 3.

Now we use this fact to prove that (H2, dH2) is Gromov-hyperbolic.
As a consequence of = 1

2
ln 3, we have

dH2(u, v) = 2r = ln 3

for the points u, v ∈ H2 in Figure 19. Note that the bi-infinite sides
of the triangle ∆0 containing u and v are asymptotic with common
end-point 1 ∈ ∂H2 and since u, v both lie on a horocycle centered at 1,
the distance between the geodesic rays from u = i to 1 ∈ ∂H2 and from
v = 1+2i to 1 ∈ ∂H2 is bounded above by dH2(u, v) = ln 3. This shows
that the side of the triangle ∆0 with end-points −1, 1 is contained in
the union of the δ-tubes around the other two sides of ∆0 for δ = ln 3.
This shows that H2 is (ln 3)-hyperbolic. In fact, it can be shown with
more work that the optimal δ-value for H2 is ln(1 +

√
2).

The main difference between R2 with Euclidean metric and (H2, dH2)
is that the first space has curvature zero and the second one has con-
stant curvature −1. Therefore, we can consider δ-hyperbolicity as a
kind of a global negative curvature property with the understanding
that the smaller the constant δ > 0 the more negatively curved is the
given metric space.
Note, however, that every bounded metric space (X, d) is Gromov

hyperbolic. This means that Gromov hyperbolicity is an asymptotic
property of the whole space and not a local curvature concept.

4.2. Quasi-geodesics and quasi-isometries.

Definition 4.9. Let (X1, d1) and (X2, d2) be two metric spaces and
λ ≥ 1 and K ≥ 0. A map f : X1 → X2 is called a (λ,K)-quasi-
isometry if we have for any pair x, y ∈ X1,

(15)
1

λ
d1(x, y)−K ≤ d2(f(x), f(y)) ≤ λd1(x, y) +K.

We call a map f : X1 → X2 a quasi-isometry if there exist λ,K such
that f is a (λ,K)-quasi-isometry. If f : X1 → X2 is a (λ, 0)-quasi-
isometry for some λ, then we call f a quasi-isometry in the strong
sense.
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Note that there are no further conditions on f other than (15) to be
a quasi-isometry. In particular, we do not require f to be continuous
or surjective or almost surjective in some specific sense. Moreover, a
map f : X1 → X2 is quasi-isometric in the strong sense if and only if
f is globally bi-Lipschitz.

Problem 4.10. Let Γ be a group with a two different finite sets S1, S2

of generators such that e 6∈ Si and if s ∈ Si then also s−1 ∈ Si for
i ∈ {1, 2}. Show that the map

φ0 : Cay(Γ, S1) → Cay(Γ, S2), φ0(γ) = γ ∀ γ ∈ Γ

is a quasi-isometry in the strong sense.

Definition 4.11. Let G = (V,E) be a connected graph with combina-
torial distance function d : V ×V → N∪{0}. Let a ≤ b be two integers.
We call a map

c : Z ∩ [a, b] → V

a quasi-geodesic if it is a quasi-isometry between (Z ∩ [a, b], d(n,m) =
|n−m|) and (V, d), that is, we have

1

λ
|m− n| −K ≤ d(c(n), c(m)) ≤ λ|m− n|+K

for suitable fixed parameters λ,K and all n,m ∈ Z ∩ [a, b].

The following fundamental result on quasi-ismetries is also called the
Morse Lemma (see [18, Theorem 11.40]). Its proof is more involved and
beyond these lecture notes. Interested readers can consult [6, Theorem
1.3.2] or [10, Théorème 3.1.3] or [4, Theorem III.H.1.7]:

Theorem 4.12 (Stability of quasi-geodesics). Let G = (V,E) be a δ-
hyperbolic graph and λ ≥ 1 and K > 0. Then there exists a constant
R > 0, only depending on δ, λ,K, such that we have the following: any
(λ,K)-quasi-geodesic c : Z ∩ [a, b] → V with x = c(a) and y = c(b)
stays in the R-neighbourhood of any geodesic

c0 : {0, 1, . . . , d(x, y)} → V

with c0(0) = x and c0(d(x, y)) = y, that is, for every k ∈ Z∩ [a, b] there
exists k′ ∈ {0, 1, . . . , d(x, y)} with

d(c(k), c0(k
′)) ≤ R.

The next problem is the main goal of this chapter, namely, that
Gromov hyperbolicity of a finitely generated group does not depend on
the choice of generators.
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Problem 4.13. Let Γ, S1, S2 be as in Exercise 4.10. Show the follow-
ing: If Cay(Γ, S1) is Gromov hyperbolic then Cay(Γ, S2) is also Gromov
hyperbolic. You can use Theorem 4.12 without proof in your arguments.

4.3. Outlook: The Gromov boundary. An important concept as-
sociated to a non-compact Gromov space (X, d) is the Gromov bound-
ary ∂X . Recall that the boundary of the hyperbolic plane H

2, repre-
sented by the upper half space H2 = {z ∈ C2 | Im(z) > 0} with the
distance function (3), was given by ∂H2 = R ∪ {∞}. In the case of
ideal triangles in H2 , their vertices could be understood as points of
∂H2. The Gromov boundary can be viewed as a generalization of this
boundary of the hyperbolic plane to general Gromov hyperbolic spaces.
The first step towards the Gromov boundary of (X, d) is to choose a
reference point o ∈ X and to introduce the so-called Gromov product

(x | y)o =
1

2
(d(x, o) + d(y, o)− d(x, y)).

We then say that a sequence (xn) converges to infinity if

lim
k,l→∞

(xk | xl)o = ∞.

In the case of a bounded Gromov hyperbolic space there are no se-
quences converging to infinity.
There is an equivalence relation on the sequences converging to in-

finity, given as follows: (xn) ∼ (yn) if

lim
k→∞

(xk | yk)o = ∞.

The Gromov boundary ∂X is then defined as the space of equivalence
classes of sequences converging to infinity. It turns out that this con-
struction is independent of the reference point o ∈ X .
In the case of a proper18 geodesic Gromov hyperbolic space, one

can introduce natural topologies on X , ∂X and on the disjoint union
X := X ∪ ∂X such that the topologies of X , ∂X are relative topolo-
gies of X and that X is compact. In the case of the above-mentioned
hyperbolic plane H2, viewed as a Gromov hyperbolic space, the Gro-
mov compactification H2 = H

2 ∪ (R ∪ {0}) carries a topology which
is homeomorphic to a closed unit disk (which coincides with the stan-
dard compactification of the Poincaré unit disk model of the hyperbolic
plane, which we did not introduce). An important result is that the
Gromov boundary is “topologically stable” under quasi-isometries in
the following sense:

18A metric space (X, d) is called proper if for all x ∈ X , R ≥ 0, the closed metric

balls BR(x) := {y ∈ X | d(x, y) ≤ R} are compact.
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Theorem 4.14 (see, e.g., Théorème 3.2.2 in [10]). Let (X1, d1) and
(X2, d2) be two geodesic metric spaces and f : X1 → X2 be a quasi-
isometry. If (X2, d2) is Gromov hyperbolic, then (X1, d1) is also Gro-
mov hyperbolic and the map f induces a natural map

∂f : ∂X1 → ∂X2.

In the particular case that19

sup{d2(x, f(X1)) | x ∈ X2} < ∞,

then ∂f is a homeomorphism.

These boundary structures turn out to be of crucial importance in
the study of asymptotic properties of metric spaces (see, e.g., [6]). With
this brief glimpse into the Gromov boundary, we finish this section on
Gromov hyperbolicity.

5. Summary

The seemingly simple question

“What is curvature?”

gave rise to intensive research over the centuries going far beyond the
boundaries of theoretical mathematics: In the 1820’s, Gauss measured
angles between three mountains (Hohenhagen, Brocken und Inselberg)
using his newly invented heliotrope (see Figure 20 below) in order to
investigate and capture the curvedness of a particular part of Germany
through triangulations. From 1907 to 1915, Einstein developed his
Theory of General Relativity which is based on the fact that the cur-
vature of our universe is directly related to the energy and momentum
of heavy objects like stars and black holes and radiation.
In recent decades it became apparent that curvature notions like

Gaussian (or sectional) curvature and Ricci curvature can be gener-
alised to singular spaces and metric measure spaces. This lead to new
curvature notions, some of which were even of non-local nature. In
the particular case of graphs (with combinatorial distance function)
these new curvature concepts are not only of theoretical interest: for
example, they are relevant to measure connectivity and robustness of
complex and dynamical networks like the human brain or the World
Wide Web.

19In a metric space (X, d) we define d(x,A) for x ∈ X and a subset A ⊂ X by

d(x,A) := inf{d(x, y) | y ∈ A}.
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Figure 20. The Heliotrope of Gauss20

The aim of these lecture notes was to provide some basic insights into
three particular curvature notions on graphs (combinatorial curvature,
Ollivier Ricci curvature and Gromov hyperbolicity) with connections
to various research areas of modern mathematics like Combinatorial or
Geometric Group Theory or the Theory of Optimal Transport.
While curvature has been studied over the centuries, it is fair to say

that the above question with all its ramifications is still far from being
conclusively settled.
We recommend the book [32] to all readers whose interest is raised

and who want to continue studying further aspects of the first two
curvature notions, namely combinatorial curvature and Ollivier Ricci
curvature. In particular, the survey articles [2] and [28] in that book
should be understandable with the background provided by these lec-
ture notes. Recommendable books providing a wealth of information
on metric spaces are, for example, [4] or [5]. Readers interested to learn
more about Geometric Group Theory are encouraged to consult, e.g.,
[15] or the more recent monograph [18]. Special focus on hyperbolic
groups is given the in lecture notes [10], written in French. Readers
who want to learn more about the Sturm and Lott/Villani definition
of Ricci curvature via Optimal Transport Theory might benefit from
looking into the classical monograph [39] or the survey [33].

20Picture taken from https://en.wikipedia.org/wiki/Heliotrope_

(instrument)#/media/File:Gauss’_Heliotrope.jpg
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