Answers to Writing Maths Problems

Question 1 (a) We have the following angles:

We derive the following lengths:

$$
\begin{array}{ll}
|\overline{A E}|=\cos \alpha, & |\overline{E F}|=\sin \alpha, \\
|\overline{A D}|=\cos \alpha \cos \beta, & |\overline{D E}|=\cos \alpha \sin \beta, \\
|\overline{E C}|=\sin \alpha \cos \beta, & |\overline{C F}|=\sin \alpha \sin \beta, \\
|\overline{A B}|=\cos (\alpha+\beta), & |\overline{B F}|=\sin (\alpha+\beta) .
\end{array}
$$

(b) Since opposite sides of a rectangle have the same length, we obtain the addition formulas for the trigonometric functions:

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \sin \beta+\sin \alpha \cos \beta \\
\sin (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta
\end{aligned}
$$

Question 2 Geometrically, three cases have to be distinguished: The first case is if M lies on one of the sides of the triangle $\triangle A B C$ (here we have two cases, M lying on the side $A C$ or on the side $B C$, but these cases are symmetric counterparts of each other), the second case is if M lies inside the triangle $\triangle A B C$, and the third case is if M lies outside the triangle $\triangle A B C$ (here we have again two cases, M lying to the right of the triangle or to the left, but these cases are symmetric counterparts of each other). Useful additional lines are the segments $\overline{M A}, \overline{M B}$ and $\overline{M C}$. Here are the illustrations of cases 2 and 3:

Proof: Let $r>0$ be the radius of the circle. Then we have

$$
\begin{equation*}
r=|\overline{M A}|=|\overline{M B}|=|\overline{M C}| . \tag{1}
\end{equation*}
$$

Let us first consider the first case, assuming without loss of generality that $M \in \overline{A C}$, see the following illustration:

We conclude from (1) that the triangles $\triangle A M B$ and $\triangle B M C$ are isosceles and we have equal base angles (by Fact (2)), i.e.,

$$
\begin{aligned}
& \gamma=\measuredangle M A B=\measuredangle M B A \\
& \beta=\measuredangle M B C=\measuredangle M C B .
\end{aligned}
$$

Since the sum of angles in the triangle $\triangle A B C$ is 180° (see Fact (1)), we conclude in the first case that

$$
\begin{equation*}
2 \gamma=180^{\circ}-2 \beta . \tag{2}
\end{equation*}
$$

Applying the same fact to the triangle $\triangle A M B$, we obtain

$$
\begin{equation*}
2 \gamma=180^{\circ}-\delta \tag{3}
\end{equation*}
$$

Combining (2) and (3), we conclude

$$
\measuredangle A M B=\delta=2 \beta=2 \measuredangle A C B,
$$

finishing the proof in this geometric case.
Now let us use similar arguments for the cases 2 and 3 simultaneously: We conclude from (1) that the triangles $\triangle A M B, \triangle B M C$ and $\triangle C M A$ are isosceles and we have equal base angles (by Fact (2)), i.e.,

$$
\begin{aligned}
& \gamma=\measuredangle M A B=\measuredangle M B A, \\
& \beta=\measuredangle M B C=\measuredangle M C B, \\
& \alpha=\measuredangle M A C=\measuredangle M C A,
\end{aligned}
$$

Since the sum of angles in the triangle $\triangle A B C$ is 180° (see Fact (1)), we conclude in the second case that

$$
\begin{equation*}
2 \gamma=180^{\circ}-2 \alpha-2 \beta, \tag{4}
\end{equation*}
$$

and in the third case

$$
\begin{equation*}
2 \gamma=180^{\circ}+2 \alpha-2 \beta \tag{5}
\end{equation*}
$$

Applying the same fact to the triangle $\triangle A M B$, we obtain in both cases (3) above, again. Combining (4) and (3) in the second case and (5) and (3) in the third case, we conclude in the second case that

$$
\measuredangle A M B=\delta=2(\alpha+\beta)=2 \measuredangle A C B
$$

and in the third case

$$
\measuredangle A M B=\delta=2(\alpha-\beta)=2 \measuredangle A C B
$$

This shows the identity

$$
\measuredangle A M B=2 \measuredangle A C B
$$

in the remaining two geometric cases, finishing the proof.
Remark: Interestingly, it turns out that the very special first case, introduced above, can be used to derive the result also for cases 2 and 3. Here is a short explanation how the proof of the first case can be used to give a proof of case 2: The idea is to introduce the additional point Z as the second intersection point of the line $C M$ with the circle and to look at the triangles $\triangle A Z C$ and $\triangle Z C B$.

The triangles $\triangle A Z C$ and $\triangle Z C B$ represent Case 1 and we can conclude from the above result for case 1 that $\delta_{1}=2 \beta_{1}$ and $\delta_{2}=2 \beta_{2}$. Combining these results shows for the triangle $\triangle A B C$:

$$
\measuredangle A M B=\delta_{1}+\delta_{2}=2\left(\beta_{1}+\beta_{2}\right)=2 \measuredangle A C B .
$$

Similar arguments derive the result for case 3 from case 1.
Question 3 This is the original text:
Definition. Let $q \in \mathbb{R}$. We call

$$
\begin{equation*}
S_{n}(q)=1+q+q^{2}+\cdots+q^{n-1} \tag{*}
\end{equation*}
$$

the geometric series of q of length n.
Theorem. Let $q \neq 1$. Then we have

$$
\begin{equation*}
S_{n}(q)=\frac{q^{n}-1}{q-1} . \tag{ㅁ}
\end{equation*}
$$

Proof. Multiplication of ($*$) with q gives

$$
q S_{n}(q)=q+q^{2}+q^{3}+\cdots+q^{n} .
$$

Subtracting $(*)$ from (\diamond), and observing that most terms cancel out, leads to

$$
q S_{n}(q)-S_{n}(q)=(q-1) S_{n}(q)=q^{n}-1 .
$$

Now, division by $(q-1) \neq 0$ yields (\square), finishing the proof.

Question 4 This is a classical case where a sketch is misleading and does not represent a really occuring situation. In fact, constructing the diagram more carefully leads to the following configuration:

The same arguments show that the triangles $\triangle A B G$ and $\triangle D C G$ are congruent and that, therefore $\gamma+90^{\circ}=\measuredangle A B G=\measuredangle D C G$. Moreover, we also have $\gamma=\measuredangle E B G=\measuredangle E C G$, but this only tells us that

$$
\alpha+2 \gamma+90^{\circ}=360^{\circ},
$$

i.e., $\alpha=270^{\circ}-2 \gamma>90^{\circ}$ since $\gamma<90^{\circ}$, which is no contradiction at all.

Question 5 This is the original text:
We first introduce the notions of r-separating and r-covering sets.
Definition 1. Let $A \subset \mathbb{R}$ be a subset and $r>0$. A finite set $S:=$ $\left\{x_{1}, \ldots, x_{n}\right\} \subset A$ is called r-separating, if the open intervals $\left(x_{i}-r, x_{i}+r\right)$ are pairwise disjoint.

An finite r-separating set $S=\left\{x_{1}, \ldots, x_{n}\right\} \subset A$ is called maximally r separating, if any strictly bigger set $S^{\prime} \subset A$ of finitely many points is no longer r-separating.

Example. Let A be the closed interval $[0,10]$. Then the set $S:=\{0,2,4,6,10\} \subset$ A is 1-separating, but not maximally 1 -separating, since the bigger set $S^{\prime}:=$ $\{0,2,4,6,8,10\} \subset A$ is also 1-separating.

Definition 2. Let $A \subset \mathbb{R}$ be a subset and $r>0$. A finite set $S:=$ $\left\{x_{1}, \ldots, x_{n}\right\} \subset A$ is called r-covering, if the union of the open intervals $\left(x_{i}-r, x_{i}+r\right)$ covers the set A.

Example. Let $B:=\{1 / n \mid n \in \mathbb{N}\}$. Then the finite set $S:=\{1,1 / 2,1 / 4,1 / 8\} \subset$ B is $1 / 8$-covering.

Now we present the main result of this note.
Theorem. Let $A \subset \mathbb{R}$ be a subset and $r>0$. If the finite set $S \subset A$ is a maximally r-separating set, then S is also a $2 r$-covering set.

Proof. Let the finite set $S \subset A$ be given by $\left\{x_{1}, \ldots, x_{n}\right\}$. Assume S would not be $2 r$-covering. Then we could find a point $x \in A$ which is not in the union of the intervals $\left(x_{i}-2 r, x_{i}+2 r\right)$. This would mean that x has distance greater or equal to $2 r$ to all the points x_{i}. Therefore, the strictly bigger set $S^{\prime}:=\left\{x_{1}, \ldots, x_{n}, x\right\} \subset A$ would also be r-separating. This is a contradiction to the assumption that S is maximally r-separating.

