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Abstract. We study a continuous-time stochastic process on strings made of
two types of particles, whose dynamics mimics the behaviour of microtubules
in a living cell; namely, the strings evolve via a competition between (local)
growth/shrinking as well as (global) hydrolysis processes. We show that the
velocity of the string end, which determines the long-term behaviour of the sys-
tem, depends analytically on the growth and shrinking rates. We also identify a
region in the parameter space where the velocity is a strictly monotone function
of the rates. The argument is based on stochastic domination, large deviations
estimates, cluster expansions and semi-martingale techniques.
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1. Introduction

We consider a stochastic model on semi-infinite strings introduced by Antal
et al. [1] as a model of microtubules, which evolve via a competition between
(local) growth/shrinking and (global) hydrolysis. The model was rigorously
studied in [5], where, in particular, its long-term behaviour was described in
terms of velocity. The purpose of the present paper is to study dependence of
the velocity v on the growth (λ+, λ−) and shrinking (μ) rates. We show that the
limiting velocity v analytically depends on these rates in the positive orthant
of R

3
+, and prove that it is strictly monotone in the region λ− ≥ λ+. Notice

that this monotonicity property is not universal; indeed, for some values of the
growth rates in the complementary region λ− < λ+, increasing the shrinking
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rate forces the velocity to change its sign at least three times [4]. This feature is
a dynamical analogue of the so-called re-entrant transition for the Ising model,
observed in [11].

1.1. The model

Informally, the model can be described as follows [1]: we consider semi-
infinite strings made of two types of symbols, ⊕ and � (and containing at most
a finite number of ⊕’s), whose dynamics is as follows:

| · · · · · ·⊕〉 �→ | · · · · · · ⊕ ⊕〉 rate λ+,

| · · · · · ·�〉 �→ | · · · · · · � ⊕〉 rate λ−,

| · · · · · ·�〉 �→ | · · · · · · 〉 rate μ,

| · · · ⊕ · · · 〉 �→ | · · · � · · · 〉 rate 1.

(1.1)

In words, the strings can grow by adding a ⊕ symbol on the right end with
rate λ+ (if the current right end is ⊕) or λ− (if the current right end is �) and
can shrink by removing the extreme � symbol on the right end with rate μ; in
addition, each ⊕ symbol hydrolyses (i.e., irreversibly converts into a � symbol)
with rate 1, independently of all other symbols.

In [5] it has been shown that the long-term behaviour of this stochastic
dynamical system can be described in terms of velocity v. The purpose of this
paper is to study analytic and monotonicity properties of v.

We now formally define the model and fix notations to be used in the re-
mainder of the paper. Let

{⊕,�}
be a two-symbol alphabet, and let S =

∪k≥0

{⊕,�}k denote the collection of all finite strings, including the empty one.
For s ∈ S, we use ‖s‖ to denote the number of ⊕ symbols in s, and write |s|
for the total number of symbols in s (i.e., its length). If s′ = s′k . . . s′1 and
s′′ = s′′l . . . s′′1 are two finite strings in S, we write s′s′′ for the concatenated
string s′k . . . s′1s

′′
l . . . s′′1 of k + l symbols. Further, we call a head any word be-

longing to the set

W = {∅} ∪ {w = ⊕s with s ∈ S} ⊂ S,

so that every non-empty head w is a finite string whose left-most symbol is ⊕.
Of course, every string s ∈ S can be converted into the corresponding (possibly
empty) head,

s �→ w ≡ 〈s〉 ∈ W , (1.2)

by deleting all its � symbols on the left end. It is convenient to decompose

W = W+ ∪W−,

where W+ contains all heads w of the form w = w′⊕ (i.e., ending with a ⊕
symbol), and W− contains all remaining heads (i.e., the empty head ∅ and all
non-empty heads w ending with �, w = w′′�).
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Since every string under consideration contains at most a finite number
of ⊕’s, the state of the system can be described by specifying its head wt =
wk(t) . . . w0(t) and the position xt ∈ Z of its right-most symbol w0(t). The
dynamics, informally described in (1.1) above, turns the process

yt ≡ (xt, wt), t ≥ 0, (1.3)

into a continuous-time Markov process with values in Y ≡ Z × W . One can
show [5] that the component wt on its own is a positive recurrent continuous-
time Markov chain in W ; in particular, P(|wt| < ∞ for all t ≥ 0) = 1. As a
result, starting from any initial condition y0 = (x0, w0) ∈ Y the trajectory of
the process yt is well defined (and remains in Y) for all t ≥ 0 (with probability
one). Without loss of generality we may and often shall assume that yt starts
from the configuration with empty head located at the origin,

y0 = (x0, w0) = (0, ∅). (1.4)

Let λ+, λ− and μ be fixed positive constants. We now formally describe
the dynamics (1.1) of the process yt: for arbitrary non-empty heads w′ ∈ W+,
w′′ ∈ W− and w ∈ W , the attachment, detachment and conversion moves are
defined as

(x, w′) �→ (
x + 1, w′ ⊕ )

, rate λ+ ,
(x, w′′) �→ (

x + 1, w′′ ⊕ )
, rate λ− ,

(x, ∅) �→ (
x + 1,⊕)

, rate λ− ,
(x, w�) �→ (

x − 1, w
)
, rate μ ,

(x, ∅) �→ (
x − 1, ∅

)
, rate μ ,

(x, w) �→ (
x, 〈ŵ〉), rate 1 ,

where 〈ŵ〉 is obtained from w by replacing one of its ⊕ symbols with the � sym-
bol (and then contracting some � symbols on the left, if necessary; recall (1.2)).
Notice that as a result of the last move the number ‖w‖ of ⊕ symbols in w
will decrease by one, ‖〈ŵ〉‖ = ‖w‖ − 1, and, if the left-most ⊕ symbol in w
transforms into �, the resulting head will be shorter, |〈ŵ〉| < |w|, or might even
become empty, 〈ŵ〉 = ∅.

It has been shown in [5] that for any fixed collection of positive rates λ+, λ−

and μ the limit

v = lim
t→∞

xt − x0

t
(1.5)

exists with probability one. Here we study analytic and monotonicity properties
of the limiting velocity v.

1.2. Results

As a function of the positive rates λ+, λ−, and μ, the velocity v = v(λ+, λ−, μ)
has the following properties.
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Theorem 1.1. The velocity v = v(λ+, λ−, μ) is an analytic function of the
rates.

Theorem 1.2. Let λ− ≥ λ+. Then v is a strictly monotone function of the
rates λ+, λ−, and μ, with partial derivatives ∂λ+v > 0, ∂λ−v > 0, and ∂μv < 0.

Remark 1.1. One can show [4] that in the complementary region λ− < λ+ the
velocity v is not everywhere monotone, and, moreover, exhibits an interesting
behaviour when increasing the shrinking rate μ leads to a faster growth (i.e.,
increases the velocity v).

It is interesting to notice that the process wt is a particular case of a random
grammar (see, e.g., [6–8] and references there). Indeed, the first three moves
in (1.1) are of left linear type and the last move there is of context-free type.
Of course, since the process wt is positive recurrent [5], this is a rather simple
case of a random grammar. The emphasis of the present paper is on studying
the velocity (1.5), which itself is a long-term characteristic of the coordinate
component xt, an additive functional of jumps of the process (wt)t≥0.

The remainder of the paper is organised as follows. Theorems 1.1 and 1.2
are respectively proved in Sections 2 and 3. A cluster expansion result used in
the proof of Theorem 1.2 is proved in Appendix 3.2. Our study of perturbations
for continuous-time processes is based upon a variety of discrete and continuous
techniques including large deviations, cluster expansions, coupling and semi-
martingale estimates.

2. Analyticity of the velocity: Proof of Theorem 1.1

The model under consideration has the following renewal property [5]: if
the rates λ+, λ− and μ are fixed, and the dynamics starts from the initial
condition y0 = (0, w), then the Markov process (yt)t≥0 is recurrent in that its
wt component keeps revisiting the state ∅. Moreover, if 0 ≤ τ̃0 < τ̃1 < . . . are
the moments of consecutive returns to the empty-head state, and ỹ� ≡ yτ̃�

=
(x̃�, ∅), then the differences (x̃� − x̃�−1, τ̃� − τ̃�−1), � > 0, are independent and
identically distributed. By the strong law of large numbers, the velocity v of the
active end of the microtubule exists and satisfies v = E (x̃1 − x̃0)/E (τ̃1 − τ̃0) [5,
Cor. 1.1]; of course, for the empty-head initial conditions (1.4) one has x̃0 =
τ̃0 = 0.

Let κ̃1 be the number of jumps until the process yt first returns to the empty-
head state. Fix an arbitrary collection of rates (λ̄+, λ̄−, μ̄) ∈ R

3
+ and choose

δ0 ∈ (0, μ̄). It has been shown in [5, Sect. 2.2] that if E
[
z̄κ̃1 exp{s̄τ̃1}

]
< ∞ for

some z̄ > 1 and s̄ > 0, then also E
[
z̄x̃1 exp{s̄τ̃1}

]
< ∞. Moreover, a careful

inspection of the proof of Proposition A.1 in [5] shows that

lim sup
K→∞

supE
[
zx̃1esτ̃1�{κ̃1 > K}] = 0,
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where the inner supremum is taken over 0 < z < z̄, s < s̄, |λ+ − λ̄+| < δ0,
|λ− − λ̄−| < δ0, |μ − μ̄| < δ0, with possibly smaller δ0 > 0. Since for every
K ≥ 1 the expectation E

[
zx̃1esτ̃1�{κ̃1 ≤ K}] is a finite analytic function of

the rates (λ+, λ−, μ) as well as the parameters z and s in the region described
above, the expectation Φ0(z, s) ≡ E

[
zx̃1esτ̃1

]
is also analytic there. This implies

that the averages

Ex̃1 ≡ d

dz
Φ0(z, s)

∣∣∣
(1,0)

, Eτ̃1 ≡ d

ds
Φ0(z, s)

∣∣∣
(1,0)

are analytic functions for such values of the rates, and thus everywhere in R
3
+.

Finally, as τ̃1 > 0 is a non-degenerate random variable, we deduce that E τ̃1 > 0
for all positive values of rates, and therefore the velocity v = E x̃1/E τ̃1 is an
analytic function of the rates λ+, λ−, and μ in R

3
+.

3. Monotonicity of the velocity: Proof of Theorem 1.2

Here we prove the main result of this note — Theorem 1.2. Our argument
consists of two main steps, and we illustrate the idea in the case of varying λ+,
with the argument for ∂λ−v and ∂μv being similar. Let y′

t = (x′
t, w

′
t) and

y′′
t = (x′′

t , w′′
t ) be two copies of the process with rates (λ′, λ−, μ) and (λ′′, λ−, μ)

respectively, where λ′′ = λ+ + δ and λ′ = λ+ with small δ > 0. First, using
Lemma 3.1 below, we construct a monotone coupling, which preserves the fol-
lowing stochastic order: if y′

0 = (x′
0, ∅) and y′′

0 = (x′′
0 , ∅) with x′

0 ≤ x′′
0 , then

x′
t ≤ x′′

t for most t ≥ 0. We then use large deviation bounds together with the
cluster expansion estimate from Proposition A.1 below to show that, for some
constant c > 0 and all δ > 0 small enough, the inequality

v(λ+ + δ, λ−, μ) − v(λ+, λ−, μ) ≥ cδ > 0 (3.1)

holds with probability one. By analyticity of v, this implies that ∂λ+v > 0 with
probability one. With a bit of extra work, one can even derive an “explicit”
expression for this derivative, see below.

3.1. A coupling lemma

Let y′
t = (x′

t, w
′
t) and y′′

t = (x′′
t , w′′

t ) be two copies of the process yt with
the empty-head initial condition (1.4) and the respective rates (λ′, λ−, μ) and
(λ′′, λ−, μ), where λ′ = λ+ and λ′′ = λ+ + δ with some small δ > 0. We can
think of the process y′′

t as a perturbation of y′
t, by subjecting the latter to an

additional Poisson process of intensity δ > 0 of attempts to attach a ⊕ symbol
on the right end of wt (which will be successful only if wt ∈ W+). Let t0 be the
(random) moment of the first such successful arrival. We then have y′

t ≡ y′′
t for

t ∈ [0, t0) and
y′

t0 = (xt0 , wt0), y′′
t0 = (xt0 + 1, wt0⊕), (3.2)
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with some wt0 ∈ W+. Let 0 ≤ τ ′′
0 < τ ′′

1 < . . . be the consecutive moments when
the process y′′

t enters an empty-head configuration,

yτ ′′
k

= (xτ ′′
k
, ∅).

In what follows we shall see that the main contribution to the left-hand side
of (3.1) comes from those “excursions” [τ ′′

k−1, τ
′′
k ) which contain a single success-

ful ⊕ arrival of the additional Poi(δ) stream. When combined with the cluster
estimate from Proposition A.1 below, this observation can even be used to derive
an “explicit” description of the partial derivative ∂λ+v.

By the strong Markov property, given (3.2), the future behaviour of the
pair of processes (y′

t, y
′′
t )t≥t0 is independent of the past behaviour, t < t0. By

shifting the time origin, we thus can study a single “truncated” excursion for
the pair (y′

t, y
′′
t )t≥0 with initial conditions

y′
0 = (x, w), y′′

0 = (x + 1, w⊕), w ∈ W+. (3.3)

Of course, when studying ∂λ−v or ∂μv one has to respectively consider the initial
conditions

y′
0 = (x, w), y′′

0 = (x + 1, w⊕), w ∈ W−, (3.4)

(with respective rates (λ+, λ′, μ) and (λ+, λ′′, μ), where λ′ = λ−, λ′′ = λ− + δ
for some small δ > 0) or the initial conditions

y′
0 = (x, w), y′′

0 = (x + 1, w�), w ∈ W , (3.5)

(with respective rates (λ+, λ−, μ′) and (λ+, λ−, μ′′), where μ′ = μ + δ, μ′′ = μ
for some small δ > 0).

The key result of this section — Lemma 3.1 below — essentially states that
with any of the three initial conditions listed above, at the moment τ ′′

1 of the
first visit to the empty-state configuration by the process y′′

t we have x′′
τ ′′
1
≥ x′

τ ′′
1
;

moreover, one can show that the expectation of the difference x′′
τ ′′
1
− x′

τ ′′
1

is in
fact positive (so that the estimate (3.1) follows from the ergodic theorem). We
notice that arguments similar to those used in [5] show that τ ′′

1 has exponential
moments in a neighbourhood of the origin; therefore, for δ > 0 very small,
the main contribution to the difference x′′

τ ′′
1
− x′

τ ′′
1

comes from the excursions
having no additional ⊕ arrivals from the Poi(δ) stream. It is thus important to
understand the impact of the initial conditions (3.3)–(3.5) on the dynamics of the
process yt. We do this by constructing a maximal parallel coupling of the pair
(y′

t, y
′′
t ) of two copies of yt with the same set of rates (λ+, λ−, μ) but starting

from the initial conditions of the type (3.3)–(3.5). The corresponding result is
presented in Lemma 3.1 below, but before stating it we need to introduce some
additional notation.
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Every configuration (x, w) ∈ Y, where w = w|w|−1 . . . w1w0, is in one-to-one
correspondence with the related semi-infinite string s̄ = . . . s̄x−2s̄x−1s̄x, namely,

s̄x−k = wk, k = 0, . . . , |w| − 1, and s̄x−k ≡ �, k ≥ |w|.

Of course, every two semi-infinite strings s̄′ and s̄′′ can have only a finite number
of positions for which they differ. For the argument below it is convenient to
allow any two such strings to run “in parallel for as long as they can”, and thus
it is natural to extract their maximal common right-most part. This idea is
formally introduced as follows, see Figure 1 below.

Let s̄′ = . . . s̄′x′−2s̄
′
x′−1s̄

′
x′ ∼ (x′, w′) and s̄′′ = . . . s̄′′x′′−2s̄

′′
x′′−1s̄

′′
x′′ ∼ (x′′, w′′)

be two semi-infinite strings with x′ ≤ x′′. We first define

kr = max
{
k ≥ 0 : k < max(|w′|, |w′′|) and w′

j = w′′
j for all j = 0, . . . , k

}
if the set of j’s under consideration is not empty, and then put

sr = sr
′ = sr

′′ = w′
kr

. . . w′
1w

′
0 ≡ s̄′x′−kr

. . . s̄′x′−1s̄
′
x′ ;

alternatively, we declare kr = −1 and write sr = sr
′ = sr

′′ = ∅. Informally, sr

is the maximal common part of s̄′ and s̄′′ on the right, if they were translated
to end at the same position x ∈ Z (notice that if |w′| < |w′′|, one might have
|w′| < |sr| < |w′′|, i.e., the maximal common part sr of s̄′ and s̄′′ on the
right can be longer than the shorter of the two heads; indeed, if w′ = ∅ and
w′′ = ⊕�, we have sr = �).

We next define

kl = min
{
k > kr : s̄′x′−j = s̄′′x′−j for all j ≥ k

}
,

which always exists as any two semi-infinite strings coincide for all positions far
enough to the left. Let ŝ be the maximal common part of s̄′ and s̄′′ on the left,

ŝ = . . . s̄′x′−kr−2s̄
′
x′−kr−1.

If ‖ŝ‖ > 0, i.e., ŝ contains ⊕ symbols, we apply the contraction operator (1.2) to
extract the shortest sub-head wl = 〈ŝ〉 of ŝ; otherwise ŝ contains no ⊕ symbols,
and we put wl = ∅.

Finally, we define the “central parts” of s̄′ and s̄′′ via

sc
′ = s̄′x′−kr+1 . . . s̄′x′−kl−1 and sc

′′ = s̄′′x′−kr+1 . . . s̄′′x′′−kl−1,

with the tacit assumption that if any of the index intervals above is empty then
the corresponding sc string equals ∅ by definition.

With this construction, the canonical form (1.3) of the semi-infinite string
s̄′ becomes (x′, w′) ≡ (x′, wlsc

′sr), whereas that of s̄′′ becomes (x′′, w′′) ≡
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Figure 1. Parallel decomposition of two semi-infinite strings: symbols connected
with solid lines are identical in both strings, symbols connected with dashed
lines are distinct. If sc

′ is empty but sc
′′ is not, the right-most symbol in sc

′′ is
different from that in wl. If sc

′ = sc
′′ = ∅, we have wl = ∅ and thus sr ≡ w.

(x′′, wlsc
′′sr). When the values x′ and x′′ are not important, we abbreviate this

representation to
[wlsc

′′sr : wlsc
′sr] (3.6)

and drop any of the components which is empty. Notice that the relative shift
x′′ − x′ of these strings can be deduced from (3.6) via x′′ − x′ = |sc

′′| − |sc
′|.

For the strings corresponding to (3.3)–(3.5), one can see that sc
′ = ∅ and sc

′′

is a one-symbol string, |sc
′′| = 1, with sc

′′ = ⊕ in (3.3)–(3.4) and sc
′′ = �

in (3.5). Moreover if w in (3.3) ends with exactly k symbols ⊕, i.e., can be
written as w = ŵ⊕k with ŵ ∈ W−, then

wl = ŵ, sc
′ = ∅, sc

′′ = ⊕, sr = ⊕k;

so that the representation (3.6) becomes [ŵ ⊕ ⊕k : ŵ⊕k], with possibly empty
sub-head ŵ ∈ W−. Similarly, for the configuration described in (3.4) with
w ∈ W−,

wl = w, sc
′ = ∅, sc

′′ = ⊕, sr = ∅,

and (3.6) becomes [w⊕ : w], with possibly empty w ∈ W−. Finally, if the
head w in (3.5) ends with exactly m symbols �, i.e., w = ŵ�m with ŵ ∈ W+,
then

wl = ŵ, sc
′ = ∅, sc

′′ = �, sr = �m,

which is written as [ŵ ��m : ŵ�m] with ŵ ∈ W+, and if w ∈ W+, then

wl = w, sc
′ = ∅, sc

′′ = �, sr = ∅,

and gives [w� : w] with w ∈ W+; of course, the trivial case of w = ∅ in (3.5)
gives just [� : ∅]. Notice that in all these cases we have ‖sc

′′‖ ≤ |sc
′′| = 1.

One can now couple two copies, y′
t and y′′

t , of the process yt with initial
conditions (3.6) in such a way that the common wl-parts and sr-parts perform
identical moves in both processes, which we refer to as the maximal parallel
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coupling. An important feature of this coupling is that if sc
′ = ∅, the struc-

ture (3.6) with sc
′(t) = ∅ is preserved for all future times (though the actual

sub-strings might vary); moreover, the inequality |sc
′′(t)| ≥ |sc

′′| − 1 holds for
all t ≥ 0. We will show below that if sc

′ = ∅, the maximal parallel dynamics
reaches a state of the type [s̃cs̃r : s̃r] with s̃c = �m for some m ≥ 0, i.e., the
coupling event occurs, in which both semi-infinite strings become identical but
shifted by |s̃c| ≥ 0 symbols relative to each other. From that moment onwards,
the maximal parallel dynamics constructed in the proof below will preserve the
shift of y′

t relative to y′′
t .

Lemma 3.1. Let λ− ≥ λ+. For every initial condition of the type [wlscsr :
wlsr] with wl ∈ W and sc, sr ∈ S satisfying ‖sc‖ ≤ 1 and |sc| ≥ 1, there exists
a coupling of y′

t and y′′
t resulting in a coupling event with relative shift of length

at least |sc| − 1 ≥ 0.

Proof. We proceed by induction in ‖wl‖ ≥ 0 and show that the statement of the
lemma holds for all initial conditions [wlscsr : wlsr] with ‖sc‖ ≤ 1 and |sc| > 0.

If ‖wl‖ = 0 (i.e., wl = ∅), we start by considering the following partial case:

wl = sr = ∅, sc = �m⊕, m ≥ 0, (3.7)

i.e., at time t ≥ 0 we have y′
t = (x′,⊕), y′′

t = (x′′, ∅) with x′ − x′′ = |sc| =
m + 1 > 0. Consider four independent exponential random variables

ζ1 ∼ Exp(λ− − λ+), ζ2 ∼ Exp(1), ζ3 ∼ Exp(μ), ζ4 ∼ Exp(λ+)

and put ζ = min(ζ1, ζ2, ζ3, ζ4). Here and below, the distribution Exp(0) describes
non-negative random variables ζ′ which are infinite with probability one (and
thus the event ζ = ζ′ has probability zero). The first transition in the joint
model occurs after time ζ and is as follows:

• If ζ = ζ1, then a ⊕ symbol attaches to the second string,

y′
t+ζ = (x′,⊕), y′′

t+ζ = (x′′ + 1,⊕),

and thus from that moment onwards both processes will run in parallel
with relative shift x′ − x′′ − 1 = |sc| − 1 ≥ 0.

• If ζ = ζ2, then the ⊕ symbol hydrolyses,

y′
t+ζ = (x′, ∅), y′′

t+ζ = (x′′, ∅),

thus finishing the current cycle with relative shift |sc| > 0.

• If ζ = ζ3, then the extreme � symbol leaves the second string,

y′
t+ζ = (x′,⊕), y′′

t+ζ = (x′′ − 1, ∅),

i.e., we revisit the initial condition (3.7) with m ≥ 0 increased by one.
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• If ζ = ζ4, then single ⊕ symbols attach to both strings,

y′
t+ζ = (x′ + 1,⊕⊕), y′′

t+ζ = (x′′ + 1,⊕),

thus giving a canonical pair with

wl = ∅, sc = �m⊕, sr = ⊕.

In the last case, from the moment t + ζ both strings will develop in parallel
until the time τc ∧ τr, where

τc
def= min

{
s ≥ t + ζ : sc(s) = �m+1

}
, τr

def= min
{
s ≥ t + ζ : sr(s) = ∅

}
.

In the first case (i.e., when τc < τr) we arrive at the coupling event [�m+1s̃r : s̃r]
after which the system will develop in parallel (with horizontal shift m+1). On
the other hand, if τr < τc the system revisits the initial configuration [�m⊕ : ∅],
recall (3.7). Since on every visit to a state of the type (3.7) (i.e., ‖wl‖ =
‖sr‖ = 0, ‖sc‖ = 1) the hydrolysis of the only ⊕ symbol occurs with probability
1/(1+μ+λ−), it is immediate to deduce that the coupling event occurs after a
random time with finite exponential moments in a neighbourhood of the origin.

As the argument above also covers the case [scsr : sr] with sr �= ∅, the claim
of the lemma holds for all canonical pairs [wlscsr : wlsr] with wl = ∅ and sc

satisfying ‖sc‖ ≤ 1, |sc| > 0.
We turn now to verifying the inductive step. Suppose that the claim of the

lemma has been proved for all canonical pairs [wlscsr : wlsr] with ‖sc‖ ≤ 1 and
wl ∈ W satisfying ‖wl‖ ≤ k. Starting from the initial conditions

[wlscsr : wlsr] with ‖wl‖ = k + 1, (3.8)

we introduce the following stopping times (notice that the numbers ‖wl(s)‖
and ‖sc(s)‖ of ⊕ symbols in the internal blocks do not increase when sr is not
empty)

τl = min
{
s > t : ‖wl(s)‖ = k

}
,

τc = min
{
s > t : ‖sc(s)‖ = 0

}
,

τr = min
{
s > t : sr(s) = ∅

}
,

and put τ̄ = min(τl, τc, τr). Three cases are possible (τ̄ = τl,τ̄ = τc, and τ̄ = τr),
which will be considered separately.

Case I: if τ = τl, then the claim of the lemma follows from the induction
hypothesis.

Case II: if τ = τc, we arrive at a canonical pair

[wl
′ �m+1 sr

′ : wl
′sr

′] (3.9)
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with some sr
′ �= ∅ and wl

′ ∈ W+ such that ‖wl
′‖ = ‖wl‖ = k + 1 (in fact wl

′ is
just wl with all its � symbols on the right, if any, removed). We now denote:

τ ′
l = min

{
s > τc : ‖wl

′(s)‖ = k
}
, τ ′

r = min
{
s > τc : sr

′(s) = ∅
}
.

If τ ′
l < τ ′

r , the the claim of the lemma follows from the induction hypothesis.
On the other hand, if τ ′

l > τ ′
r , we arrive at a canonical pair of the type

[wl
′�m+1 : wl

′], wl
′ ∈ W+, (3.10)

and investigate the effect of all possible moves out of this configuration. To this
end, consider four independent exponential random variables

ζ1 ∼ Exp(k + 1), ζ2 ∼ Exp(μ), ζ3 ∼ Exp(λ+), ζ4 ∼ Exp(λ− − λ+),

and put ζ = min(ζ1, ζ2, ζ3, ζ4). The first transition in the joint model occurs
after time ζ and is given by

• If ζ = ζ1, then one of the ⊕ symbols in wl
′ hydrolyses, and the result

follows from the induction hypothesis.

• If ζ = ζ2, then the extreme � symbol leaves the longer string. If sc

becomes empty (when m = 0), both strings become identical and we
arrive at the coupling event (with zero shift). Otherwise the configuration
becomes [wl

′�m : wl
′] with wl

′ ∈ W+, i.e., of the type (3.10).

• If ζ = ζ3, then individual ⊕ symbols attach to both strings, so that the
new configuration has heads wl

′ �m+1 ⊕ and wl
′⊕ with wl

′ ∈ W+, i.e.,
we revisit a state of the type (3.8).

• If ζ = ζ4, a ⊕ symbol attaches to the longer string and we arrive at the
configuration with heads wl

′ �m+1 ⊕ and wl
′, i.e.,

[
wl

′′sc
′′sr

′′ : wl
′′sr

′′]
with ‖sr

′′‖ ≥ 1, ‖sc‖ = 1 and ‖wl
′′‖ < ‖wl

′‖, so that the result follows
from the induction hypothesis.

Case III: if τ = τr, we arrive at a canonical pair

[wl
′sc

′ : wl
′] with ‖sc

′‖ = 1, |sc
′| = |sc|. (3.11)

If ‖wl
′‖ < ‖wl‖, the result follows from the induction hypothesis. We thus

consider the case when ‖wl
′‖ = ‖wl‖ (so that wl

′ and wl can only differ by the
number of � symbols on the right end) and observe that the condition sr

′ = ∅

implies that in the pair (3.11) the right-most symbols of sc
′ and wl

′ are different.
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Case IIIa: Let wl
′ ∈ W−, in other words

y′
τ̄ = (x′, wl

′ �m ⊕), y′′
τ̄ = (x′′, wl

′), x′ − x′′ = |sc
′| = m + 1.

This state corresponds to the canonical representation[
wl

′′ �l+m ⊕ : wl
′′ �l

]
, wl

′′ ∈ W+, l > 0, (3.12)

and we study the effect of a single step of the joint dynamics from this state.
To this end, consider five independent exponential random variables

ζ1 ∼ Exp(1), ζ2 ∼ Exp(‖wl
′′‖), ζ3 ∼ Exp(μ),

ζ4 ∼ Exp(λ+), ζ5 ∼ Exp(λ− − λ+)

and put ζ̄ = min(ζ1, ζ2, ζ3, ζ4, ζ5). The first transition in the joint model occurs
after time ζ̄ and is given by

• If ζ̄ = ζ1, the right-most ⊕ symbol in y′
t hydrolyses, so that we arrive

at the canonical pair [wl
′′�l+m+1 : wl

′′�l], i.e., we revisit a state of the
type (3.9).

• If ζ̄ = ζ2, the total number of ⊕ symbols in wl
′′ decreases by one, so that

the result follows from the induction hypothesis.

• If ζ̄ = ζ3, the extreme � symbol leaves y′′
t . If the string y′′

t still ends
with � symbol, we revisit a configuration of the type (3.12) with l > 0.
Alternatively, l = 0, and we arrive at a configuration whose canonical
representation [wl

′′′sc
′′′sr

′′′ : wl
′′′sr

′′′] satisfies ‖wl
′′′‖ < ‖wl

′′‖, so that
the result follows from the induction hypothesis.

• If ζ̄ = ζ4, a ⊕ symbol attaches to both strings and we revisit a state of
the type (3.8).

• If ζ̄ = ζ5, a ⊕ symbol attaches to the shorter string, so that we arrive at
the configuration with heads w′′

t �l+m ⊕ and w′′
t �l ⊕, where w′′

t ∈ W+,
i.e., we revisit a state of the type (3.9) with |sc| decreased by one. Notice,
that if m = 0, both heads become identical and we arrive at a coupling
event with zero shift.

This finishes our discussion of the case (3.12).

Case IIIb: Let wl
′ ∈ W+, in other words

y′
τ̄ = (x′, wl

′sc
′), y′′

τ̄ = (x′′, wl
′), x′ − x′′ = |sc

′| = |sc|, (3.13)

where sc
′ ∈ S− (i.e., the right-most symbol of sc

′ is �) contains exactly a single
⊕ symbol, ‖sc

′‖ = 1. Consider five independent exponential random variables,

ζ1 ∼ Exp(1), ζ2 ∼ Exp(‖wl
′‖), ζ3 ∼ Exp(μ),

ζ4 ∼ Exp(λ+), ζ5 ∼ Exp(λ− − λ+)



Regular phase in a model of microtubule growth 189

and put ζ̄ = min(ζ1, ζ2, ζ3, ζ4, ζ5). The first transition in the joint model occurs
after time ζ̄ and is given by

• If ζ̄ = ζ1, then the only ⊕ symbol in sc
′ hydrolyses, and we arrive at a

state of the type (3.9) with sr
′ = ∅.

• If ζ̄ = ζ2, then one of the ⊕ symbols in wl
′ hydrolyses, so that the result

follows from the induction hypothesis.

• If ζ̄ = ζ3, then the extreme � symbol in sc
′ departs; as a result, we

either stay in the same class (3.13) of configurations (with sc
′′ ∈ S−), or

the right-most symbol in sc
′′ becomes ⊕, thus leading to the canonical

representation of the form [wl
′′sc

′′sr
′′ : wl

′′sr
′′] with ‖wl

′′‖ < ‖wl
′‖, so

that the result follows from the induction hypothesis.

• If ζ̄ = ζ4, single ⊕ symbols attach to both strings, so that we revisit the
initial state of the type (3.8).

• If ζ̄ = ζ5, then a ⊕ symbol attaches to the longer string, thus leading to
the canonical pair [wl

′′sc
′′sr

′′ : wl
′′sr

′′] with ‖wl
′′‖ < ‖wl

′‖ and ‖sc
′′‖ ≥ 1,

so that the result follows from the induction hypothesis.

(3.8)

(3.9)(3.10)(3.11)

(3.12)

(3.13)

Figure 2. Connections between classes of configurations in the proof of
Lemma 3.1; additionally, from every class the “induction hypothesis” class can
be reached.

This finishes the list of possible classes of configurations and the connec-
tions between them. The whole structure is summarised in Figure 2, which
for simplicity does not show the “inductive hypothesis” class of states and the



190 O. Hryniv

corresponding transitions; the latter can be reached from any of the nodes of
the diagram.

With the induction step verified, the claim of Lemma 3.1 follows. �

3.2. Strict monotonicity of the velocity

Fix positive rates λ+, λ−, μ, and arbitrary δ0 > 0. Our aim is to show that if
λ+ ≤ λ− and δ0 is small enough, then for some constant c = c(λ++δ0, λ

−, μ) > 0
and all δ ∈ (0, δ0) the inequality (3.1),

v(λ+ + δ, λ−, μ) − v(λ+, λ−, μ) ≥ cδ > 0,

holds with probability one. As explained above, this implies positivity of the
corresponding partial derivative ∂λ+v and, in particular, strict monotonicity of
v( ·, λ−, μ) as a function of λ+. Of course, similar arguments apply to other
partial derivatives of interest, ∂λ−v and ∂μv.

Since xt is a functional of the Markov chain wt, our arguments are close in
spirit to the proof of the Ergodic theorem for Markov chains, see e.g., [10].

Let 0 = τ̃δ
0 < τ̃δ

1 < τ̃δ
2 < . . . be the consecutive moments when the process

y′′
t with rates (λ+ + δ, λ−, μ) enters a state with empty head, wτ̃δ

j
= ∅. Denote

by �̃δ
t the total number of complete excursions by time t,

�̃δ
t = max{j ≥ 0 : τ̃δ

j ≤ t}.

Since the duration of an individual excursion has finite exponential moments in
a neighbourhood of the origin [5], and the lengths of the individual excursions
are independent and identically distributed with positive mean E

[
τ̃δ
1

]
, by the

strong law of large numbers,

lim
t→∞

1
t

�̃δ
t = E

[
τ̃δ
1

]

and, hence, �̃δ
t → ∞ as t → ∞, with probability one.

We think of y′′
t as the process y′

t with rates (λ+, λ−, μ) subjected to an
additional Poisson stream of arrivals of ⊕ symbols at rate δ > 0. Every excursion
[τ̃δ

j−1, τ̃
δ
j ) of y′′

t can now be classified according to the number of successful
arrivals of the Poi(δ) stream during the corresponding time interval. Define the
following disjoint events

Nj =
{
no δ-arrivals during the jth excursion

}
,

Sj =
{
single δ-arrival during the jth excursion

}
,

Dj =
{
two or more δ-arrivals during the jth excursion

}
,
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and consider the corresponding increments

xN
t =

∑
(x′′

τ̃δ
j
− x′′

τ̃δ
j−1

)�{Nj}, xS
t =

∑
(x′′

τ̃δ
j
− x′′

τ̃δ
j−1

)�{Sj},
xD

t = x′′
t − xN

t − xS
t =

∑
(x′′

τ̃δ
j
− x′′

τ̃δ
j−1

)�{Dj} +
(
x′′

t − x′′
τ̃δ

�̃δ
t

)
,

where each sum runs for all j = 1, . . . , �̃δ
t . Of course, during the type-N excur-

sions the behaviour of y′′
t coincides with that of y′

t, whereas during the type-S
excursions the increment of y′′

t is not smaller than the increment of y′
t during

the same time interval, recall Lemma 3.1. On the other hand, the total incre-
ment xD

t is bounded above by the total number of jumps of the process y′′
t during

the corresponding time intervals, which by comparison with the related birth-
and-death process [5, Sect. 2] can be estimated as in Proposition A.2 below. We
now use these observations to derive the target inequality (3.1).

First, let τ̃N
t be the total duration of all type-N excursions up to time t,

τ̃N
t =

∑
(τ̃δ

j − τ̃δ
j−1)�{Nj},

with the sum running for all j = 1, . . . , �̃δ
t . Then the long-term density

pN = lim
t→∞

1
t

τ̃N
t

exists with probability one. Consequently the following almost sure limit exists

lim
t→∞

1
t
xN

t = vpN, (3.14)

with v being the velocity of the process y′
t.

Next, let τ̃S
t and �̃S

t be the total duration and the number of all type-S
excursions up to time t,

τ̃S
t =

∑
(τ̃δ

j − τ̃δ
j−1)�{Sj}, �̃S

t =
∑

�{Sj},

with the sums running for all j = 1, . . . , �̃δ
t . It is straightforward to check

existence of the following almost sure limits

pS = lim
t→∞

1
t

τ̃S
t , �S = lim

t→∞
1
t

�̃S
t .

By a single-trajectory bound one can show that in fact �S > cδ for some constant
c = c(λ+ + δ0, λ

−, μ) > 0 and all δ ∈ (0, δ0). On the other hand, the coupling
Lemma 3.1 implies that if [τ̃δ

j−1, τ̃
δ
j ) is a type-S excursion, then the relative shift

of the increments of the processes y′′
t and y′

t during this time interval,

ξj =
(
x′′

τ̃δ
j
− x′′

τ̃δ
j−1

) − (
x′

τ̃δ
j
− x′

τ̃δ
j−1

)
,
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is a non-negative random variable with finite positive expectation, Eξj ∈ (0,∞)
(indeed, ξj is stochastically bounded by the total number of jumps κ̃δ of the
process y′′

t during a single excursion, and the latter has finite exponential mo-
ments in a neighbourhood of the origin). A straightforward adaptation of the
previous argument shows that, with probability one,

lim
t→∞

1
t
xS

t = vpS + �S Eξ ≥ vpS + A1δ, (3.15)

for some positive constant A1 = A1(λ+ + δ0, λ
−, μ).

Finally, the remaining increment, xD
t = x′′

t − xN
t − xS

t , is not bigger than
the total number of jumps of the process y′′

t not included in type-N or type-S
excursions. By Proposition A.2, we deduce that

lim
t→∞

1
t
|xD

t | ≤ A2δ
2, (3.16)

with probability one, where A2 = A2(λ+ + δ0, λ
−, μ) is a positive constant.

Combining (3.14)–(3.16) and Corollary A.1, we finally deduce that with
probability one,

lim
t→∞

1
t
x′′

t ≥ v + A1δ − A3δ
2,

with some constant A3 = A3(λ+ + δ0, λ
−, μ) > 0. It remains to choose δ0 to

satisfy 2A3δ0 < A1. With this choice of parameters the target estimate (3.1)
follows.

A straightforward adaptation of the previous argument proves the analogues
of the inequality (3.1) with varying λ− or μ. The proof of Theorem 1.2 is
finished.

Appendix A. Density estimate for birth-and-death processes with im-
migration

For fixed λ > 0 and ν > 0, let (Yt)t≥0 be the continuous-time birth-and-
death process with constant birth rate λ and death per individual rate ν (write
Yt ∼ BD(λ, ν)). In other words, Yt is a Markov process on Z

+ = {0, 1, 2, . . .}
such that its jumps from each state k ≥ 0 to state k +1 have rate λ, and jumps
from state k > 0 to state k − 1 have rate kν. Assume that Y0 = 0, and let τ̃ be
the time and let κ̃ be the number of jumps until this Markov chain first returns
to the origin. For z ≥ 0 and s ∈ R, consider the function

ψ(z, s) = E0

[
zκ̃esτ̃

]
,

where Em[ · ] denotes the expectation corresponding to the initial state m ≥ 0.
Then the results in [5, App. A] imply the following claim
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Lemma A.1. There exist constants z̄ > 1, s̄ > 0 and γ̄ > 0 such that

s ≤ s̄, 0 ≤ z ≤ z̄ =⇒ ψ(z, s) ≤ eγ̄ < ∞. (A.1)

Remark A.1. Since ψ(· , ·) is an analytic function of its arguments, it is not
difficult to see that the smallest γ̄ in (A.1) satisfies γ̄ ↘ 0 as both z̄ ↘ 1 and
s̄ ↘ 0.

Since the process (Yt)t≥0 is a positive-recurrent Markov chain (whose sta-
tionary distribution is given by Poi(λ/ν)), its trajectories can be split into i.i.d.
parts — excursions — between the consecutive visits to the origin. According
to Lemma A.1, both the time duration τ̃ and the number of jumps κ̃ of an
individual excursion have finite exponential moments in a neighbourhood of the
origin.

Consider now a population consisting of two types of individuals, say of
type A and of type B, each of which independently evolves as a birth-and-
death process; namely, the dynamics of type A population coincides with that
of (Yt)t≥0 ∼ BD(λ, ν), whereas the dynamics of type B population coincides
with that of BD(δ, ν) with some δ > 0. Of course, the joint process (Y δ

t )t≥0 is
just BD(λ+δ, ν) and can be considered as a perturbation of the original process
(Yt)t≥0 describing the dynamics of type A population. Our aim here is to verify
the following result, which provides a key estimate for our (cluster) expansion
arguments in Section 3.2 above; this claim can be viewed as a continuous-time
version of the classical cluster expansions for discrete structures (see, e.g., [9]).

Proposition A.1. Let τδ be the time duration and let κδ be the total number
of jumps of a single excursion of the process (Y δ

t )t≥0. With # denoting the
number of births of type B individuals during the excursion, let D be the event
{# ≥ 2}. Then there exist β > 0 and C > 0 such that for all δ > 0 small
enough

E
[
exp{βτδ + βκδ}�{D}] ≤ Cδ2. (A.2)

As a result, with some positive constants Cτ and Cκ, and δ > 0 as above,

E
[
τδ�{D}] ≤ Cτ δ2 and E

[
κδ�{D}] ≤ Cκδ2. (A.3)

Remark A.2. As the expectation in (A.2) is an analytic function of β in a neigh-
bourhood of the origin, its β-derivative at the origin, E

[
(τδ+κδ)�{D}], satisfies a

similar inequality; i.e., the estimates (A.3) hold. It is thus enough to check (A.2).
Our argument is based on stochastic domination and semi-martingale inequali-
ties, and provides a continuous-time analogue of the cluster expansion estimates,
which are well known for discrete structures and discrete time processes, see,
e.g., [9].
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Proof. The process (Y δ
t )t≥0 is just the L1-norm (i.e., the sum of components)

of the process (Yδ
t )t≥0 on (Z+)2 with the following rates:

(x, y) rate λ�−→ (x + 1, y) x ≥ 0, y ≥ 0,

(x, y) rate δ�−→ (x, y + 1) x ≥ 0, y ≥ 0, (A.4)

(x, y) rate xν�−→ (x − 1, y) x > 0, y ≥ 0,

(x, y)
rate yν�−→ (x, y − 1) x ≥ 0, y > 0.

Here the x-component counts the number of type A individuals and the y-
component counts the number of type B individuals, each species evolving in-
dependently. Of course, the dynamics of the process Yt coincides with that of
the x-component above (equivalently, this amounts to putting δ = 0), and the
rates in (A.4) can be used to construct a monotone coupling between Yt and Y δ

t

in which Yt ≤ Y δ
t for all t ≥ 0.

As the joint process Yδ
t is positive recurrent, its trajectories can be decom-

posed into excursions between consecutive visits to the origin, and the claim
of the proposition is that, on average, the time duration τδ and the number of
jumps κδ of a single excursion having at least two arrivals of type B individuals
(upward jumps along the y-direction) is of order δ2 for small δ > 0.

It is convenient to consider a modification (Yδ

t )t≥0 of the joint process
(Yδ

t )t≥0 in which all departures of type B individuals are suppressed as long
as the system contains type A individuals, and at the moment when the last
type A individual leaves the system, one existing type B individual instanta-
neously converts into a type A individual. In other words, jumps in Yδ

t are as
in (A.4) with the last line there replaced with the following line:

(0, y) rate ∞�−→ (1, y − 1) y > 0.

Clearly, the L1-norm Y
δ

t of the process Yδ

t provides an upper bound for Y δ
t , in

particular, both the time duration τδ and the number of jumps κδ of a single
excursion in Yδ

t satisfy
τδ ≤ τδ and κδ ≤ κδ. (A.5)

It is thus sufficient to verify estimates (A.2)–(A.3) for τ δ and κδ respectively.
Consider now a single excursion

(Yδ

t

)
0≤t≤τδ

. Is is convenient to decompose

it into sub-excursions separated by the consecutive visits by the process Yδ

t to
states (0, y) without type A individuals. If m = mδ ≥ 1 is the number of such
sub-excursions, denote their individual durations and numbers of jumps by

θ1, θ2, . . . , θm and �1, �2, . . . , �m
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respectively. Of course, (θj , �j) are i.i.d. random vectors whose distribution is
closely related to that of the pair (τ̃ , κ̃), describing individual excursions of the
process (Yt)t≥0. In particular, by Lemma A.1, the pair (τ̃ , κ̃), and therefore
(θ, �) has finite exponential moments in a neighbourhood of the origin; namely,
there exist α > 0 and β > 0 so that

E exp
{
5β(τ̃ + κ̃)

}
< eα; (A.6)

as a result,

E exp{β(θ + �)} = E
[
exp{β(τ̃ + κ̃)}E[

exp{β(� − κ̃)} | τ̃ , κ̃
]]

= E exp
{
(β + (eβ − 1)δ)τ̃ + βκ̃

}
< eα

if only δ > 0 is small enough. In the computation above we used the fact
that during time θ ∼ τ̃ the number ξ of upward jumps of the y-component
has distribution Poi(δθ); notice that this implies that the vertical shift of an
individual sub-excursion is ξ − 1, i.e., belongs to {−1, 0, 1, . . .}.

Let 0 = τ0 < τ1 < τ2 < τ3 < . . . be the consecutive moments when the
process Yδ

t visits a state without type A individuals, and let κj be the number of
jumps the process Yδ

t makes up to time τ j , i.e., τ j =
∑j

i=1 θi and κj =
∑j

i=1 �i.
Then the increments of the induced process Y n =

(
Y

δ

τn

)
n≥0

satisfy

E
(
Y n+1 − Y n | Y n > 0, τn+1 − τn = θ

)
= δθ − 1,

and thus E
(
Y n+1−Y n

)
< 0 if δEθ < 1. By a simple semi-martingale argument,

the expectation of the first return to the origin time τδ is finite,

Eτδ < ∞,

provided δ is small enough. As we will see below, τδ has even finite exponential
moments in a neighbourhood of the origin.

With α > 0 and β > 0 fixed as in (A.6), Remark A.1 implies existence of
γ > 0, δ > 0 and η > 0 so that

δEτ̃ < 1 and E exp
{
2ζτ̃ + 2βκ̃

}
< eα−γ , (A.7)

where
ζ = (eα − 1)δ + β + η ∈ (0, 2β). (A.8)

Then the process

Mn = exp
{
αY

δ

τn
+ βτn + βκn + γn

}
restricted to the set Y n = Y

δ

τn
> 0 is a supermartingale with respect to its

natural filtration. Indeed,

E
[Mn+1

Mn

∣∣∣ θn+1, �n+1, Y n > 0
]

= exp
{
γ − α + ((eα − 1)δ + β)θn+1 + β�n+1

}
,
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so that by (A.7)–(A.8) the expectation of the expression on the right does not
exceed one. A similar argument shows that the number of jumps of the induced
process (Y n)n≥0 between consecutive returns to the origin (equivalently, the
number mδ of sub-excursions up to time τ δ) has finite exponential moments in
a neighbourhood of the origin. By the optional stopping theorem, this implies
that E exp{β(τ δ + κδ)} < ∞ for some β > 0 small enough.

With mδ defined as above, we have Y mδ
= 0, τmδ

= τδ, and κmδ
= κδ. Our

aim is to show that

E
(
Mmδ

�{D}) = O(δ2) as δ → 0. (A.9)

In view of (A.5), the target estimates (A.3) then follow by differentiation. To
this end we (disjointly) decompose

D = D1 ∪ D2, D1 =
{
Y 1 = 1, Y 2 ≥ 1

}
, D2 =

{
Y 1 ≥ 2

}
,

so that it is enough to show that

E
(
Mmδ

�{D1}
)

= O(δ2) and E
(
Mmδ

�{D2}
)

= O(δ2) as δ → 0.

In our computations below, we will use the following elementary inequalities:
for every integer k ≥ 1, real z ≥ 0 and η > 0,

∑
j≥k

zj

j!
≤ zk

k!
ez,

zk

k!
≤ kk

(ηe)kk!
eηz. (A.10)

The first of these inequalities is immediate from the term-wise comparison of
the two series, whereas the second one follows from the fact that the maximum
of the function zk exp{−ηz} for z > 0 occurs when ηz = k.

We start by observing that, by the supermartingale property,

E
[
Mmδ

| Y 1, θ1, �1

] ≤ M1 = exp
{
αY 1 + βθ1 + β�1 + γ

}
.

At the same time, using inequalities (A.10),

E
[
M1�{D2} | τ1, κ1

]
= exp

{
β(τ 1 + κ1) + γ − α

} ∑
j≥2

(δτ1e
α)j

j!
exp{−δτ1}

≤ exp
{
β(τ 1 + κ1) + γ − α

} (δτ1e
α)2

2
exp

{
(eα − 1)δτ1

}

≤ 2δ2eα+γ

(ηe)2
exp

{
ζτ 1 + βκ1

}
,

so that

E
[
Mmδ

�{D2}
] ≤ 2δ2eα+γ

(ηe)2
E exp

{
ζτ1 + βκ1

}
. (A.11)
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A similar argument shows that

E
[
M2�{Y 2 ≥ 1} | Y 1, θ1, θ2, �1, �2

] ≤ M1
δeγ

ηe
exp{ζθ2 + β�2}

and

E
[
M1�{Y 1 = 1} | θ1, �1

] ≤ δeα+γ

ηe
exp{ζθ1 + β�1}.

Combining the last two estimates with the supermartingale inequality, we get

E
[
Mmδ

�{D1}
] ≤ δ2eα+2γ

(ηe)2
E exp{ζτ2 + βκ2}, (A.12)

which together with (A.11) gives

E
[
Mmδ

�{D}] ≤ 3δ2eα+2γ

(ηe)2
E exp{ζτ2 + βκ2}.

By independence of the individual sub-excursions,

E exp{ζτ2 + βκ2} ≡ E exp{2ζτ̃ + 2βκ̃} < exp{α − γ},

so that

E
[
Mmδ

�{D}] ≤ 3δ2e2α+γ

(ηe)2
.

As the expectation on the left is an analytic function of the variables α, β and γ
in a neighbourhood of the origin, its β-derivative at the origin, E[(τ δ +κδ)�{D}],
is bounded above by Cδ2 with some finite constant C. This implies the target
inequalities (A.3). �

Let 0 = τδ
0 < τδ

1 < τδ
2 < . . . be the consecutive moments when the process Y δ

t

visits the origin. In agreement with Proposition A.1, let Dj be the event that
the excursion [τδ

j−1, τ
δ
j ) is of type D, i.e., contains at least two births of type B

individuals. Denote
� = �δ

t = max
{
j ≥ 0 : τδ

j ≤ t
}
,

write κδ
t for the total number of jumps of the process Y δ

t up to time t, and let

κD
t =

�δ
t∑

j=1

(
κδ

τδ
j
− κδ

τδ
j−1

)
�{Dj} +

(
κδ

t − κδ
τδ

�δ
t

)
(A.13)

be the total number of jumps by time t during excursions of type D plus the time
of the last unfinished excursion, if any. Our next step is to verify the following
claim.
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Proposition A.2. Let κD
t be as defined in (A.13). There exist positive con-

stants K, A, and a such that for all δ > 0 small enough and all t large enough,

P
(
κD

t > Kδ2t
) ≤ Ae−at. (A.14)

Moreover, for some constant K1 > 0, we have, with probability one,

lim
t→∞

1
t
κD

t ≤ K1δ
2. (A.15)

Proof. We start by noticing that the last term in (A.13) is stochastically domi-
nated by κδ, the total number of jumps in a single excursion of the process Y δ

t .
Since κδ has finite exponential moments in a neighbourhood of the origin, the
standard large deviation estimate [2] implies that for all Kδ2 > 0 there exist
A1 > 0 and a1 > 0 so that the inequality

P
(
κδ

t − κδ
τδ

�δ
t

>
1
2
Kδ2t

)
≤ A1 exp{−a1t} (A.16)

holds for all t large enough. To get (A.14) it thus remains to show that for some
K > 0, A2 > 0 and a2 > 0 the random variable

κD
m ≡

m∑
j=1

(
κδ

τδ
j
− κδ

τδ
j−1

)
�{Dj}, m ≥ 1, (A.17)

satisfies the inequality

P
(
κD

�δ
t

>
1
2
Kδ2t

)
≤ A2 exp{−a2t} (A.18)

with t large enough.
To this end, we start by observing that the process Y δ

t stochastically dom-
inates the process Y 0

t ≡ Yt without type B individuals. Consequently, for all
δ ≥ 0, the number of excursions �δ

t is stochastically dominated by �0
t , the num-

ber of excursions by time t for the process Yt. Using Lemma A.1 we deduce the
following large deviation bound: for every ζ > 0 there exist positive B and b so
that

P
(∣∣∣�0

t −
t

Eτ0
1

∣∣∣ > ζt
)

< Be−bt

for all t large enough, where τ0
1 denotes the duration of a single excursion for

the process Yt. As a result, there exist B1 > 0 and b1 > 0 such that

P
(
�δ
t ≥ 2t

Eτ0
1

)
≤ P

(
�0
t ≥ 2t

Eτ0
1

)
≤ B1 exp{−b1t}, (A.19)

if only t is large enough.
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Next, the terms in (A.17) are independent and identically distributed, with
finite exponential moments in a neighbourhood of the origin and the expectation

E
[(

κδ
τδ

j
− κδ

τδ
j−1

)
�{Dj}

] ≤ E
[
κδ�{D}] ≤ Cκδ2.

By the large deviation principle, there exist B2 > 0 and b2 > 0 so that

P
(
κD

m ≥ 2Cκδ2m
) ≤ P

(
κD

m ≥ (
E
[
κδ�{D}]+Cκδ2

)
m

) ≤ B2 exp{−b2m} (A.20)

for all m ≥ 1. Combining (A.19) with (A.20), and using K = 8Cκ/Eτ0
1 > 0

in (A.18), we get the inequality

P
(
κD

�δ
t

>
4Cκ

Eτ0
1

δ2t
)
≤ P

(
�δ
t ≥ 2t

Eτ0
1

)
+ P

(
κD

�δ
t
≥ 2Cκδ2�δ

t

)
≤ B3 exp{−b3t}

for t large enough, where B3 = B1 + B2 and b3 = min(b1, b2). Together
with (A.16) this implies the target bound (A.14) for the chosen value of K.

The upper bound (A.15) follows along the lines of the standard proof of the
Ergodic theorem for positive recurrent Markov chains, see e.g., [10]. First, by
the strong law of large numbers, the convergence

lim
m→∞

1
m

κD
m = E

[
κδ�{D}] and lim

t→∞
1
t
�δ
t =

1
Eτδ

1

holds with probability one. It is an easy exercise to check that there exist
positive constants a1(λ̄, μ) and a2(λ̄, μ) so that, uniformly in max(λ+ + δ, λ−)
≤ λ̄, we have

a1(λ̄, μ) < Eτδ
1 < a2(λ̄, μ),

and thus that, with probability one, �δ
t → ∞ as t → ∞. From (A.3) we deduce

that

lim
t→∞

1
t
κD

�δ
t

=
E[κδ�{D}]

Eτδ
1

<
Cκδ2

a1(λ̄, μ)
≤ 1

2
K1δ

2,

with probability one. On the other hand, the variable

κD
t − κD

�δ
t
≡ (

κδ
t − κδ

τδ

�δ
t

)
�{Dt}

is stochastically dominated by κδ. Since Eκδ < ∞, the Borel –Cantelli lemma
together with Proposition A.1 and the estimate (A.16) imply that

lim sup
t→∞

1
t

(
κD

t − κD
�δ

t

)
= 0,

with probability one (alternatively, use [3, Proposition 6.1.1]). The target esti-
mate (A.15) now follows from the last two displays. �
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Let τD
t be the total time spent in excursions of type D up to time t, plus the

time of the last unfinished excursion if any (cf. (A.13)),

τD
t =

�δ
t∑

j=1

(
τδ
j − τδ

j−1

)
�{Dj} +

(
t − τδ

�δ
t

)
.

Corollary A.1. For τD
t defined as above, there exists Kτ > 0 such that, with

probability one,

lim
t→∞

1
t
τD
t ≤ Kτδ2.

The proof of this claim is similar to that of Proposition A.2, and is omitted.
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