
Answers to Number Problems

Question 1 Let
N = a · 100 + b · 10 + c

with a > b > c. Then

M = c · 100 + b · 10 + a.

Subtracting M from N leads to

N −M = (a− c) · 100 + (c− a),

but we need to take into account that −9 ≤ c−a < 0. So we have to modify
the decimal representation of N −M in the following way

A = N −M = (a− c− 1) · 100 + 9 · 10 + (10 + c− a),

then we have 1 ≤ 10 + c− a ≤ 9 and 0 ≤ a− c− 1 ≤ 8. Then B is given by

B = (10 + c− a) · 100 + 9 · 10 + (a− c− 1),

and

A+B = 9 · 100 + 18 · 10 + 9 = 10 · 100 + 8 · 10 + 9 = 1089.

Question 2 You may ask the question which numbers are possible for
the last piece of paper to carry. The answer is:

The last piece of paper can never carry an odd number. The only possible

numbers are all the even numbers between 0 and 100. For each of these even

numbers, there is a procedure that the last piece ends up with this number.

Here are arguments which lead to this conclusion.

(a) The number of papers in the hat with an odd number is always even.
This this true at the beginning (50 odd numbers 1, 3, 5, . . . , 99) and at
each stage of the process the number of pieces carrying an odd number
remain the same (if the two numbers drawn are not both odd) or drops
by two (if the two numbers drawn are both odd). If there is only
one piece of paper left in the hat, the pieces of paper carrying an odd
number must be zero. This means the last piece of paper must carry
an even number.



(b) It is obvious from the procedure that the papers in the hat can only
carry numbers between 0 and 100.

(c) Here is a procedure that the last piece of paper carries the number 0: In
the first 50 draws you take out the pairs (50, 100), (49, 99), . . . , (1, 51).
After this procedure, there are 50 pieces of paper, all carrying the
number 50. In the next 25 draws you always take out pairs (50, 50),
so that you end up with 25 pieces of paper, all carrying the number
0. This leads necessarily to the situation that the last piece of paper
carries the number 0.

(d) Assume that we have a situation where the number 1 is in the hat and
also four distinct numbers a, a+ 1, b, b+ 1, each with multiplicity one.
We describe a procedure after which these four numbers a, a+1, b, b+1
disappear and all the other numbers in the hat remain the same with
unchanged multiplicities: Draw (1, a + 1) and return a into the hat.
Draw (a, a) and return 0 into the hat. Draw (b, b + 1) and return 1
into the hat. Draw (0, 1) and return 1 into the hat. Now the numbers
a, a+ 1, b, b+ 1 are no longer in the hat.

(e) Now, choose an arbitrary number 2k with k ∈ {1, 2, . . . , 50}. At the
beginning, there is obviously an even number of papers with numbers
above 2k and also an even number of papers with number between 2
and 2k− 1, inclusively. By carrying out repeatedly procedure (d) with
distinct numbers a, a+1, b, b+1 different from 1 and 2k, we can manage
to end up with the four numbers 1, 2, 3, 2k in case 2k ≥ 4 or 1, 2, 3, 4
in case 2k = 2. In the case 2k ≥ 4, you draw (1, 3), (2, 2), (0, 2k) and
end up with 2k. In the ase 2k = 2, you draw (1, 4), (3, 3), (0, 2) and
end up with 2.

Question 3

(a) The prime number 5 has multiplicity 24 in 100! (the only numbers
between 1 and 100, and divisible by 5 are 5, 10, 15, 20, . . . , 100, that is
20 numbers; of these, only 25, 50, 75, 100 are divisible by 52, and none
of these is divisible by 53). Similarly, one derives that the multiplicity
of 2 in 100! is much higher, namely 97 = 50 + 25 + 12 + 6+ 3+ 1. The
largest power k such that 100! is divisible by k, is therefore 24. This is
the number of zero digits at the end.

(b) There are manifold approaches to find good exponents. We start with
a lower estimate on 9!:

2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 = 720 · 7 · 8 · 9 ≥ 5000 · 8 · 9 = 40000 · 9 = 3.6 · 105.



This leads to the lower estimates

10 · 20 · · ·90 · 100 ≥ 3.6 · 1016,

11 · 21 · · ·91 ≥ 3.6 · 1014,
...

19 · 29 · · ·99 ≥ 3.6 · 1014.

Putting everything together and using 3.62 ≥ 10, we obtain

100! ≥ 9! · 3.610 · 1016+9·14 ≥ 3.611 · 105+16+9·14 ≥ 105+5+16+9·14 = 10152.

Next, we derive an upper estimate of 10!:

6! · 7 · 8 · 9 · 10 = 720 · 7 · 8 · 9 · 10 ≤ 5100 · 720 ≤ 3.7 · 106 ≤ 4 · 106.

Moreover, we have

1 · 11 · 21 · · ·91 ≤ 2 · 12 · 22 · · ·92 ≤ 10 · 20 · 30 · · ·100 = (10!) · 1010.

This leads to

100! ≤ ((10!) · 1010)10 = (10!)1010100 ≤ (4 · 106)1010100 = 22010160

= (1024)210160 ≤ 11210164 ≤ 10167.

In fact, we have

100! = 93326215, 4439441526, 8169923885, 6266700490, 7159682643,

8162146859, 2963895217, 5999932299, 1560894146, 3976156518,

2862536979, 2082722375, 8251185210, 9168640000, 0000000000,

0000000000 ≈ 9.33 · 10157.

(c) We have log(100!) =
∑

100

j=1
log(j). Since log is monotone increasing, we

can estimate the sum from below and above by the integrals

∫
100

1

log(x)dx ≤

100∑
j=1

log(j) ≤

∫
101

1

log(x)dx.

Since
∫
log(x)dx = x log(x)− x, we obtain

361.52 ≈ 100 log(100)− 99 ≤ log(100!) ≤ 101 log(101)− 100 ≈ 366.13.


