
Research in Mathematical Analysis – Some
Concrete Directions

Anthony Carbery

School of Mathematics
University of Edinburgh

Prospects in Mathematics, Durham, 9th January 2009

Anthony Carbery (U. of Edinburgh) 1 / 41



Outline

Outline

1 Overview

2 Fourier Analysis
A case study – the restriction of the Fourier Transform

3 PDEs

4 Geometric Measure Theory and Combinatorics in Fourier Analysis
A case study – Kakeya sets
A case study – Anti-Kakeya sets

5 Number Theory

6 Conclusion

7 Further reading and other thoughts

Anthony Carbery (U. of Edinburgh) 2 / 41



Outline

Outline

1 Overview

2 Fourier Analysis
A case study – the restriction of the Fourier Transform

3 PDEs

4 Geometric Measure Theory and Combinatorics in Fourier Analysis
A case study – Kakeya sets
A case study – Anti-Kakeya sets

5 Number Theory

6 Conclusion

7 Further reading and other thoughts

Anthony Carbery (U. of Edinburgh) 2 / 41



Outline

Outline

1 Overview

2 Fourier Analysis
A case study – the restriction of the Fourier Transform

3 PDEs

4 Geometric Measure Theory and Combinatorics in Fourier Analysis
A case study – Kakeya sets
A case study – Anti-Kakeya sets

5 Number Theory

6 Conclusion

7 Further reading and other thoughts

Anthony Carbery (U. of Edinburgh) 2 / 41



Outline

Outline

1 Overview

2 Fourier Analysis
A case study – the restriction of the Fourier Transform

3 PDEs

4 Geometric Measure Theory and Combinatorics in Fourier Analysis
A case study – Kakeya sets
A case study – Anti-Kakeya sets

5 Number Theory

6 Conclusion

7 Further reading and other thoughts

Anthony Carbery (U. of Edinburgh) 2 / 41



Outline

Outline

1 Overview

2 Fourier Analysis
A case study – the restriction of the Fourier Transform

3 PDEs

4 Geometric Measure Theory and Combinatorics in Fourier Analysis
A case study – Kakeya sets
A case study – Anti-Kakeya sets

5 Number Theory

6 Conclusion

7 Further reading and other thoughts

Anthony Carbery (U. of Edinburgh) 2 / 41



Outline

Outline

1 Overview

2 Fourier Analysis
A case study – the restriction of the Fourier Transform

3 PDEs

4 Geometric Measure Theory and Combinatorics in Fourier Analysis
A case study – Kakeya sets
A case study – Anti-Kakeya sets

5 Number Theory

6 Conclusion

7 Further reading and other thoughts

Anthony Carbery (U. of Edinburgh) 2 / 41



Outline

Outline

1 Overview

2 Fourier Analysis
A case study – the restriction of the Fourier Transform

3 PDEs

4 Geometric Measure Theory and Combinatorics in Fourier Analysis
A case study – Kakeya sets
A case study – Anti-Kakeya sets

5 Number Theory

6 Conclusion

7 Further reading and other thoughts

Anthony Carbery (U. of Edinburgh) 2 / 41



Overview

Outline

1 Overview

2 Fourier Analysis
A case study – the restriction of the Fourier Transform

3 PDEs

4 Geometric Measure Theory and Combinatorics in Fourier Analysis
A case study – Kakeya sets
A case study – Anti-Kakeya sets

5 Number Theory

6 Conclusion

7 Further reading and other thoughts

Anthony Carbery (U. of Edinburgh) 3 / 41



Overview

Undergraduate analysis

You’ll have done some courses in analysis as an undergraduate –

Metric spaces (incl. contraction mapping theorem)

Introduction to linear analysis (Hilbert spaces, linear operators,
duality etc.; possibly a bit of spectral theory)

Complex variables

(probably) Real variables – Lebesgue integration and/or measure
theory; Lp-spaces; probabilistic analysis?

(possibly) Functional analysis (Normed and Banach spaces, linear
operators, Baire category thm, UBT, CGT, OMT etc.; possibly
some Banach Algebras)

Elements of Fourier Analysis (possibly as part of another course)
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Introduction to linear analysis (Hilbert spaces, linear operators,
duality etc.; possibly a bit of spectral theory)

Complex variables

(probably) Real variables – Lebesgue integration and/or measure
theory; Lp-spaces; probabilistic analysis?

(possibly) Functional analysis (Normed and Banach spaces, linear
operators, Baire category thm, UBT, CGT, OMT etc.; possibly
some Banach Algebras)

Elements of Fourier Analysis (possibly as part of another course)

and you may or may not have covered some material in the area of
PDEs – e.g. Laplace’s equation, wave equation – most likely as part of
a “methods” course in applied maths.
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What’s next?

You are interested in doing a PhD in some area of analysis. How to
choose?
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You are interested in doing a PhD in some area of analysis. How to
choose?

Some questions to ask yourself:

What style of analysis do I prefer – concrete or abstract, or a bit of
both?

Which areas of modern analysis research suit my natural instincts?

Which areas of analysis are in a good state of health and are well
interwoven in the mesh of greater mathematical activity?

To answer the last two you’ll need to know a bit about what are the
currently active areas of research in analysis in the UK and
internationally.

DISCLAIMER: The remarks I’ll make on this issue are personal views.
I’ll restrict myself to “Pure” Analysis – including PDE – and I’ll not
discuss Applied Analysis at all.
Anthony Carbery (U. of Edinburgh) 5 / 41



Overview

Different Styles of Mathematical Analysis

“Abstract” directions – areas in which the objects of analysis such
as Banach spaces, Hilbert spaces and classes of operators acting
on them are studied in their own right and for their own sake.
Typical starting point: “Let X be a Banach space.....”; the aim is to
understand the internal structure of such objects. Some areas of
current activity : C∗-algebras, operator algebras, operator spaces;
Banach algebras. (The operator algebras group of areas has
good connections with Mathematical Physics.)

“Mixed” directions – concrete situations where abstract methods
are prominent; abstract settings where the analysis is modelled on
a previously understood concrete situation – e.g. ergodic theory
(shift operators) & dynamical systems; operator theory; “local”
theory of Banach spaces – the study of Rn as a Banach space
with particular attention to dependence on n; probabalistic
methods.
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Overview

Different Styles, cont’d

“Concrete” directions: e.g. Real Variables: geometric measure
theory, Fourier analysis, PDE; Complex analysis.

This “classification” into abstract, concrete and mixed is very rough
and ready and there are no firm boundaries.

For the rest of the talk I’ll concentrate on the Real Variables theme
within “concrete” directions, beginning with some discussion of some
of the ideas currently important in Fourier Analysis, and then we’ll see
how they link in with other areas.
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Fourier Analysis

Fourier Analysis and its relations

We’ll look at a few examples of research topics in Fourier Analysis that
the Edinburgh group has recently been involved in, and I’ll attempt to
show how these relate to other areas of analysis and mathematics
more widely such as

Geometric measure theory

PDEs

Combinatorics

Number theory

Geometry (especially affine differential geometry)
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Fourier Analysis

Fourier Analysis and its relations

We’ll look at a few examples of research topics in Fourier Analysis that
the Edinburgh group has recently been involved in, and I’ll attempt to
show how these relate to other areas of analysis and mathematics
more widely such as

Geometric measure theory

PDEs

Combinatorics

Number theory

Geometry (especially affine differential geometry)

The theme throughout is the interplay between specific operators and
geometrical considerations, sometimes based on symmetry, and how
this interplay is measured using specific spaces adapted to the
geometry at hand. Functional analysis and measure theory provide the
language for this discussion.

Anthony Carbery (U. of Edinburgh) 9 / 41



Fourier Analysis

Fourier Analysis – basics

For f ∈ L1(Rn) we define its Fourier transform by

(F f )(ξ) = f̂ (ξ) =

∫
Rn

f (x)e−2πix ·ξdx .

Then we have

F : L1(Rn) → C0(Rn) (with constant 1)

F extends to an isometric isomorphism of L2(Rn) and satisfies
Parseval’s identity∫

f̂ ĝ =

∫
f g for all f , g ∈ L2(Rn)

Interpolating, F : Lp(Rn) → Lq(Rn) if 1 ≤ p ≤ 2 and 1/p + 1/q = 1
with constant at most 1 (Hausdorff-Young)̂f ∗ g = f̂ ĝ for all suitable f , g

∂̂f/∂xj(ξ) = 2πiξj f̂ (ξ) – smoothness of f implies decay of its
Fourier transform
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Fourier Analysis A case study – the restriction of the Fourier Transform

The restriction paradox

In particular, if f ∈ Lp with p a little bit larger than 1, all we can expect
(via the Hausdorff-Young result) is for its Fourier transform to lie in Lq

where 1/p + 1/q = 1, and thus f̂ is defined in principle only almost
everywhere on Rn, not genuinely pointwise.

Anthony Carbery (U. of Edinburgh) 12 / 41
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The restriction paradox

In particular, if f ∈ Lp with p a little bit larger than 1, all we can expect
(via the Hausdorff-Young result) is for its Fourier transform to lie in Lq

where 1/p + 1/q = 1, and thus f̂ is defined in principle only almost
everywhere on Rn, not genuinely pointwise.

For a general function g ∈ Lq(Rn) we can alter it arbitrarily on a set of
measure zero without changing it as a member of Lq, and so the idea
of discussing g restricted to a set of measure zero makes no sense at
all.

Nevertheless we are about to see that it makes perfectly good sense
to talk about f̂ restricted to a sphere.
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Fourier Analysis A case study – the restriction of the Fourier Transform

Proof of restriction

To see this, we need two facts:
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To see this, we need two facts:

Fact 1: Young’s convolution inequality: if h ∈ Lp, k ∈ Lr and
1/q = 1/p + 1/r − 1, then ‖h ∗ k‖q ≤ ‖h‖p‖k‖r .

Fact 2: If we define Lebesgue measure σ on Sn−1 in the obvious way,
then |σ̂(ξ)| ≤ C/(1 + |ξ|)(n−1)/2, implying σ̂ ∈ Lr (Rn) for r > 2n/(n− 1).

Then we simply calculate:

∫
Sn−1

|̂f (x)|2dσ(x) =

∫
f̂ f̂ dσ

=

∫
f f ∗ σ∨ ≤ ‖f‖p‖f ∗ σ∨‖q ≤ C‖f‖2

p

if p and r are related by 1/p + 1/q = 1, 1/q = 1/p + 1/r − 1 and
r > 2n/(n − 1). Unravelling, this boils down to 1 ≤ p < 4n/(3n + 1),
and so for p in this range, f̂ exists as a member of L2(Sn−1).
Anthony Carbery (U. of Edinburgh) 13 / 41



Fourier Analysis A case study – the restriction of the Fourier Transform

Features of argument

Note the following features of the argument:

Higher-dimensional phenomenon: 1 ≤ p < 4n/(3n + 1) is only
nontrivial when n > 1.

Spaces adapted to the geometry – in this case L2(Sn−1).

Decay of σ̂ reflects curvature of Sn−1 – if we replace the sphere
by a compact piece of hyperplane, the corresponding Fourier
transform has no decay normal to the hyperplane and is thus in no
Lr (Rn) space with r < ∞.

There is no restriction phenomenon for hyperplanes – if there
were, testing on functions of product form would lead to the
Fourier transform of functions in Lp(R1) being bounded – false.
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Features of argument

Note the following features of the argument:

Higher-dimensional phenomenon: 1 ≤ p < 4n/(3n + 1) is only
nontrivial when n > 1.

Spaces adapted to the geometry – in this case L2(Sn−1).

Decay of σ̂ reflects curvature of Sn−1 – if we replace the sphere
by a compact piece of hyperplane, the corresponding Fourier
transform has no decay normal to the hyperplane and is thus in no
Lr (Rn) space with r < ∞.

There is no restriction phenomenon for hyperplanes – if there
were, testing on functions of product form would lead to the
Fourier transform of functions in Lp(R1) being bounded – false.

So we see the following general paradigm emerging:
Curvature of a surface =⇒ decay of Fourier transform of surface
measure =⇒ boundedness of operators on spaces adapted to the
geometry of the surface.
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Fourier Analysis A case study – the restriction of the Fourier Transform

As with any really good piece of mathematics, the argument raises
more questions than it answers:

Is this the “best” result of its kind? Is the range
1 ≤ p < 4n/(3n + 1) sharp for the target space L2(Sn−1)?

What about results for the target space Lq(Sn−1) where q 6= 2?
What are the possible values of p and q for such an inequality to
hold? (The “restriction problem” for the Fourier transform.)

What about sharp constants and extremals for such inequalities?

What about other hypersurfaces and more generally surfaces of
higher codimension?

“Best” rates of decay for Fourier transforms of measures
supported on curved submanifolds of Rn?

Given a curved submanifold, in what precise way does its
“curvature” affect matters? Is there an “optimal” choice of
measure to put on it to make things work well?
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And as with any really good piece of mathematics, it turns out to have
links and implications well beyond its initial confines into broader
mathematical analysis and beyond.....

Example (Jim Wright and co-authors) A new affine isoperimetric
inequality for the class of polynomial curves in Rn.

Let Γ : I → Rn be a curve all of whose components are polynomial.
The total affine curvature of Γ is the quantity

A(Γ) =

∫
I
det
(
Γ′(t), Γ′′(t), . . . , Γ(n)(t)

)2/n(n+1)
dt .

Then there is a constant C depending only on the degree of Γ and the
dimension n so that

A(Γ) ≤ C vol (cvx{Γ(t) : t ∈ I})2/n(n+1) .
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Let Γ : I → Rn be a curve all of whose components are polynomial.
The total affine curvature of Γ is the quantity

A(Γ) =

∫
I
det
(
Γ′(t), Γ′′(t), . . . , Γ(n)(t)

)2/n(n+1)
dt .

Then there is a constant C depending only on the degree of Γ and the
dimension n so that

A(Γ) ≤ C vol (cvx{Γ(t) : t ∈ I})2/n(n+1) .

Again, more questions arise: What about non-polynomial curves?
What about extremals and best constants? What about
higher-dimensional surfaces?
Anthony Carbery (U. of Edinburgh) 16 / 41
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PDEs

PDEs in Pure Maths

A lot of mathematics undergraduates don’t realise that a great deal of
PDE research activity is much more “pure” mathematical than applied.
This sort of rigorous PDE research falls square under the heading of
“concrete directions in analysis”.
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PDE methods as an undergraduate, what is important is a good
background in the sort of analysis we’ve already been talking about –
metric spaces, linear analysis, real variables, Fourier Analysis – and a
desire to work further in areas which use this sort of mathematics.

Any odd “methodsy” bits can be easily picked up as you go along.
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PDEs in Pure Maths, cont’d

Typically, the issues are the theoretical issues of existence and
uniqueness (and perhaps well-posedness i.e. good sensitivity to small
changes in initial data) for classes of linear and nonlinear PDE (which
do admittedly arise in real life).
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uniqueness (and perhaps well-posedness i.e. good sensitivity to small
changes in initial data) for classes of linear and nonlinear PDE (which
do admittedly arise in real life).

The main questions which arise become, often, questions of
boundedness (or continuity) of certain specific linear or nonlinear
operators on certain specific spaces adapted to the problems at hand.

There is a great deal of investment (both money and people) in this
area curently in the UK – average academic job prospects for a good
PhD graduate in theoretical PDE are somewhat better than those in
maths more generally.
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PDEs

Laplace’s equation

Example 1. Laplace’s equation on “rough” domains. Let G ⊆ Rn

be a domain whose boundary is not presumed to be smooth. So it can
have edges, corners, even possibly a fractal-like structure. For many
reasons it’s important to understand the equation

4u = 0 on G

with boundary data f ∈ Lp(∂G) for some 1 < p < ∞.
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be a domain whose boundary is not presumed to be smooth. So it can
have edges, corners, even possibly a fractal-like structure. For many
reasons it’s important to understand the equation

4u = 0 on G

with boundary data f ∈ Lp(∂G) for some 1 < p < ∞.

When G is the unit ball or the upper-half-space [with the extra condition
that u vanish at ∞ thrown in], this is classical Fourier analysis, and the
unique solution is obtained by integrating f against the Poisson kernel.

Even in this case, it is not immediately clear in what sense the solution
u(x) converges to the boundary data f as x moves towards the
boundary as f is only defined almost everywhere. To handle this we
need “maximal” functions.
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PDEs

Laplace’s equation

Example 1. Laplace’s equation on “rough” domains. Let G ⊆ Rn

be a domain whose boundary is not presumed to be smooth. So it can
have edges, corners, even possibly a fractal-like structure. For many
reasons it’s important to understand the equation

4u = 0 on G

with boundary data f ∈ Lp(∂G) for some 1 < p < ∞.

In the general case there are many issues: what is the measure to be
used on ∂G? (There are at least two possible natural candidiates).
Can we “construct” a Poisson kernel and/or a Green’s function? In
what sense does the resulting Poisson integral actually solve the
problem? Are solutions unique? Do we get almost-everywhere
convergence of the solution back to the boundary data?

Martin Dindos and his group work on questions like these.....
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PDEs

NLS

Example 2. Nonlinear Schr ödinger equation.

The linear Schrödinger equation for (x , t) ∈ Rn × R is

4u = i∂u/∂t

with initial data u(x , 0) = f (x).
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The linear Schrödinger equation for (x , t) ∈ Rn × R is

4u = i∂u/∂t

with initial data u(x , 0) = f (x).

We can (in principle) write down the solution to this equation:

u(x , t) = f ∗ Kt(x) where Kt(x) = t−n/2e2πi|x |2/t .

The nonlinear Schrödinger equation introduces a nonlinear function
h(u) (which we may take to be essentially a monomial) and asks to
solve

4u − i∂u/∂t = h(u), with u(x , 0) = f .
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PDEs

NLS, cont’d

Typically, the analysis of NLS falls into two parts:

Finding a complete metric spaces of functions and a map between
them so that the solution is a fixed point of this map – nonlinear
analysis

Showing that the map is actually a contraction – linear analysis
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Typically, the analysis of NLS falls into two parts:

Finding a complete metric spaces of functions and a map between
them so that the solution is a fixed point of this map – nonlinear
analysis

Showing that the map is actually a contraction – linear analysis

The latter is carried out by understanding the solution operator
f 7→ f ∗ Kt(x) to the linear problem very well. This is a matter of Fourier
Analysis.

Questions like this are investigated by Nikolaos Bournaveas and Pieter
Blue.
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PDEs

NLS and restriction

Amazing link: the Schrödinger solution operator

f 7→ u(x , t) = f ∗ Kt(x) := St f (x)

is PRECISELY the adjoint of the restriction operator for the paraboloid
applied to f̂ .
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Amazing link: the Schrödinger solution operator

f 7→ u(x , t) = f ∗ Kt(x) := St f (x)

is PRECISELY the adjoint of the restriction operator for the paraboloid
applied to f̂ .

That is, if we define R to be the restriction map taking functions on
Rn+1 to functions on Rn given by

(Rg)(x) = ĝ(x , |x |2/2)

then
St f (x) = R∗ f̂ (x , t).

This means that all of the theory developed for the (Fourier Analytic)
restriction phenomenon is immediately applicable to problems in
nonlinear PDE! In the PDE literature these are called “Strichartz
estimates”.
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GMT & Combinatorics A case study – Kakeya sets

Kakeya sets

A Kakeya or Besicovitch set is a set E ⊆ Rn which contains at least
one unit line segment `ω in each direction ω ∈ Sn−1.
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Kakeya sets

A Kakeya or Besicovitch set is a set E ⊆ Rn which contains at least
one unit line segment `ω in each direction ω ∈ Sn−1. So a Kakeya set
is “large”, and it makes sense to ask how large it must be in terms of its
(possibly fractional) dimension.

Conjecture: Any Kakeya set must have dimension n. (This is only
known to be true when n = 2.)

What does this have to do with Fourier Analysis?

It turns out that if we could completely solve the restriction problem for
the Fourier transform, the conjecture would follow by the following
route:
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GMT & Combinatorics A case study – Kakeya sets

Restriction implies Kakeya

Suppose R : L2n/(n+1)(Rn) → L2n/(n+1)(Sn−1) boundedly. (A slight
lie here.) By duality, R∗ : L2n/(n−1)(Sn−1) → L2n/(n−1)(Rn).

Apply this to a well-chosen family of examples, and then average
over the family, yielding∫

B

(∑
T∈T

αT χT

)n/(n−1)

≤ Cn(log N)N−(n−1)
∑

T

α
n/(n−1)
T

whenever T is a family of rectangles of sides 1/N × 1/N × · · · × 1,
for a large parameter N, with one in each of the essentially Nn−1

different directions.
This implies

| ∪T∈T T |∑
T∈T |T |

≥ Cn

(log N)n−1

which is a quantitiative version of the claim on the dimension of a
Kakeya set.
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GMT & Combinatorics A case study – Kakeya sets

n = 2 and maximal functions

The previous inequality∫
B

(∑
T∈T

αT χT

)n/(n−1)

≤ Cn(log N)N−(n−1)
∑

T

α
n/(n−1)
T

has two noteworthy features:

When n = 2, the exponent n/(n − 1) is just 2, and one can simply
multiply out to prove it, using one’s knowledge of the area of the
intersection of two rectangles, i.e. a parallelogram!

In general, the inequality has a dual form expressed in terms of
maximal functions: let

MN f (x) = sup
x∈T

1
|T |

∫
T

f

where the sup is taken over the family of all 1/N × 1/N × · · · × 1
rectangles T passing through x . Then it’s equivalent via duality to

‖MN f‖n ≤ Cn(log N)(n−1)/n‖f‖n.
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GMT & Combinatorics A case study – Kakeya sets

Higher dimensions?

When n ≥ 3 one cannot simply multiply out. Partial progress has been
made by various authors. Recently, with Bennett and Tao, we
considered a multilinear variant of the main inequality and proved it “up
to end points” using a novel heat-flow method. The main “geometric”
interpretation of our results is as follows:
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made by various authors. Recently, with Bennett and Tao, we
considered a multilinear variant of the main inequality and proved it “up
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to end points” using a novel heat-flow method. The main “geometric”
interpretation of our results is as follows:

Consider a family L of M lines in Rn. Define a joint to be an
intersection of n lines in L lying in no affine hyperplane. We say a joint
is transverse if the parallepiped formed using unit vectors in the
directions of the lines has volume bounded below. Then the number
of transverse joints is bounded by CnMn/(n−1)+.

Last month, Guth and Katz disposed of the word “transverse” and the
“+”. They used totally unrelated methods – topology, algebraic
geometry, cohomology, commutative diagrams, building on work of
Gromov. These have further implications for “pure” Geometric
Measure Theory which have yet to be explored.....
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GMT & Combinatorics A case study – Anti-Kakeya sets

Anti-Kakeya sets

Kakeya sets contain entire line segments in each of a large set of
directions. An Anti-Kakeya set is one which contains only a small
amount of mass in any line or tube. So such sets are small and it’s
natural to ask how “large” such sets may be.
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amount of mass in any line or tube. So such sets are small and it’s
natural to ask how “large” such sets may be.

Not just an idle curiosity – Mizohata–Takeuchi conjecture:

(∗)
∫

Rn
|R∗g(x)|2w(x)dx ≤ Cn sup

T
w(T )

∫
Sn−1

|g|2dσ,

(the sup taken over all doubly infinite tubes of cross-sectional area 1.)

(*) is true if we replace the term sup w(T ) by ‖w‖(n+1)/2 (Restriction).

To test (*) we thus need good examples of w for which

sup
T

w(T ) << ‖w‖(n+1)/2,

i.e. whose mass in any tube is small compared with total mass.
Anthony Carbery (U. of Edinburgh) 31 / 41



GMT & Combinatorics A case study – Anti-Kakeya sets

A Challenge

In this spirit, consider an N × N array of black and white unit squares.
How many squares can be coloured black to that no strip of width 1
meets more than two of them?
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How many squares can be coloured black to that no strip of width 1
meets more than two of them?

It’s not hard to see that one can colour at least cN1/2 squares black.
(In fact, there’s a logarithmic improvement on this.)

But now ask that no strip meet more than 3 of them.

Exercise: Find an example of such with at least cN2/3 coloured black.

The true orders Nα in these and similar problems are unknown.

Anthony Carbery (U. of Edinburgh) 32 / 41



GMT & Combinatorics A case study – Anti-Kakeya sets

Tube-nullity

Closely related is tube-nullity. A set E ⊆ Rn is tube-null if it can be
covered by a collection of tubes the sum of whose cross-sectional
areas is arbitrarily small.
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covered by a collection of tubes the sum of whose cross-sectional
areas is arbitrarily small.

So this is another sort of “smallness” condition: tube-null sets are
always Lebesgue-null; any reasonable set of dimension at most n − 1
is tube-null, but there do exist tube-null sets of full dimension n.

This notion arises in Fourier Analysis when considering
higher-dimensional analogues of Riemann’s localisation theorem
(stating that convergence of a Fourier series at a given point is dictated
entirely by the values of the function near that point).
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So this is another sort of “smallness” condition: tube-null sets are
always Lebesgue-null; any reasonable set of dimension at most n − 1
is tube-null, but there do exist tube-null sets of full dimension n.

Question 1. Do there exist non-tube-null sets of each dimension
greater than n − 1?

Question 2. Is the radial outer 2 quarters Cantor set based on [1,2]
tube-null?

Question 3. Do there exist tube-null Kakeya sets? Is every Kakeya set
tube-null?
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Number Theory

Given the long history of interplay between Fourier Analysis and
Number Theory it’s hardly surprising that this persists to the modern
day. So I’ll just sloganise here:

There are certain conjectures in Number Theory concerning
exponential sums (Montgomery’s conjectures as modified by
Bourgain) which are strictly harder than the restriction problem.

The machinery of the restriction problem plays an important role
in the Green–Tao proof of existence of arbitrarily long arithmetic
progressions in the primes.
There are certain conjectures of Bonami, Garrigos and Seeger
concerning variants of the L2 restriction result which look likely to
have a solution in terms of number-theoretic phenomena such as
the number of representations of integers as sums of three
squares.
Jim Wright is developing a programme of heuristics linking results
for sublevel sets, oscillatory integrals and averaging opertors in
Fourier Analysis to their number-theoretic counterparts.
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Conclusion

In each of the three Fourier Analytic case studies, we’ve seen how a
well-chosen question or a crucial observation leads to an entire
research programme revealing a rich seam of mathematical ideas,
replete with general philosophies, myriad variants and (most
importantly) powerful links with other areas of mathematics. Exactly
the same holds for theoretical PDEs.
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well-chosen question or a crucial observation leads to an entire
research programme revealing a rich seam of mathematical ideas,
replete with general philosophies, myriad variants and (most
importantly) powerful links with other areas of mathematics. Exactly
the same holds for theoretical PDEs.

This (in my opinion) is the hallmark of an area which is exciting and
promising for PhD students with a taste for concrete analysis to go into.
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Further reading and other thoughts

Some places to consider doing a PhD in.....

Fourier Analysis: Edinburgh, Birmingham, Cambridge (esp. additive
combinatorics & “quadratic” Fourier Analysis), Glasgow

Rigorous real-variable PDE: Edinburgh, Heriot-Watt, Warwick, Bath,
Oxford, Cambridge, Imperial

GMT (and associated combinatorics): St Andrews, (Edinburgh),
Warwick, UCL, Open U.

Spectral theory of PDE: KCL, Cardiff, Bristol, UCL, Imperial.

Local theory of Banach spaces and associated probabalistic analysis:
UCL

“Abstract” analysis: Leeds, Newcastle, Queen’s Belfast (Banach
Algebras) Aberdeen, Glasgow, Lancaster (C*-algebras etc.)

THIS LIST IS FAR FROM EXHAUSTIVE!
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Further reading and other thoughts

Further reading and contacts

The following books give an introduction to Fourier Analysis at the PhD
level:

J. Duoandikoetxea, Fourier Analysis (American Math. Soc. Graduate
Studies in Mathematics)

T. Wolff, Lectures on Harmonic Analysis (Amer. Math. Soc. University
Lecture Series)

www.maths.ed.ac.uk/research/show/group/4

email: A.Carbery@ed.ac.uk
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Further reading and other thoughts

Thanks for your attention –

And good luck with your
choices!

I’m happy to talk to any of you
and try to answer any
questions informally
throughout the rest of the
meeting.
Anthony Carbery (U. of Edinburgh) 41 / 41
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