
Lecture 5

In the last lecture we introduced quantifiers and discussed negations of

statements containing quantifiers. We also introduced arbitrary unions and

intersections of sets using indices. Today’s lecture is dedicated to Proof Tech-

niques. We will focus on two particular Proof Techniques, namely Indirect
Proof and Induction.

Before we discuss the principle of Indirect Proof, let us start with a bit
of logic:

Here is a very important pitfall: The negation of ”If A then B” is not ”If
A then (not B)”. Let us find out what the negation is:

A B not B If A then B If A then (not B) not(If A then B)
False False True True True False
False True False True True False
True False True False True True
True True False True False False

This shows that the correct negation is ”A and (not B)”. This plays an
important role for some Indirect Proofs.

Indirect Proof: Let A be the statement we like to prove. In the Indirect
Proof, we assume that the negation of A is true and show that this assumption
leads to a contradiction. This shows that ”not A” is false, and therefore A
must be true.

A classical example of an Indirect Proof is Euclid’s proof that there are
infinitely many prime numbers. We assume the opposite, namely, that there
are only finite many prime numbers p1, . . . , pn. Then we conclude that the
number N := p1p2 · · · pn + 1 must contain a prime number different from
p1, . . . , pn. This is a contradiction. Therefore we must have infinitely many
prime numbers.

Example of an Indirect Proof:

Theorem. The sequence x1, x2, x3, . . . , given by

x
n+1 = x2

n
+ 1 ∀ n ≥ 1

does not have a limit for any real initial value x1 ∈ R.
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Indirect Proof: Assume that the theorem is wrong. Then there exists
a real initial value x1 ∈ R such that the sequence x1, x2, . . . has a limit.
Let z = lim

n→∞ x
n
be this limit. The recursion formula guarantees that

all elements x
n
are real, therefore also the limit z must be real. Using the

recursion formula, we conclude that

z = lim
n→∞

x
n
= lim

n→∞

x
n+1 = lim

n→∞

x2

n
+ 1 = z2 + 1.

This shows that z2 − z + 1 = 0, i.e.,

z =
1±

√
3

2
6∈ R.

This is a contradiction. ✷

Another important proof technique is Induction.

Induction: Given a sequence of open statements A(n), indexed by inte-
gers n ≥ n0. The idea of proof goes as follows:

• Start of Induction: Show that A(n0) is true.

• Induction Step: Show that if A(n) is true for an arbitrary integer
n ≥ n0, then A(n+ 1) is also true.

Conclusion: A(n) is true for all n ≥ n0.

Note that induction provides the following:

• A(1) is true by the Start of Induction.

• Applying the Induction Step to A(1), we see that A(2) is true.

• Applying the Induction Step to A(2), we see that A(3) is true.

• Applying the Induction Step to A(3), we see that A(4) is true.

...

Example: We prove the following statement by Induction.

Theorem. Let q 6= 1 and n ∈ N. Then we have

1 + q + q2 + · · ·+ qn−1 =
qn − 1

q − 1
. (1)
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Note that the sum in the theorem is called a geometric series. The
statement A(n) is here that equation (1) holds for a fixed integer n.

Induction Proof:

Start of Induction (n=1): We obviously have

1 =
q − 1

q − 1
,

i.e., (1) holds for n = 1.

Induction Step: Assume (1) holds for some n ∈ N. Then we have

1 + q + q2 + · · ·+ qn−1 + qn =
qn − 1

q − 1
+ qn

=
qn − 1 + qn(q − 1)

q − 1
=

qn+1 + qn − qn − 1

q − 1
=

qn+1 − 1

q − 1
.

This shows that (1) also holds for n+ 1, finishing the Induction Step. ✷

Sometimes the Induction Step is more involved. The following variant
works just as well and is called Strong Induction:

• Start of Induction: Show that A(1), A(2), . . . , A(k) is true.

• Induction Step: Let n ≥ k + 1 be an arbitrary integer. Show that if
A(j) is true for all integers 1 ≤ j ≤ n, then A(n+ 1) is also true.

Conclusion: A(n) is true for all n ∈ N.

Example: We prove the following statement by Strong Induction.

Let x1, x2, . . . be a sequence with x1 = 1, x2 = 3 and

x
n
= x

n−1 + x
n−2 ∀ n ≥ 3.

Then we have

x
n
<

(

7

4

)

n

(2)

for all integers n ∈ N.

The statement A(n) is here that equation (2) holds for a fixed n ∈ N.
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Strong Induction Proof:

Start of Induction (n=1,2): We obviously have

x1 = 1 <
7

4
,

x2 = 3 <

(

7

4

)2

=
49

16
= 3

1

16
.

This shows that A(1) and A(2) are true.

Induction Step: Let n ≥ 2. Assume that A(j) is true for all 1 ≤ j ≤ n.
Then we have

x
n+1 = x

n
+ x

n−1 <

(

7

4

)

n

+

(

7

4

)

n−1

=

(

7

4

)

n−1(

1 +
7

4

)

<

(

7

4

)

n−1(

7

4

)2

=

(

7

4

)

n+1

,

since
(

7

4

)2

=
49

16
= 3

1

16
> 1 +

7

4
= 2

3

4
.

This shows that A(n+ 1) is also true, finishing the Induction Step. ✷
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