Answers to Writing Maths Problems

Question 1 (a) We have the following angles:

We derive the following lengths:

$ \overline{AE} = \cos \alpha,$	$ \overline{EF} = \sin \alpha,$
$ \overline{AD} = \cos\alpha\cos\beta,$	$ \overline{DE} = \cos\alpha\sin\beta,$
$ \overline{EC} = \sin \alpha \cos \beta,$	$ \overline{CF} = \sin \alpha \sin \beta,$
$ \overline{AB} = \cos(\alpha + \beta),$	$ \overline{BF} = \sin(\alpha + \beta).$

(b) Since opposite sides of a rectangle have the same length, we obtain the *addition formulas for the trigonometric functions*:

$$\cos(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta,$$

$$\sin(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta.$$

Question 2 Geometrically, three cases have to be distinguished: The first case is if M lies on one of the sides of the triangle ΔABC (here we have two cases, M lying on the side AC or on the side BC, but these cases are symmetric counterparts of each other), the second case is if M lies inside the triangle ΔABC , and the third case is if M lies outside the triangle ΔABC (here we have again two cases, M lying to the right of the triangle or to the left, but these cases are symmetric counterparts of each other). Useful additional lines are the segments $\overline{MA}, \overline{MB}$ and \overline{MC} . Here are the illustrations of cases 2 and 3:

Proof: Let r > 0 be the radius of the circle. Then we have

$$r = |\overline{MA}| = |\overline{MB}| = |\overline{MC}|. \tag{1}$$

Let us first consider the first case, assuming without loss of generality that $M \in \overline{AC}$, see the following illustration:

We conclude from (1) that the triangles ΔAMB and ΔBMC are isosceles and we have equal base angles (by Fact (2)), i.e.,

$$\gamma = \measuredangle MAB = \measuredangle MBA, \\ \beta = \measuredangle MBC = \measuredangle MCB.$$

Since the sum of angles in the triangle ΔABC is 180° (see Fact (1)), we conclude in the first case that

$$2\gamma = 180^{\circ} - 2\beta. \tag{2}$$

Applying the same fact to the triangle ΔAMB , we obtain

$$2\gamma = 180^{\circ} - \delta. \tag{3}$$

Combining (2) and (3), we conclude

$$\measuredangle AMB = \delta = 2\beta = 2\measuredangle ACB,$$

finishing the proof in this geometric case.

Now let us use similar arguments for the cases 2 and 3 simultaneously: We conclude from (1) that the triangles ΔAMB , ΔBMC and ΔCMA are isosceles and we have equal base angles (by Fact (2)), i.e.,

$$\gamma = \measuredangle MAB = \measuredangle MBA,$$

$$\beta = \measuredangle MBC = \measuredangle MCB,$$

$$\alpha = \measuredangle MAC = \measuredangle MCA,$$

Since the sum of angles in the triangle ΔABC is 180° (see Fact (1)), we conclude in the second case that

$$2\gamma = 180^{\circ} - 2\alpha - 2\beta,\tag{4}$$

and in the third case

$$2\gamma = 180^\circ + 2\alpha - 2\beta. \tag{5}$$

Applying the same fact to the triangle ΔAMB , we obtain in both cases (3) above, again. Combining (4) and (3) in the second case and (5) and (3) in the third case, we conclude in the second case that

$$\measuredangle AMB = \delta = 2(\alpha + \beta) = 2\measuredangle ACB,$$

and in the third case

$$\measuredangle AMB = \delta = 2(\alpha - \beta) = 2\measuredangle ACB.$$

This shows the identity

$$\measuredangle AMB = 2\measuredangle ACB$$

in the remaining two geometric cases, finishing the proof.

Remark: Interestingly, it turns out that the very special first case, introduced above, can be used to derive the result also for cases 2 and 3. Here is a short explanation how the proof of the first case can be used to give a proof of case 2: The idea is to introduce the additional point Z as the second intersection point of the line CM with the circle and to look at the triangles ΔAZC and ΔZCB .

The triangles ΔAZC and ΔZCB represent Case 1 and we can conclude from the above result for case 1 that $\delta_1 = 2\beta_1$ and $\delta_2 = 2\beta_2$. Combining these results shows for the triangle ΔABC :

$$\measuredangle AMB = \delta_1 + \delta_2 = 2(\beta_1 + \beta_2) = 2\measuredangle ACB.$$

Similar arguments derive the result for case 3 from case 1.

Question 3 This is the original text:

Definition. Let $q \in \mathbb{R}$. We call

$$S_n(q) = 1 + q + q^2 + \dots + q^{n-1} \tag{(*)}$$

the geometric series of q of length n.

Theorem. Let $q \neq 1$. Then we have

$$S_n(q) = \frac{q^n - 1}{q - 1}.$$
 (\Box)

Proof. Multiplication of (*) with q gives

$$qS_n(q) = q + q^2 + q^3 + \dots + q^n.$$
 (\diamondsuit)

Subtracting (*) from (\diamondsuit), and observing that most terms cancel out, leads to

$$qS_n(q) - S_n(q) = (q-1)S_n(q) = q^n - 1$$

Now, division by $(q-1) \neq 0$ yields (\Box) , finishing the proof.

Question 4 This is a classical case where a sketch is misleading and does not represent a really occuring situation. In fact, constructing the diagram more carefully leads to the following configuration:

The same arguments show that the triangles $\triangle ABG$ and $\triangle DCG$ are congruent and that, therefore $\gamma + 90^{\circ} = \measuredangle ABG = \measuredangle DCG$. Moreover, we also have $\gamma = \measuredangle EBG = \measuredangle ECG$, but this only tells us that

$$\alpha + 2\gamma + 90^\circ = 360^\circ,$$

i.e., $\alpha = 270^{\circ} - 2\gamma > 90^{\circ}$ since $\gamma < 90^{\circ}$, which is no contradiction at all.

Question 5 This is the original text:

We first introduce the notions of r-separating and r-covering sets.

Definition 1. Let $A \subset \mathbb{R}$ be a subset and r > 0. A finite set $S := \{x_1, \ldots, x_n\} \subset A$ is called r-separating, if the open intervals $(x_i - r, x_i + r)$ are pairwise disjoint.

An finite r-separating set $S = \{x_1, \ldots, x_n\} \subset A$ is called maximally r-separating, if any strictly bigger set $S' \subset A$ of finitely many points is no longer r-separating.

Example. Let A be the closed interval [0, 10]. Then the set $S := \{0, 2, 4, 6, 10\} \subset A$ is 1-separating, but not maximally 1-separating, since the bigger set $S' := \{0, 2, 4, 6, 8, 10\} \subset A$ is also 1-separating.

Definition 2. Let $A \subset \mathbb{R}$ be a subset and r > 0. A finite set $S := \{x_1, \ldots, x_n\} \subset A$ is called r-covering, if the union of the open intervals $(x_i - r, x_i + r)$ covers the set A.

Example. Let $B := \{1/n \mid n \in \mathbb{N}\}$. Then the finite set $S := \{1, 1/2, 1/4, 1/8\} \subset B$ is 1/8-covering.

Now we present the main result of this note.

Theorem. Let $A \subset \mathbb{R}$ be a subset and r > 0. If the finite set $S \subset A$ is a maximally r-separating set, then S is also a 2r-covering set.

Proof. Let the finite set $S \subset A$ be given by $\{x_1, \ldots, x_n\}$. Assume S would not be 2*r*-covering. Then we could find a point $x \in A$ which is not in the union of the intervals $(x_i - 2r, x_i + 2r)$. This would mean that x has distance greater or equal to 2r to all the points x_i . Therefore, the strictly bigger set $S' := \{x_1, \ldots, x_n, x\} \subset A$ would also be *r*-separating. This is a contradiction to the assumption that S is **maximally** *r*-separating. \Box