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The word “Ergodic”

The curious word ergodic was introduced by Boltzmann, and had its
origin in two greek words:

ergon = work or energy

(Perhaps eflecting the fact that ergodic theorists are all hard working?)
and

hodos = path or way

However, Boltzmann’s knowledge of greek etymology may have been less
than perfect ...
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Thus perhaps we should be studying Erchodic Theory?
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Physical Motivation

The original use of the expression “ergodic” relates to Boltzmann’s
ergodic hypothesis for systems of gas particles in a box.

For a large system of interacting particles in a equilibrium, the time
averages are hoped to be close to the ensemble average, i.e., If we have a
measurement (a function f , say) on the phase space M of all possible
configurations then the average over the evolution of the system with
time is equal to the average over all possible configurations.

Of course if there are approximately 1023 (Avogadro’s constant) particles
then the phase space is 6 × 1023 ...
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Particles in a box

Each of the 1023 particles has coordinates (x1, x2, x3) and velocity vectors
(v1, v2, v3) contributing six dimensions to the configuration (phase) space.

The container for the particles.
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Particles in a box

Each of the 1023 particles has coordinates (x1, x2, x3) and velocity vectors
(v1, v2, v3) contributing six dimensions to the configuration (phase) space.

The configuration at time t = 0.

Mark Pollicott Ergodic Theory



Preamble
The plan of the talk

Applications
Propaganda

Meaning of “Ergodic”
Birkhoff ergodic theorem
Geodesic flow on a surface
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Each of the 1023 particles has coordinates (x1, x2, x3) and velocity vectors
(v1, v2, v3) contributing six dimensions to the configuration (phase) space.

The configuration at time t = t1.
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Particles in a box

Each of the 1023 particles has coordinates (x1, x2, x3) and velocity vectors
(v1, v2, v3) contributing six dimensions to the configuration (phase) space.

The configuration at time t = t2.
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Birkhoff ergodic theorem

In a more general setting, we let v denote some initial position
(configuration) in the space M .
We then let φt(v) denote the new position (configuration) after time t.
Clearly

φ0(v) = v (i.e., nothing has moved after time zero); and
φt1+t2(v) = φt1 (φt2(v)) (i.e., the position after time t1 + t2 starting
from v is the same as the position after time t1 after starting from
the position φt2(v) after time t2).

Thus φ : M → M is a flow.
Birkhoff’s Ergodic theorem from 1931 (when it applies) says that for a
typical v ∈ M the orbits are evenly distributed:

1

T

∫ T

0
f (φtv)dt

︸ ︷︷ ︸
average along orbit

→
∫

fdm
︸ ︷︷ ︸

average over space

as T → ∞

where f : M → M , and “typical” means except for a zero measure set of
v (with respect to some appropriate measure m on M).
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Geodesic flow on a surface

Another classical example of a flow is that of the geodesic flow on a
surface. This has a phase space which is only three dimensional and
consists of all tangent vectors to V of unit length.

A two dimensional surface V .
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Geodesic flow on a surface

A more classical example is that of the geodesic flow on a surface. This
has a phase space which is only three dimensional and consists of all
tangent vectors to V of unit length.

A (blue) unit tangent vector v
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Geodesic flow on a surface

A more classical example is that of the geodesic flow on a surface. This
has a phase space which is only three dimensional and consists of all
tangent vectors to V of unit length.

The (red) unit speed geodesic starting at v at time t = 0.
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Geodesic flow on a surface

A more classical example is that of the geodesic flow on a surface. This
has a phase space which is only three dimensional and consists of all
tangent vectors to V of unit length.

The (blue) unit tangent vector tangent to the geodesic at time t1.
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Geodesic flow on a surface

A more classical example is that of the geodesic flow on a surface. This
has a phase space which is only three dimensional and consists of all
tangent vectors to V of unit length.

The (blue) unit tangent vector tangent to the geodesic at time t2.
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Geodesic flow on a surface

A more classical example is that of the geodesic flow on a surface. This
has a phase space which is only three dimensional and consists of all
tangent vectors to V of unit length.

The (blue) unit tangent vector tangent to the geodesic at time t3.
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Negative curvature

We will mainly consider orientable surfaces with negative curvature: For
each x ∈ V

κ(x) := 12 lim
r→0

πr2 − Area(B(x , r))

πr4
< 0

By a theorem of Poincaré the surface V must be a doughnut with
g ≥ 2 holes (i.e., g is the genus); and

By a theorem of Hilbert such surfaces cannot be embedded
isometrically in R3 (so the figures are just impressionistic).

In this case, for φt : M → M :

Hedlund (1936) showed that there exists a dense orbit (i.e,
transitivity); and

Hopf (1939) showed that typical orbits (except for a set of zero
measure) are evenly distributed (i.e., ergodicity).
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The plan

We want to talk about applications of ideas from ergodic theory (and
particularly geodesic flows) to three problems:

1 Geometry (Closed geodesics)

2 Mechanics (Dynamics of linkages)
3 Number Theory (Oppenheim Conjecture and Littlewood Problem)

followed by some propaganda for (Pure) Mathematics at Warwick.
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Counting closed geodesics

If the vector v ∈ M returns to itself under the flow (i.e., φl (v) = v for
the smallest such l > 0) then it corresponds to a closed geodesic γ of
length l = l(γ) on the surface V .

In fact there are a countable infinity of closed geodesics (γn)∞n=1 (one in
each free homotopy class = conjugacy class for the fundamental group).

If we order the geodesics by length 0 < l(γ1) ≤ l(γ2) ≤ l(γ2) → ∞ then
we can ask:

Question: How many closed geodesics there are with length less than T ,
say, and how this behaves as T → ∞?
(Or in terms of orbits for φ: How many closed orbits are there for the
geodesic flow with least period l less than T?)
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Lengths of closed geodesics
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The proceedings of a conference from 1989
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Margulis’ Theorem. There exists a constant h > 0 such that the
number N(T ) of closed geodesics of length at most T grows like ehT

hT as
T → ∞, i.e.,

lim
T→+∞

N(T )

ehT/hT
= 1.

This was first proved for surfaces of constant negative curvature by
Selberg (in 1956) using trace formulae (using representation theory for
SL(2, R) and the Laplacian on V ).

This was proved for surfaces of variable negative curvature by Margulis
(in 1969) using ergodic theory.

An alternative proof, using dynamical zeta functions and ergodic theory,
was given by Parry and P (in 1983).
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There is a close analogy with primes numbers. Consider the primes on
the real line:

(pn) = (2, 3, 5, 7, 11, 13, 17, 19, · · ·)

Primes Number Theorem. The number P(t) of primes less than t

grows like t/ log t, i.e., limt→∞
P(t)

t/ log t = 1

(Then if we set t = ehT then P(t) ∼ ehT

hT as T → +∞).

In particular, the original proof of the Prime Number Theorem using
the Riemann Zeta Function motivates the use of Dynamical Zeta
functions.

The Riemann Hypothesis (or Conjecture) corresponds to better
estimates on the number of primes P(t). It remains unproved,
although an analogue for closed geodesics on surfaces is known
(Selberg-Huber for constant curvature; P.-Sharp for variable
curvature).
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Application to Mechanics: Linkages

Consider a mechanical system consisting of a finite number of rods.
Assume that

Some of the ends are anchored to fixed points in the plane, about
which they pivot;

Some of the ends are connected to other ends, but are not fixed in
the plane;
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Easy example

Consider a linkage consisting of two rods.
The first rod has one end anchored at the origin, say, in the plane, about
which it pivots. The other end moves freely in the plane.

One end of the second rod is attached to the (moving) end of the first
rod, and other end moves freely in the plane.
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Simple linkage

"

"

1

2

The position of the linkage at any time is completely described by two
angles θ1, θ2 ∈ [0, 2π), which each of the arms makes to the horizontal,
say. Thus this space corresponds to a two dimensional torus.
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Triple Linkage (or Three legged spider)

Consider three rods each having one end attached to the vertices of an
equilateral triangle in the plane: (0, 0), (1, 0), ( 1

2 ,
√

3
2 ).

Consider three more rods, each of which has one end attached to the
(free) end of one of the first three rods. Moreover, the other ends of each
of the latter three rods are attached to each other.

Let us assume that the first three legs are relatively short compared with
the other three legs. Then the space of linkage positions is equivalent to
a surface of genus three (i.e., three holed doughnut).
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Hamiltonian Dynamics

In the general case, assume that we put masses on some of the movable
joints (and that there is no friction, the rods have no inertia, etc). In
particular, for any configuration x ∈ V let us place equal masses m on
the movable pivots y1, · · · , yn ∈ R2, say.
The dynamics of motion of the linkage is governed by the usual
Hamiltonian Dynamics. In particular, its is equivalent to that of the
geodesic flow on the embedded surface

V ) x *→ (y1(x), · · · , yn(x)) ∈ R2n.

Aim: Therefore, we would like to change the parameters (lengths of rods)
so that the embedded surface V ⊂ R2n has negative curvature (or close
to it).

In the case of the simple linkage the phase space is a torus, but then by
the Gauss Bonnet Theorem

∫
κdm = 0 ... so there is always “as much

positive curvature as negative curvature”.
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Hunt-Mackay Theorem

The triple linkage is more promising, since the phase space has genus
g = 3 and so by Gauss Bonnet

∫
κdm = −2(g − 1) = −4.

Theorem (Hunt-Mackay). If the first three rods are chosen sufficiently
short and the second set of rods are chosen to have lengths close to 1 the
curvature of phase space will have negative curvature (except possibly on
small islands on positive curvature).

In particular, the associated dynamics will be ergodic (thus typical orbits
are uniformly distributed, etc).

Corollary. The number N(T ) of closed orbits of length less than T grows

like ehT

hT as T → +∞.
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3.1. Indefinite Quadratic forms

Let Q(x1, · · · , xn) be an indefinite quadratic form (n ≥ 3) which is not a
multiple of one with rational coefficients.

For example, Q(x1, x2, x3) = x2
1 + x2

2 −
√

2x2
3 .

Margulis Theorem (Oppenheim Conjecture)

Q(Zn) = {Q(x1, · · · , xn) : x1, · · · , xn ∈ Z} ⊂ R.

is dense in the real line.

The result was conjectured by Oppenheim in his PhD thesis in 1929.
The result was proved by Margulis in 1986 (using the ergodic theory of
flows).
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3.2. The Littlewood conjecture

Let α be an irrational number. By Dirichet’s theorem, there are infinitely
many qn ∈ Z such that

‖qnα‖ := inf{|p − qnα| : p ∈ Z} ≤ 1

qn
→ 0

Littlewood Conjecture (from 1930) : Given two irrationals α, β we can
choose qn such that

qn‖qnα‖‖qnβ‖ → 0 (1)

The conjecture hasn’t been fully solved. However ...

Einseidler-Katok-Lindenstrauss Theorem (from 2006): Property (1)
holds, except possibly on a very small set of (α, β) (of zero Hausdorrf
Dimension).
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Ergodic Theory

Both of the previous theorems can be proved by reformulating them in
terms of the properties of suitable flows on homogeneous spaces. These
are generalizations (sort of ...) of the algebraic formulation of geodesic
flows:

Let SL(2, R) be 2 × 2 matrices of determinant one;

Let gt =
(

et/2 0
0 e−t/2

)
∈ SL(2, R) for t ∈ R; and

Let Γ ⊂ SL(2, R) be a discrete group with Vol(Γ\SL(2, R)) < +∞.

The flow φt : Γ\SL(2, R) → Γ\SL(2, R) defined by φt(Γg) = Γggt is an
algebraic version of the geodesic flow on a surface of constant negative
curvature.
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Being a PhD student ... at Warwick

Usually EPSRC funded students at Warwick have a grant for 3.5 years.
Many students follow the traditional PhD plan:

First year High Level Courses and/or Dissertation paving the way to
a research programme.

Second/Third (and Fourth) year: Original research guided by a
supervisor, leading to a PhD thesis.

What should a student expect from a PhD?

Developing ability to carry out independent, original research in
mathematics.

A broad knowledge of a branch of mathematics, encompassing, but
significantly broader than, the area of their PhD thesis.

Developing the ability to communicate the breadth and depth of
their knowledge effectively to others.
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Why choose Warwick?

The Mathematics Department has strength in a large number of
research areas, including: Algebra, Analysis, Geometry, Dynamical
Systems, Number Theory, Probability and Stochastic Processes,
Topology, Continuum Mechanics, Computational Mathematics and
Mathematical Biology, etc.

The number of permanent full time academic staff is 62.

The number of post doctoral researchers is approximately 25
(EPSRC, Marie Curie EU fellows,etc. ).

Warwick has the largest Doctoral Training Account (i.e., PhD
grants) in the UK.

We have a Taught Course Centre jointly with Oxford, Imperial, Bath
and Bristol.
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Mathematics Research Centre

Research at Warwick is coordinated by the Mathematics Research Centre:

Annual symposium: Concentrating on topical research.

Last 7 years: 113 workshops;

more than 2750 individual talks and seminars; and

hosted at least 3600 international visitors.

The Department is a EU-Marie Curie training site in three areas
(Algebraic Geometry, Dynamical Systems and Stochastic Analysis).

Three Doctoral Training Centres (Complexity Sciences, Systems
Biology, and Molecular Organisation and Assembly of Cells)

The number of graduate students over 100 (including over 70 PhD
students).

Mark Pollicott Ergodic Theory



Preamble
The plan of the talk

Applications
Propaganda

Beauty pageants for universities: RAE2008

.
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