
Technical details concerning implementation of the method in Craig (2007a)
for computing orthant probabilities for multivariate normal auto-regressive

sequences

Peter Craig
July 15th 2007

Abstract

This document is an expanded version of section 3.2 of Craig (2007a) intended
to make clear certain details of the algorithm implemented in Craig (2007b).

1 Introduction

We wish to compute P[X ≥ 0] = P[X1 ≥ 0, . . . , Xp ≥ 0] when X1, . . . , Xp are an
auto-regressive sequence. In order to make the calculation easier to structure, simplify
the subsequent presentation and facilitate analysis of accuracy, we will restrict to the
case of unit variances and express the calculation in terms of W = X − µ. Then,
writing ρi = Corr[Xi, Xi+1] and σ2

i = 1 − ρ2
i , the sequence W1, . . . ,Wp is Markov and

Wi+1 |Wi ∼ N(ρiWi, σ
2
i).

Taking ψ1(w1) = p(w1) = φ(w1), we sequentially compute approximations to the
functions ψ2, . . . , ψp where

ψn+1(wn+1) =

∫ ∞

−µn

· · ·
∫ ∞

−µ1

p(w1, . . . , wn+1) dw1 . . . dwn

=

∫ ∞

−µn

p(wn+1 |wn)

∫ ∞

−µn−1

· · ·
∫ ∞

−µ1

p(w1, . . . , wn) dw1 . . . dwn−1dwn

=
1

σn

∫ ∞

−µn

φ
(
(wn+1 − ρnwn)/σn

)
ψn(wn) dwn (1)

=
1

|ρn|σn

∫ ∞

−|ρn|µn

φ
(
(wn+1 − sign(ρn)u)/σn

)
ψn(u/|ρn|) du (2)

so that P[X ≥ 0] is obtained by integrating ψp from −µp to infinity.
In principle, calculation of (1) appears to require the numerical evaluation of a one-

dimensional integral for each value of wn+1. However, (2) is in the form of a convolution
and may be amenable to calculation using the fast Fourier transform (FFT). The FFT
approach is efficient except when σn is small; moreover there is an efficient linear filtering
algorithm to handle small σn. When ρn is zero (or effectively so), (1) reduces to integrating
ψn and restarting the process with ψn+1 proportional to φ(wn+1).

For numerical calculations, we replace the lower limit of integration in (1) by Ln =
max(−U,−µn) and the upper limit by U . In doing so, we lose some probability from the
final estimate of P[X ≥ 0] but the loss is less than

∑
i P[|Wi| > U] = 2pΦ(−U) where

Φ is the standard normal distribution function. When linear filtering, we also truncate
φ to zero outside the interval [−U,U] and again lose less than 2pΦ(−U). In practice, it
should be easy to choose U so that the total loss is negligible; for double precision, U = 8
works well.

The strategy is to approximate ψn on a grid (sequence of equally spaced values)
covering [Ln, U) with a spacing ∆n which we try to keep close to a fixed value ∆ which
is our basic control on the accuracy of approximation.

1

2 Using the fast Fourier transform

The Fourier transform of ψn+1 is

Ψn+1(t) =

∫
eitxψn+1(x) dx =

1

σn

∫
eitvφ(v/σn) dv

∫ ∞

−µn

eitρnyψn(y) dy

= e−σ2
nt2/2Ψ+

n (ρnt)

where Ψ+
n is the Fourier transform of the truncation of ψn to zero below −µn. Thus we can

compute ψn+1 by finding the Fourier transform of the truncated version of ψn, stretching
it by factor 1/ρn, multiplying by e−σ2

nt2/2 and finally inverting the Fourier transform.
Numerically, we can approximate this operation using the fractional FFT of Bai-

ley and Swarztrauber (1991) to compute Fourier transforms on suitable grids of values.
The fractional FFT differs from the conventional FFT in that the output fundamental
frequency (spacing of the grid of values of t) may be freely chosen rather than being
determined by the spacing in the x-grid and the number of grid points. As described in
detail in section 13.9 of Press et al. (1993), we may increase the accuracy of the calcu-
lation of a Fourier integral for a fixed grid spacing by using Filon (1928)’s method for
Fourier integrals of continuous functions. The Filonized fractional FFT (FfFFT) is most
efficient when the grid length is a power of 2.

The main numerical difficulty is that the Fourier transform of a truncated smooth
function decays to zero very slowly (asymptotically at rate 1/t). Hence the decay to zero
of e−σ2

nt2/2 is the limiting control on the range over which we need to approximate Ψn+1

in order to compute ψn+1. In effect, this also determines the range over which we must
evaluate Ψ+

n . For σn = 1, approximating Ψn+1 on [−U,U] should suffice but in general
the range needs to be proportional to 1/σn which means we must either use a larger
grid or lose precision by increasing the spacing; we do the former as it is easy to use the
FfFFT to approximate Ψ+

n on a grid whose length is an integer multiple gn of the length
of the grid holding the truncation of ψn. In principle, gn could become arbitrarily large.
However, the difficulty only arises when when σn is near to zero. In such situations, the
convolution may be computed directly by linear filtering of the function ψn evaluated on
a grid.

For efficient use of the FfFFT, we work with grids whose lengths are integer multiples
of some basic grid length G which we restrict to be a power of 2 so that our target grid-
spacing is ∆ = 2U/G. Ψ+

n is computed on a grid of length gnG where we restrict gn to
be a power of 2 and we choose gn > 1/(2σn) to ensure that the resulting grid spacing
for Ψn+1 is less than 2∆. We evaluate Ψ+

n on the grid starting at −ρnU/σn with spacing
ρn∆/(σngn), obtain Ψn+1 and use the inverse FfFFT to obtain ψn+1 on an grid of length
gnG starting at Ln+1 with spacing ∆n+1. Finally we throw away all except the first G
values on this grid; in principle, one may save effort by using special FFT algorithms to
compute only the first G values but the author’s experience concurs with the literature
which suggests that in practice there is no significant gain in efficiency and often a loss
unless gn is large (Frigo and Johnson (2006b) suggest order of magnitude 100).

3 Using linear filtering

Linear filtering is an efficient way to approximate (2) when σn is small since the integral
will effectively only involve a small range of u for each x. Suppose we have already
calculated an approximation to ψn(x) so that ψ̂n,k ≈ ψn(xn,k) for 0 ≤ k < G where

2

xn,k = Ln + k∆n. Linear filtering means that we plan (for most values of k) to compute

ψ̂n+1,k =
∑Mn

m=0 cn,mψ̂n,k0+k+m where k0 (depending on n) is an offset between the grids;

for negative ρn, replace ψ̂n,k0+k+m by ψ̂n,k0−k+m. For this to be possible, the grids used
for x and u must have the same spacing and so ∆n+1 = |ρn|∆n.

We could easily obtain coefficients cn,m by using an elementary quadrature formula
such as Simpson’s rule to approximate (2). However, because σn is small, the integrand
in (2) is not really smooth enough for such a simple approach. The smoothness of
the underlying multivariate normal probability density function means that ψn should be
smooth apart from the step at x = −µn, a view supported by some numerical experiments.
This suggests using an approach to computing the convolution which takes advantage of
the smoothness of ψn while allowing for the lack of smoothness in φ(./σn).

We replace ψn in (2) by a piecewise cubic interpolant. On each interval (xn,k, xn,k+1),

approximate ψn(x) by the cubic interpolant of ψ̂n for the four nearest grid points. Hence,
the contribution of the interval to ψ̂n+1,j may be obtained as a linear combination of the

values of ψ̂n at those points.
For now, assume ρn > 0. On an interior (0 < k < G − 2) interval [xn,k, xn,k+1],

the interpolant of the grid of values of ψ̂n is ψ̂n(x) =
∑2

i=−1 ψ̂n,k+i li(t) where t = (x −
xn,k)/∆n and l−1, . . . , l2 are the Lagrange polynomials for cubic interpolation of a function

evaluated at abscissae −1, 0, 1 and 2. Substituting into (1), the contribution to ψ̂n+1,j

from an interior interval is (∆n/σn)
∑2

i=−1 ζn,j−k,iψ̂n,k+i where

ζn,j−k,i =
1

∆n

∫ xn,k+1

xn,k

φ

(
xn+1,j − ρny

σn

)
li

(
y − xn,k

∆n

)
dy

=

∫ 1

0

φ

(
t− (j − k)− µ̃n

σ̃n

)
li(t) dt (3)

with σ̃n = σn/∆n+1 and µ̃n = (Ln+1 − ρnLn)/∆n+1. Truncating φ outside [−U,U] means
that ζn,m,i = 0 unless m+ µ̃n ∈ (−Uσ̃n, 1 + Uσ̃n).

The contributions to (σn/∆n)ψ̂n+1,j from the edge-intervals, k = 0 and k = G − 2,

are respectively
∑2

i=−1 ζ
∗
n,j,iψ̂n,i+1 and

∑2
i=−1 ζ

∗∗
n,j−(G−2),iψ̂n,G−3+i where ζ∗n,m,i and ζ∗∗n,m,i

are obtained by substituting respectively li(t− 1) and li(t+ 1) for li(t) in (3).
Consider now all the contributions made by (∆n/σn)ψ̂n,k to ψ̂n+1,k+m. For 3 ≤ k ≤ G−

4, there is a contribution of ζn,m+i,i for −1 ≤ i ≤ 2. i.e. a total of ξn,m =
∑2

i=−1 ζn,m+i,i.
At the edges, the contributions change. For k < 3 the upper limit of the sum is k − 1
and for k > G− 4, the lower limit is k − (G− 3). Additional contributions at the edges
are ζ∗n,k+m,k−1 for k ≤ 3 and ζ∗∗n,m−2+k−(G−4),k−(G−3) for k ≥ G− 4.

It is possible to evaluate ζn,m,i, ζ
∗
n,m,i, ζ

∗∗
n,m,i and ξn,m as expressions involving µ̃n, σ̃n, m

and the functions φ and Φ. In practice, one may use a package for symbolic mathematical
computation such as Maple (Monagan et al., 2005) which can then also generate code in
a suitable programming language. Dropping the subscript n, Maple showed that

ξ0 =
1

6

2∑
j=−2

(−1)j

(
4

j + 2

) [
(µ̃+ j)σ̃

(
(µ̃+ j)2 + 3σ̃2 − 1

)
Φ

(
µ̃+ j

σ̃

)
+ σ̃2

(
(µ̃+ j)2 + 2σ̃2 − 1

)
φ

(
µ̃+ j

σ̃

)]
(4)

and ξm is easily obtained by substituting µ̃+m for µ̃. For fixed µ̃ and σ̃ and varying m,
there are savings to be made by pre-computing or saving of Φ and φ between evaluations.

3

The one remaining problem is that and expression such as (4) is fine for direct cal-
culation except when σ̃ is large when it suffers from high relative truncation errors. The
solution is to use a series approximation for larger values of σ̃. Since the range of values
of interest for µ̃ is proportional to σ̃, we must first write µ̃ = cσ̃ and then find a series
approximation. For double-precision, a 14th-order series in 1/σ̃ (computed by Maple)
gave excellent results for σ̃ > 4 and direct evaluation of (4) achieved close to machine
accuracy for smaller σ̃.

The details of linear filtering above assume ρn > 0. For negative ρn, the easy way
to handle it is to exploit the fact that ψn+1(−x) may be computed using the right-
side of (2), omitting “sign(ρn)”, simply by changing the sign of ρn. So we compute on
the grid −(Ln+1 + (G − 1)∆n+1) + j∆n+1 having changed the sign of ρn and reverse
the order of the computed values at the end; in effect we temporarily replace Ln+1 by
−(Ln+1 + (G− 1)∆n+1) as well as temporarily changing the sign of ρn.

4 Overall strategy

We need to decide when to use the FFT and when use linear filtering. Computational
effort for the latter should essentially be proportional to 2GUσ̃n = G2∆σn/∆n+1 ≈ G2σn

assuming that ∆n+1 ≈ ∆. The fractional FFT computes a number of FFTs each of
length N = gnG ≈ G/σn so that the computation time should essentially be proportional
to N log2N . The ratio of FFT time to linear filtering time is therefore approximately
proportional to S = (log2G − log2 σn)/(Gσ2

n) and the decision as to which method to
use should be based on the magnitude of this quantity. For our Pentium 4 hardware and
using the FFTW library (Frigo and Johnson, 2006a), numerical experiments suggested
that S = .02 is a suitable point for making the transition from FFT to linear filtering.

The algorithm has 3 control parameters which affect overall accuracy and efficiency:
U , G and the threshold value S. The basic value of ∆ is determined from U and G. To
determine ∆n, recall that, when linear filtering is used to compute ψn+1, ∆n+1 determines
∆n whereas the FFT allows a free choice of ∆n. Thus a simple strategy is to start with
∆p = ∆ and to work backwards, setting ∆n = ∆ whenever the computation of ψn+1 uses
the FFT. If at some point this leads to ∆n > 2∆, it may be necessary to use the FFT
for some step where it would normally be more efficient to use linear filtering.

References

Bailey, D. H. and Swarztrauber, P. N. (1991) The fractional Fourier transform and ap-
plications. SIAM Review, 33, 389–404.

Craig, P. (2007a) A new reconstruction of multivariate normal orthant probabilities.

——— (2007b) orthants: Multivariate normal orthant probabilities. URL
http://www.maths.dur.ac.uk/∼dma0psc/orthants/.

Filon, L. (1928) On a quadrature formula for trigonometric integrals. Proceedings of the
Royal Society of Edinburgh, 49, 38–47.

Frigo, M. and Johnson, S. G. (2006a) FFTW Home Page. URL http://www.fftw.org/.

——— (2006b) Pruned FFTs with FFTW. URL http://www.fftw.org/pruned.html.

4

Monagan, M., Geddes, K., Heal, K., Labahn, G., Vorkoetter, S., McCarron, J. and
DeMarco, P. (2005) Maple 10 Introductory Programming Guide.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1993) Numerical
Recipes in C: The Art of Scientific Computing. Cambridge: Cambridge University
Press, 2nd edition.

5

