Answers to Formulate Mathematical Conditions...

Question 1 Obviously, if $a, b>0$ and $a+b=1$, then all four outer rectangles are of the same shape.

Here is the first, longer, and more involved solution: We deduce the side lengths of R_{2}, R_{3} and R_{4}, assuming they all have area $a b$. This leads to

- R_{2} has side lengths $1-b, \frac{a b}{1-b}$.
- R_{3} has side lengths $\frac{1-b-a b}{1-b}, \frac{a b-a b^{2}}{1-b-a b}$.
- R_{4} has side lengths $\frac{1-b-2 a b+a b^{2}}{1-b-a b}, a b \frac{1-b-a b}{1-b-2 a b+a b^{2}}$.

Since the left hand sides of R_{1} and R_{4} must add up to 1 , we obtain the condition

$$
a b \frac{1-b-a b}{1-b-2 a b+a b^{2}}+a=1 .
$$

Multiplying both sides with $1-b-2 a b+a b^{2}$, we obtain

$$
\begin{gathered}
a b(1-b-a b)+a\left(1-b-2 a b+a b^{2}\right)=1-b-2 a b+a b^{2}, \\
a b-a b^{2}-a^{2} b^{2}+a-a b-2 a^{2} b+a^{2} b^{2}=1-b-2 a b+a b^{2}, \\
a+b-2 a b^{2}-2 a^{2} b+2 a b-1=0, \\
(a+b-1)(1-2 a b)=0 .
\end{gathered}
$$

This shows that we have necessarily $a+b=1$ or $a b=\frac{1}{2}$. The latter cannot be, since then each of the four rectangles would have area $\frac{1}{2}$, adding up to 2 , which would exceed the area of the square with area 1 in which they are contained. Therefore, for geometric reasons, we must have $a+b=1$. Note that this solution is a direct proof!

Here is the second, elegant and very short solution: Assume that $a+b \neq 1$. In the case that $a+b>1$, the horizontal side of R_{2} is strictly smaller than a and the vertical side of R_{2} strictly bigger than b. This implies that the vertical side of R_{3} is strictly smaller than a and the horizontal side of R_{3} is strictly bigger than b. This implies that the horizontal side of R_{4} is strictly smaller than a and the vertical side of R_{4} is strictly bigger than b. But then the vertical side of R_{1} must be strictly smaller than a, which is a contradiction. Assuming $a+b<1$, a similar reasoning leads, again, to a contradiction. This proves $a+b=1$ without a single calculation. Note that this solution is an indirect proof: We start with the negation of the statement and show that this leads to a contradiction!

Question 2 We start with the following three entries $a, b, c \in \mathbb{R}$ of a magic square M and calculate the other entries using the sum conditions:

$$
M=\left(\begin{array}{ccc}
a & b & * \\
c & * & * \\
* & * & *
\end{array}\right) .
$$

Using the sum condition for the first row and to the first column, we obtain

$$
M=\left(\begin{array}{ccc}
a & b & -a-b \\
c & * & * \\
-a-c & * & *
\end{array}\right) .
$$

Using now the sum condition for one of the two diagonals leads to

$$
M=\left(\begin{array}{ccc}
a & b & -a-b \\
c & 2 a+b+c & * \\
-a-c & * & *
\end{array}\right) .
$$

Using now the sum condition for the second row and second column leads to

$$
M=\left(\begin{array}{ccc}
a & b & -a-b \\
c & 2 a+b+c & -2 a-b-2 c \\
-a-c & -2 a-2 b-c & *
\end{array}\right)
$$

The sum condition for the third column or the third row leads to the same final entry, namely $3 a+2 b+2 c$:

$$
M=\left(\begin{array}{ccc}
a & b & -a-b \\
c & 2 a+b+c & -2 a-b-2 c \\
-a-c & -2 a-2 b-c & 3 a+2 b+2 c
\end{array}\right) .
$$

Now, all sum conditions are satisfied, except for the sum along the main diagonal. This leads to the condition

$$
6 a+3 b+3 c=0,
$$

or, equivalently $2 a+b+c=0$. Therefore, the central entry of M must vanish:

$$
M=\left(\begin{array}{ccc}
a & b & -a-b \\
c & 0 & -2 a-b-2 c \\
-a-c & -2 a-2 b-c & 3 a+2 b+2 c
\end{array}\right) .
$$

Now, using again the sum condition for the second row and second column leads to the following simplification

$$
M=\left(\begin{array}{ccc}
a & b & -a-b \\
c & 0 & -c \\
-a-c & -b & 3 a+2 b+2 c
\end{array}\right) .
$$

Finally, using the sum condition for the main diagonal yields

$$
M=\left(\begin{array}{ccc}
a & b & -a-b \\
c & 0 & -c \\
-a-c & -b & -a
\end{array}\right) .
$$

We conclude that every magic square is of this form, under the additional condition $2 a+b+c=0$. This allows us to answer both questions:
(a) The entries of the first row determine uniquely the whole magic square, since they pin down the variables a and b, and therefore also the variable $c=-2 a-b$, and therefore also the whole magic square.
(b) The entries of the second row determine only the value of c and there are infinitely many solutions $a, b \in \mathbb{R}$ for $c=-2 a-b$. One solution is $(a, b)=(0,-c)$, leading to the magic square

$$
M=\left(\begin{array}{ccc}
0 & -c & c \\
c & 0 & -c \\
-c & c & 0
\end{array}\right)
$$

and another solution is $(a, b)=(-c, c)$, leading to the magic square

$$
M=\left(\begin{array}{ccc}
-c & c & 0 \\
c & 0 & -c \\
0 & -c & c
\end{array}\right)
$$

Question 3 Here is an illustration of the configuration with the right radius $r>0$.

We have obviously $\alpha=\frac{2 \pi}{16}=\frac{\pi}{8}$ and

$$
\sin \alpha=\frac{r}{1+r}
$$

i.e.,

$$
r=\frac{\sin \alpha}{1-\sin \alpha} \approx \frac{0.3826834}{0.6173166} \approx 0.6199
$$

