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Abstract

Quantum Mechanics is introduced using state vectors, linear operators and canonical quantisation
rules. Spectra of some operators are calculated algebraically. The Schrödinger Equation, is introduced
and applied to problems of a single particle in a potential field and then to some three dimensional
problems.
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1 Introduction

1.1 Prerequisites

This lecture course will depend very strongly on the linear algebra courses from your first two years and parts
of the second year Analysis in Many Variables module. You will also need some knowledge of Hamiltonian
dynamics (but we will revise what is needed.) But please, do revise the linear algebra courses from the
first two years (vector spaces, bases, expansions of vectors, linear operators, eigenvectors, eigenvalues etc.)

1.2 Quantum Mechanics and its place

Familiar classical mechanics applies to the everyday world of moderate-sized objects. Very small things like
atoms and molecules, i.e. objects of size of 10−8m or smaller, need quantum mechanics, and the scale is set
by the (reduced) Planck constant h̄ ≈ 10−34 Js (Joule seconds – SI units of energy × time.) It appears that
quantum mechanics describes the world of atomic and subatomic scales probably at least down to 10−34m.
At scales smaller than this, strings and other objects of elementary particle physics, may be relevant and
they may require a modification of standard quantum mechanics but such questions have not been resolved
yet and are subjects of current research.

Classical mechanics and quantum mechanics are examples of mathematical models of what we (aided by
measuring instruments) see around us. A mathematical model identifies measurable quantities with abstract
mathematical objects that are manipulated according to certain axioms or postulates and then interpreted to
make predictions. For instance in the simplest form of classical mechanics positions, momenta, forces etc. are
identified as vectors and Newton’s Laws taken as axioms that determine them. Ideally, models are accepted
or rejected strictly according to the success or otherwise of their predictions. But consistency with models
of neighbouring sectors of the world is important and, because models using mathematics seem always to
work so well, mathematical elegance exerts a strong influence too.

Classical mechanics, in its proper domain, succeeds beautifully. Design of tables and chairs, planes and
space ships depends on it crucially. But modern life depends also on the success of quantum mechan-
ics. Quantum Mechanics describes how atoms are put together and why they are stable; is responsible for
magnetism and chemistry. Apart from its high aesthetic value it has practical applications. Lasers, super-
conductors, atom bombs, and the ubiquitous silicon chip all work because they’re designed with the help of
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quantum mechanics. Moreover the two models are both elegant and mutually consistent. In the limit h̄ → 0
quantum mechanics gives classical results.

In addition, Quantum Mechanics is probably the most original (challenging) theory of physical phenom-
ena. Its description is very different from that of classical mechanics and some of its predictions may appear
very counter-intuitive.

In advanced classical mechanics the basic variables are the generalised coordinates and their conjugate
momenta, i.e. the q, p coordinates in phase space. Measurable quantities like energy, force, velocity etc.
are constructed from them. These are assumed observable to any necessary precision, simply by looking
carefully enough. The equations of motion are Hamilton’s equations, which are differential equations for the
p’s and q’s as functions of time. In another, completely equivalent formulation, one uses Lagrangians, which
are functions of generalised coordinates and their time derivatives (generalised velocities) and the equations
of motion are the second order equations for those generalised coordinates.

In quantum mechanics the fundamental entity is the ‘state vector’, an element of a linear vector space.
Measurements are explicitly modelled through properties of certain linear operators in the space. The
equation of motion can be written as a differential equation for the state vector, the Schrödinger Equation.

It’s a reasonable assumption based on everyday experience that classical measurements are possible to
arbitrary accuracy. But in the quantum world of atoms and molecules normal intuition fails. In general no
matter how delicate and skillful the observer, a disturbance of the observed system is inevitable. To some
extent this is understandable, for looking at an atom means bouncing light off it and the atom is so small
that the collision is bound to upset it. All is not lost, however, for quantum theory predicts the probabilities
of alternative possible results of individual measurements. In the large-scale limit averages are observed and
classical mechanics is recovered.

The linear-space structure of the theory — the superposition principle — is the key to uncertainty, for
a state vector composed of other state vectors will allow a measurement to realise any of the corresponding
physical configurations. Of course the superposition principle is a familiar feature of classical waves, e.g.
sound and light. In quantum mechanics we see ‘wave-particle duality’ for microscopic systems.

1.3 Crisis in Classical Mechanics - Quantum Phenomena

The quantum era may be dated from Becquerel’s discovery of radioactivity in 1896. But explanation as a
quantum tunnelling effect did not come until Gamow, Gurney and Condon in 1928.

Planck in 1901 produced the first satisfactory theory of blackbody radiation with the revolutionary
idea that matter and electromagnetic radiation interchange energy in packets (‘quanta’) with energy E
proportional to frequency ν. The constant of proportionality is Planck’s constant, h. Einstein used Planck’s
idea to explain features of the photoelectric effect (1905) (for which he got his Nobel prize) and to solve
problems with specific heats (1907).

In 1897 Thomson discovered the electron. Its charge was difficult to measure but in experiments involving
metals that were heated electrons were given off. Thomson concluded that the electron had a specific value
of charge (i.e. charge was quantised) and that its mass was a very tiny fraction of the mass of the hydrogen
atom. Then the question arose; if electrons are given off, where do they come from? What do atoms look
like? Hence Thomson proposed a “plum pudding” model of the atoms - involving a cloud of positively
charged material with negatively charged electrons stuck in it. However, in 1911 Rutherford showed that
this is wrong. His scattering experiments suggested that the atom consists of a cloud some 10−8cm across of
electrons bound by Coulomb attraction to a relatively massive central nucleus about 10−13cm across. But
according to classical notions this system is completely unstable, since the bound charges are accelerated
and therefore radiate electromagnetic waves. So they rapidly lose energy and the atom collapses. Classical
mechanics inevitably predicts unstable matter with a lifetime of typically 10−10 seconds! This is even before
understanding how such apparently insubstantial things, mostly empty space, can be arranged into solids,
liquids and gases.

Bohr (1913) introduced stability at the atomic level with the ad hoc postulate that atomic electrons
can have angular momentum equal only to an integral multiple of h̄ ≡ h/2π. Transitions between two of
the resulting discrete electronic energy-levels separated by E then conserve energy by emitting or absorbing
radiation quanta of definite frequency ν = E/h. This model agrees with the main features of the line spectra
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of light emitted from simple atoms.
Explanation of finer structure in atomic spectra came after the discovery of electron spin and magnetic

moment, following the Stern-Gerlach experiments (1921). The electron behaves like a spinning charge with
angular momentum 1

2 h̄. Subtleties stemming from this (Fermi-Dirac Statistics) led to successful models of
multi-electron atoms and eventually (in the 50s) to understanding the stability of bulk matter.

But meanwhile Compton (1923) found that X-rays (wavelength λ ∼ 10−11cm) scatter from atomic
electrons like particles (‘photons’) moving at the speed of light c with momentum p = h/λ and energy
E = hc/λ = hν. In 1925 de Broglie proposed that also electrons and other particles might show wave-like
behaviour, with wavelength and momentum related by λ = h/p. For atomic electrons, if they occupy only
circular orbits with a standing de Broglie wave, the Bohr quantisation rule follows since in such an orbit
of circumference 2πr there is a whole number of wavelengths h/p. Davisson and Germer (1927) confirmed
diffraction and interference of electrons scattered by metals for de Broglie wavelengths of the order of atomic
size and spacing.

During the 20s Heisenberg, Born and Jordan were introducing matrix mechanics, Schrödinger was devel-
oping wave mechanics from de Broglie’s idea, and Dirac (1926) discovered that both are manifestations of
a new linear theory. Schrödinger’s theory of the hydrogen atom (the simplest) agreed remarkably with the
Bohr model.

In quantum mechanics wave-particle duality and quantisation of energy and angular momentum come
directly from non-commutativity of linear operators that model observations. Another consequence is the
Uncertainty Principle and statistical scatter of individual observations.

2 Theory of Quantum Mechanics

2.1 States

The configuration of a classical system at any time is specified by a point in 2n dimensional phase space —
i.e. by its coordinates, the set of q’s and p’s. Equivalent description is in terms of a point (and its velocity)
in configuration space. The mathematical objects of the theory are these coordinates as functions of time.
Other observables are constructed from them. Of course, some quantities, do not play a role; i.e. colour of
a falling ball or its internal structure. Thus they not appear in the description.

For a quantum system the q’s and p’s are not all simultaneously measurable with precision (‘compatible’),
as will appear. A configuration is instead specified by a set of measurements that are mutually compatible.
The results of these are used as labels for a ‘state vector’. A state is thus described as an undisturbed motion
that is restricted by as many conditions as are theoretically possible without mutual interference.

The state vector (or state for short) is the central mathematical object and contains all information
about the system. It is written |α〉 in the Dirac notation, where α stands for the set of labels needed for
unambiguous specification in the current context.

In classical mechanics the basic quantities are functions of time which thus belong to a (vector) space of
functions. Similarly, the quantum mechanical state vector also belongs to a vector space which, as we will
see, is a complex Hilbert space (a complete vector space with an inner (scalar) product).

Examples: |p〉 could be a state of a particle of momentum p; |E,p〉 could be a state of
a free particle of definite energy and momentum; |r1, r2〉 could be a state of two particles at
positions r1,2; |E, j, m〉 could be a state of an atom with definite energy, angular momentum
and z-component of angular momentum; |En〉 or just |n〉 could be the state of a system with
energy En, the nth of a discrete set of possibilities.

Examples: Other, more homely, mathematical theories may be formulated with state vectors,
and operators. For instance, models of:- travel round networks; stochastic (Markov) processes.

State vectors |α〉 belong to a linear vector space over CC, comprising all possible states of the system. The
axioms of a linear vector space involve the existence of a zero element and commutativity with numbers.
The superposition principle is very important: if |α〉 and |β〉 are in the space then so is c1|α〉+ c2|β〉 for all
complex c1,2.
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Superposition in quantum mechanics embodies uncertainty, for a state may be linearly composed of other
states, each corresponding to a different possible outcome of a measurement.

Example: If an atom may be observed to have energies E1 or E2, with corresponding states
(state vectors) |E1〉 and |E2〉, then another possible state of the atom is described by the state
(vector) |ψ〉 = |E1〉+ |E2〉, say. (Here the ψ sign is just a convenient state label. It doesn’t mean
that |ψ〉 has energy E1+E2 nor that its energy=ψ. As will become clear, an energy measurement
made on state |ψ〉 may realise either outcome, E1 or E2, with equal probability.

The theory gives the same significance to |α〉 and c|α〉 for any non-zero complex number c. Such an
equivalence corresponds to considering rays in the space of states. Often one exploits this equivalence and
considers normalised states of the original space. However, for this to be made precise one needs to define
the norm.

• With each state vector |α〉 is associated a dual vector 〈α|. Then the inner or scalar product of two
states is defined as the complex number 〈α|β〉 with the property that

〈α|β〉 = 〈β|α〉∗

where * means complex conjugate. Note that this implies that the dual to the state vector c|α〉 is c∗〈α| and
that 〈α|α〉 is a real number.

In Dirac’s terminology |α〉 is called a ‘ket vector’ and its dual 〈α| is called a ‘bra vector’.
As usual the inner product is distributive over linear combination of states and obeys

〈α|α〉 ≥ 0

with equality iff |α〉 = 0. Then the Schwarz Inequality

〈α|α〉〈β|β〉 ≥ |〈α|β〉|2

follows from 〈γ|γ〉 ≥ 0 for all complex c where |γ〉 = |α〉+ c|β〉. Also the convention is to normalise states to

‖|α〉‖2 = 〈α|α〉 = 1

whenever possible. This fixes any multiplicative complex constant up to a phase (and in fact corresponds to
standard normalisation of probability density functions, as will appear).

Examples:
(i) If |α〉 etc. are represented by complex-valued functions ψα(x) etc. of the real variable

x ∈ (0, 1) then a suitable inner product 〈α|β〉 is
∫ 1

0
ψ∗
α(x)ψβ(x) dx.

(ii) With states represented by column vectors αi etc. then an appropriate inner product is
α+β, where α+ is the Hermitian conjugate of α — that is, its transpose with complex conjugate
elements.

Examples (i) and (ii) illustrate several ideas — normalisation for instance: in (i) ψα =
√

2 sinπx is
normalised by the factor

√
2. An unnormalised state |α〉 can always be normalised by dividing by 〈α|α〉1/2.

Note that an additional factor eiθ for any real θ does not change the normalisation.
Two states are mutually orthogonal if their inner product is zero; the only state orthogonal to all others

is the zero vector. Examples in cases (i) and (ii) are easy to find.
• Recall the idea of linear independence of a set of vectors, remember that a spanning set can be used

to express any vector in the space as a linear combination, and recall that a basis for a linear vector space
is a linearly-independent spanning set.

In quantum mechanics it is assumed that the state space is spanned by a set of states corresponding
to all the different possible outcomes of measurements of relevant observable quantities — momentum,
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energy, angular momentum, position, or whatever — i.e. physical completeness corresponds to mathematical
completeness. These spanning states turn out to be mutually orthogonal (or can be made so by the Gram-
Schmidt procedure), hence they are linearly independent, and so basis sets. They may be finite or infinite
in number, depending on the system and on the observable. Of course because some measurements are
mutually incompatible their corresponding bases are alternatives. The usual basis is that corresponding to
a maximal set of mutually compatible measurements. This is less vague than it sounds for the simplest
quantum systems.

Note that if an orthogonal basis {|i〉; i = 1, . . . ; 〈i|j〉 = 0, i ,= j} is normalised: 〈i|i〉 = 1, then in the
basis expansion

|α〉 =
∑

i

ci,α|i〉

the coefficients ci,α are simply given by
ci,α = 〈i|α〉.

If moreover |α〉 is normalised then ∑

i

|ci,α|2 = 1.

Examples: In case (i) recall Fourier Series; in case (ii) there is the standard basis {ui} where
ui has 1 as its i’th element and zero elsewhere.

We assume at present that the basis is discrete (countable). Infinite-dimensional inner-product spaces
over CC like this are called Hilbert Spaces. Comment: note, however, that the condition of countability of
the set of basis vectors is sometimes relaxed.

2.2 Operators

All physical information contained in a system’s state vector is extracted by certain linear operators acting
in the state space. Any operator Â in the space maps states to states:

|α〉 → |β〉 = Â|α〉.

A linear operator commutes with complex numbers and its operation is distributive over vector addition.

Examples: A simple linear operator is the identity Î that maps every vector to itself. Another
is the ‘back-to-back’ pairing of a vector and a dual vector

Â = |α〉〈β|

that maps c1|γ〉 + c2|δ〉 to the state |α〉 multiplied by the complex number c1〈β|γ〉 + c2〈β|δ〉. In
example (i) there are differential operators d/dx, d2/dx2 etc; and in (ii) linear operators are
(complex) square matrices.

• The sum of two operators is an operator. Writing the expansion of an arbitrary vector

|α〉 =
∑

i

|i〉〈i|α〉

in terms of any complete orthonormal (basis) set {|i〉; 〈i|j〉 = δij} we deduce a representation of the identity
operator;

Î =
∑

i

|i〉〈i|.

Each term |i〉〈i| is an example of a projection operator.
• The product ÂB̂ is an operator defined by

ÂB̂|α〉 = Â(B̂|α〉)

for all states |α〉.
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Examples: For any Â we have ÂÎ = Î Â = Â. For projectors P̂i = |i〉〈i| we have P̂iP̂j = δij P̂j .

Operator multiplication is generally not commutative, as illustrated by operators |α〉〈β| and |γ〉〈δ|. Non-
commutativity is significant in discussion of compatibility of measurements, when it is useful to define the
‘commutator’

[Â, B̂] ≡ ÂB̂ − B̂Â.

We will appreciate the true significance of the commutator later, when we discuss the compatibility of
measurements.

Note that the commutator has properties similar to those of the Poisson Bracket of classical mechanics:

[Â, B̂] = −[B̂, Â]

[Â + B̂, Ĉ] = [Â, Ĉ] + [B̂, Ĉ]

[cÂ, B̂] = c[Â, B̂]

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂

[Â, [B̂, Ĉ]] + [Ĉ, [Â, B̂]] + [B̂, [Ĉ, Â]] = 0.

The last of these is the ‘Jacobi Identity’.
• Positive integer powers of operators are defined by Ân = Â(Ân−1) with Â0 = Î. The usual index laws

apply and the unique inverse Â−1 obeys

ÂÂ−1 = Â−1Â = Î

if it exists. The inverse of a product of operators is easily seen to be the product of inverses in reverse order.
• Functions of operators, like exp Â, can be defined by e.g. power-series expansion. Then e.g. (exp Â)−1 =

exp−Â, but some convention is needed to deal with expressions like exp(Â + B̂) if [Â, B̂] ,= 0. Clearly func-
tions of operators commute iff the operators themselves commute.

• The inner product 〈α|(Â|β〉) is written symmetrically as

〈α|Â|β〉

and called a matrix element of Â. The matrix elements of Â define its action in the dual space by defining
the bra vector 〈α|Â for arbitrary |β〉.

Examples: The dual-space action of Â = |γ〉〈δ| is clear. In the space of example (ii) of column
vectors uα, with duals the rows u+

α and where the operators are square matrices M , the result is
just the matrix product u+

αM . In the function space (i) for differential operators where the inner
product is an integral the corresponding dual space operation is defined by integration by parts,
with homogeneous conditions specified to make boundary terms vanish.

• The vector dual to the ket Â|α〉 is the bra 〈α|Â†. Therefore the definition of the adjoint operator Â†

uses the complex inner product property, i.e.

〈α|Â†|β〉 = 〈β|Â|α〉∗

for all states.

Examples: If Â = |γ〉〈δ| then Â† = |δ〉〈γ|. In (ii) the adjoint of square matrix M is its Hermitian
conjugate M+. In function space (i), for a differential operator, integrate by parts.

It is easily seen that (Â†)† = Â, that the adjoint of a product is the product of adjoints in reverse order
and that (cÂ)† = c∗Â†.

• The eigenvalue problem for an operator: if

Â|a〉 = a|a〉
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for some complex number a and non-zero vector |a〉, then |a〉 is an eigenvector of Â belonging to eigenvalue
a. (Using a as state label is actually consistent with labelling by possible results of observation, as we will
see later, the latter turn out to be just eigenvalues).

Note that the equation defining an eigenvector is homogeneous so normalisation is arbitrary and can be
chosen for convenience.

The set of eigenvalues and eigenvectors of Â is called its spectrum. The spectrum of Â can be empty,
finite, countably infinite, or continuous. Some operators in quantum mechanics have an infinite spectrum,
part countable and part continuous.

Examples: If Â = |α〉〈β| then its spectrum consists of eigenvector |α〉 with eigenvalue 〈β|α〉,
plus any non-zero states orthogonal to |β〉, each with eigenvalue zero. The projector |i〉〈i| is
a particular case. This illustrates the possibility of ‘degeneracy’, when two or more linearly
independent eigenvectors belong to the same eigenvalue. For instance the entire spectrum of
Î is degenerate, as any non-zero state is an eigenvector with eigenvalue unity. If the vectors
in space (ii) have n components we have the familiar n × n matrix eigenvalue problem, where
besides degeneracy a defective spectrum is common. In a space (i) of functions ψ(x) on [0,1]
the operator d/dx has an empty spectrum if the space is restricted by the boundary condition
ψ(0) = ψ(1) = 0. However with these boundary conditions the operator d2/dx2 has eigenvectors
sin nπx with eigenvalues −(nπ)2 for n = 1, 2 . . .. If there are no boundary conditions the spectrum
of d/dx is ψa(x) = exp(ax) for any complex eigenvalue a, and that of d2/dx2 is ψa(x) = exp(±iax)
with eigenvalue −a2 for any a; twofold degeneracy. Note the illustration of possible dangers in
too carelessly asserting that if Â|a〉 = a|a〉 then f̂(Â)|a〉 = f(a)|a〉, although this is usually true.

Theorem: If both operators Â and B̂ have non-empty spectra then they have a common set
of eigenvectors if [Â, B̂] = 0. The converse is true if the eigenvectors are complete in the space.

Proof: Let ÂB̂ = B̂Â and Â|a〉 = a|a〉. Then

Â
(
B̂|a〉
)

= B̂Â|a〉 = a
(
B̂|a〉
)

.

The inference is that either
(
B̂|a〉
)

is zero or, since it obeys the same eigenvalue equation as |a〉, it must

actually be |a〉 — up to a factor anyway — i.e. B̂|a〉 = b|a〉. The inference made here is a crucial step
appearing repeatedly. It is clearly true if the eigenvalue a is unique (non-degenerate). Otherwise B̂|a〉 is
some linear combination of degenerate states with eigenvalue a. However the degenerate subspace may be
diagonalised with respect to B̂ and so simultaneous eigenvectors constructed. Thus the first part is proved.
To establish the converse, if both Â|a, b〉 = a|a, b〉 and B̂|a, b〉 = b|a, b〉 then ÂB̂|a, b〉 = ab|a, b〉 = B̂Â|a, b〉.
This holds for any linear combination of eigenvectors |a, b〉 and so we deduce that [Â, B̂] = 0 if the set {|a, b〉}
is complete. Completeness is assumed in quantum mechanics for operators identified with observables.

• It’s important to realise, and worth repeating, that even if [Â, B̂] = 0 then an eigenstate of Â is not
automatically an eigenstate of B̂ unless the spectrum of Â is non-degenerate!

Example: Commuting pairs with common eigenvectors include Â and f̂(Â), but then degen-
eracy may appear. For instance when Â = 1

2 p̂2 and B̂ = p̂ then eigenstates of Â are generally
linear combinations of two eigenstates of B̂ with eigenvalues ±p. See also the examples of d/dx
and d2/dx2 above. Some operators apply to separate spaces and commute for this reason — the
momentum and spin observables of a particle for instance.

• Two very important special types of operator are self-adjoint operators and unitary operators.
Operator Ŝ is self-adjoint (or Hermitian) if Ŝ = Ŝ†, i.e. if

〈α|Ŝ|β〉 = 〈β|Ŝ|α〉∗

for all states |α〉, |β〉, . . . in a complete set.
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Examples: Both Î and P̂i = |i〉〈i| are clearly self-adjoint; for (ii) with square matrices M the
property is M = M+, i.e. M is an Hermitian matrix. In space (i) with ψ(0) = ψ(1) = 0, operator
d/dx is not self-adjoint while id/dx and d2/dx2 are. (Integrate by parts).

Preceding examples illustrate the following:

Theorem: The eigenvalues of a self-adjoint operator (if it has any!) are real and the eigenvec-
tors belonging to different eigenvalues are orthogonal.

Firstly observe that if Ŝ|s〉 = s|s〉 the dual equation is 〈s|Ŝ = s∗〈s|, giving two results for 〈s|Ŝ|s〉 that
imply s = s∗ since 〈s|s〉 ,= 0. Secondly, if Ŝ|si〉 = si|si〉 for i = 1, 2 then the case i = 1 and the dual of the
case i = 2 give two calculations of 〈s2|Ŝ|s1〉 — which leads at once to (s1 − s2)〈s2|s1〉 = 0 and if s1 ,= s2

orthogonality is established. In fact this applies to the whole spectrum since degenerate eigenvectors can be
orthogonalised by the Gram-Schmidt method.

A useful spectral representation of Ŝ = Ŝ† (of which the resolution of Î into projectors is a special case)
is found by using its (assumed) complete set of orthonormal eigenvectors. i.e. Since Ŝ|α〉 =

∑
s Ŝ|s〉〈s|α〉 we

can write Ŝ =
∑

s |s〉s〈s|.
• Operator Û is unitary if Û−1 = Û †. Then Û Û † = Û †Û = Î so that if |α〉 = Û |β〉 then 〈α|α〉 = 〈β|β〉

i.e. have the same norm; thus Û is norm preserving. If further |α〉 = c|β〉 then we see that all (complex)
eigenvalues c of Û have modulus unity.

Clearly Î is unitary; so is any operator Û(θ) = exp(iθŜ) where θ is real and Ŝ = Ŝ†. This parametrisation
is useful when Û is connected continuously to the identity Î = Û(0). Then the connection between unitary
(norm-preserving) operators and self-adjoint (observable) operators is of great significance.

2.3 Measurements: Physical Assumptions

We make two basic assumptions which connect the mathematical formulation of the theory to the observa-
tions (i.e. measurements) of physical quantities.

The first postulate (connection with physics) states:

To every physically observable quantity i.e. an observable A corresponds a self-adjoint linear
operator Â in the state space with a complete set of eigenvectors {|a〉} (and conversely).

The second postulate (the measurement postulate) states:

A single measurement of A on a system in state |α〉 gives one of the (real) eigenvalues a of Â
with probability |〈a|α〉|2. After the measurement the state is ∼ |a〉.

Note that results of observations are real numbers, and this statement assumes for now that the spectrum
of Â is discrete and that state |α〉 and (orthogonal) eigenstates {|a〉; Â|a〉 = a|a〉} are normalised to unity.
Otherwise |〈a|α〉|2 is a relative probability.

The set of ‘observables’ includes (usually) the basic degrees of freedom of the system — the classical p’s
and q’s — and quantities derived from them.

Examples: For a particle, observables include position r, linear momentum p, plus e.g. kinetic
energy T (p), potential energy V (r) , angular momentum L = r × p, as well as any intrinsic
properties like spin, electric charge, etc.

The measurement postulate refers to a result of an observation merely having a probability of realisation.
It’s goodbye to classical determinism — results of measurements on quantum systems are generally uncertain
even when the state vector is known.

At the heart of this is the basis expansion of a state in terms of eigenstates of the observable Â: if
|α〉 =

∑
a ca,α|a〉 then the size of the coefficient ca,α = 〈a|α〉 determines the ‘amount of |a〉 present’. In fact

the squared moduli are the probabilities of getting the a’s — and normalisation of the states makes their
sum equal to 1.
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If it happens that |α〉 = |a〉, an eigenstate of Â, then measurement of A is certain (probability=1) to give
result a (from normalisation) and never (probability=0) gives any other outcome (from orthogonality). The
system is ‘in a state of definite A’.

However, when the system is not in a state of definitive A the measurement changes the state:

|α〉 → λ|a〉,

where |a〉 is an eigenstate of Â. The factor λ is there to indicate that after the measurement the vector
is not normalised. However, as the states correspond to rays - the resultant vector can be normalised by
multiplication by an appropriate λ.

Note that the process of measurement is very “acausal”; one way to think of it is to put

|α〉 =
∑

a

ca,α|a〉 → |a〉

and we have “the reduction of the wave function” or “the collapse of the state vector” onto (just one)
eigenvector of Â.

Note that as after the measurement of Â which gave the value a the state vector is an eigenstate of Â
the successive remeasurements of the same observable (i.e. of Â) will give the same answer i.e. a. This is
how the theory describes the sudden change in the observer’s state of knowledge and the “preparation” of a
system to being in a definite state.

Exactly how a non-deterministic collapse of the state vector takes place, especially when the ‘observer’
should in principle be described by quantum mechanics too, is a feature that provokes discussion.

• Making a measurement of A on each of a large number of identically-prepared copies of a system
generally gives a distribution of results, for which the ordinary mean or mathematical expectation 〈A〉 is
given by

∑
a(result)a(probability)a. Each copy of the system has by definition the same state vector |α〉 so

we have:
〈A〉 =

∑

a

a |〈a|α〉|2 =
∑

a

〈α|a〉a〈a|α〉

and, recognising the spectral representation of Â, we obtain the important formula

〈A〉 = 〈α|Â|α〉

for an expectation value in quantum mechanics.
If A is observed on many identical systems then its expectation value is 〈A〉 and the standard deviation

∆A is a familiar measure of scatter of results defined by (∆A)2 ≡ 〈(A − 〈A〉)2〉 ≡ 〈A2〉 − 〈A〉2. Note that
with the formula 〈A〉 = 〈α|Â|α〉 we have ∆A = 0 iff |α〉 is an eigenvector of Â.

• Observables are simultaneously measurable with precision (compatible) if their corresponding oper-
ators commute, for as seen above, a state can then be an eigenstate of them all. The common eigenstates
of a complete set of mutually commuting observables form an orthonormal basis for the state space — they
include all possible outcomes of measurement of all compatible A’s and physical completeness is equated
to mathematical completeness. What constitutes the former is a physical judgement and usually includes
at least those observables from which is built the system’s most important operator — the Hamiltonian
operator, controlling its time-dependence (as described below).

• Observables that are not compatible have non-commuting operators and the degree of the mutual
interference of their measurement is given precise meaning in terms of their commutator, as shown in the
following theorem

Theorem: Let A and B be observables with self-adjoint operators Â and B̂. Then for a
quantum system in state |α〉 at a given instant

∆A∆B ≥ 1
2

∣∣∣〈α|[Â, B̂]|α〉
∣∣∣ .
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Proof: Let Â′ = Â − 〈α|Â|α〉Î , similarly B̂′. Then both Â′ and B̂′ are self-adjoint (expectation values
of self-adjoint operators are real) and their commutator is identical to [Â, B̂]. Therefore

〈α|[Â, B̂]|α〉 = 〈α|Â′B̂′|α〉 − 〈α|B̂′Â′|α〉 = 2iIm〈α|Â′B̂′|α〉.

Note that the product of two self-adjoint operators is not self-adjoint unless they commute, so its expectation
value is not real. We now have

1
2

∣∣∣〈α|[Â, B̂]|α〉
∣∣∣ ≤
∣∣∣〈α|Â′B̂′|α〉

∣∣∣ ≤
√
〈α|(Â′)2|α〉〈α|(B̂′)2|α〉.

The last step uses the Schwarz inequality and the square root is just ∆A∆B. So the result is proved.
The conclusion is that incompatible measurements carried out simultaneously on copies of a system

always give a scatter of results. This is a manifestation of uncertainty in quantum mechanics.
Thus, after measurement of A, a measurement of quantity B on the same system will give an uncertain

result if [Â, B̂] ,= 0, for the system cannot now be in an eigenstate of B̂, even if it was originally. The
mutual interference of incompatible observations on the same system is thus clear. This is another aspect of
quantum mechanical uncertainty.

2.4 Revision of Classical Mechanics

Newton’s second law for a particle of mass m at position r and experiencing force F is

dp
dt

= F,

where p = mṙ. Taking the vector product with r leads to introduction of angular momentum L = r × p,
which is conserved for central forces. Taking the scalar product with ṙ and integrating with respect to time t
leads to discussion of work and of energy and its conservation, and for conservative forces to the introduction
of a potential V (r) where F(r) = −∇V . Extended systems are treated as assemblies of interacting particles.

Advanced formulations use energy. Generalised coordinates qi(t) in an N -dimensional abstract ‘config-
uration space’ are used to eliminate constraint forces that do no work. They coincide with coordinates in
ordinary space only in simple cases. N counts the system’s ‘degrees of freedom’. The Lagrangian L is defined
in terms of kinetic energy T (qi, q̇j) and potential energy V as

L(qi, q̇j) = T − V.

The N second-order Lagrangian equations of motion

d

dt

(
∂L
∂q̇i

)
=
∂L
∂qi

then follow as necessary conditions for the ‘action’

S =
∫

L dt

(which measures mean energy interchange in the motion) to be stationary against variations in each trajectory
qi(t) independently.

Comments:

• 1. The principle of least action is equivalent to Newton’s second law.

• 2. The principle involves certain acausality. How does the particle know which way to go? Does it
try all possibilities? In fact Quantum Mechanics solves this problem. All trajectories are used but
classically we observe only those of least action. (This leads us to Feynman’s path integral formulation
of Quantum Mechanics.)

12



Generalised momentum
pi ≡

∂L
∂q̇i

conjugate to qi is conserved if ∂L/∂qi = 0. Linear momentum is conjugate to linear displacement; angular
momentum is conjugate to angular displacement.

The Hamiltonian is

H(qi, pj) = −L(qi, q̇j) +
N∑

k=1

pk q̇k

with q̇’s eliminated in favour of p’s. If (as is usual) T is bilinear in q̇’s the Hamiltonian is total energy T + V
expressed in the p, q variables. The p’s and q’s are independent dynamical variables; a configuration of the
system is a point in the 2N -dimensional p − q ‘phase space’. Its time development is a path traced out
according to the 2N first-order Hamilton equations of motion

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
.

Observables like position, velocity, momentum, angle, angular momentum, energy etc. are constructed
from the phase-space coordinates q, p. Any observable A depends on time t through these coordinates, as
well as possibly explicitly. Then using the chain rule and Hamilton’s equations we have

dA

dt
=
∂A

∂t
+ {A, H}

where the Poisson Bracket of A and H appears. This is defined for any two functions A, B of the p’s and
q’s as

{A, B} ≡
N∑

k=1

(
∂A

∂qk

∂B

∂pk
− ∂A

∂pk

∂B

∂qk

)

and is an invariant of canonical transformations, i.e. changes of variables that leave the form of Hamilton’s
equations intact. The Poisson Bracket has properties:

{A, B} = −{B, A}
{A + B, C} = {A, C} + {B, C}

{cA, B} = c{A, B}
{AB, C} = A{B, C} + {A, C}B

{A, {B, C}} + {C, {A, B}} + {B, {C, A}} = 0.

Comments:
• 1. This is another equivalent formulation of Classical Mechanics.

• 2. Poisson Bracket of A and B has the same properties as the commutator of Â and B̂.

• 3. The basic Poisson Bracket is
{qj , pk} = δjk.

• 4. An observable A is conserved (a constant of the motion) if both ∂A/∂t = 0 and {A, H} = 0. So for
instance energy is conserved if H is not explicitly t-dependent.

Example: The simple pendulum, which is a mass-point on a light inextensible string making
small oscillations in a plane about equilibrium under gravity alone, has one degree of freedom
and is an example of a (one-dimensional) simple-harmonic oscillator. If mass is m and linear
displacement is q, then kinetic energy is T = 1

2mq̇2 and potential energy is V = 1
2mω2q2. Here

ω is angular frequency of oscillation, related to the length of the string and the acceleration of
gravity. Conjugate momentum is p = mq̇ and the Hamiltonian is H = 1

2 ((p2/m) + mω2q2).
Total energy is identical to H and is conserved. The classical oscillator is important because
quite general systems near equilibrium can be decoupled into normal modes undergoing simple
harmonic motions. And in quantum mechanics the quadratic Hamiltonian is one of the few
completely soluble examples.
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2.5 Quantum Conditions

The theory gets some content by the specification of commutators of operators. This allows the computation
of their spectra and so of the actual results of measurements. This is also the place where Planck’s constant
h̄ enters.

The ‘canonical’ quantisation postulate (the correspondence principle) states that for any two ob-
servables

[Â, B̂] = ih̄{A, B},
i.e. that the commutator of two self-adjoint operators is equal to ih̄×(the result of calculating the Poisson
Bracket of the corresponding classical quantities), where the result is interpreted as an operator. Plainly this
is not inconsistent with the properties of self-adjoint operators, commutators and Poisson Brackets. But,
most importantly, the resulting theory agrees with the experiment. It also has the correct classical limit.

An immediate application is to the degrees of freedom q and p themselves. While [q̂i, q̂j ] = [p̂i, p̂j ] = 0
we have

[q̂j , p̂k] = ih̄δjk Î .

That is, a generalised coordinate and its conjugate momentum are always incompatible.
At the same time, from the result for the dispersions the Heisenberg Uncertainty Relation follows:

∆A∆B ≥ 1
2 h̄ |{A, B}| ,

which for the p,q coordinates reads
∆qj∆pk ≥ 1

2 h̄δjk.

So for a quantum system like an electron or atom or molecule with position r and linear momentum
p the x-components (say) cannot be precisely determined together and many measurements on identically
prepared systems have dispersions constrained by

∆x∆px ≥ 1
2 h̄.

Planck’s constant sets a fundamental limit of smallness. Note however that e.g. y and px are compatible and
can be measured together exactly.

As will be elucidated, to a particle with definite momentum p corresponds a plane wave of wavelength
λ = 2πh̄/p uniformly filling space and the particle is equally likely to be found anywhere. And to a particle
with definite position corresponds a uniform Fourier superposition of plane waves of all wavelengths and so
its momentum is completely indeterminate.

Also, to see things smaller than δx one needs radiation of wavelength λ < δx. This inevitably means
transfer of momentum δp ≈ 2πh̄/λ > 2πh̄/δx, consistent with the Uncertainty Principle. Schiff pps. 9 – 11
and Polkinghorne pps. 44 – 50 discuss the ‘gamma-ray microscope’.

Confinement of a particle to a finite region inevitably means that its momentum and so its kinetic energy
is non-zero.

• Direct from the quantisation rule we get for instance that [p̂j , Â] = −ih̄∂Â/∂q̂j, and likewise with p
and q interchanged and opposite sign on the right. So e.g. [p̂x, x̂2] = −2ih̄x̂, which also follows easily from
the x, px commutator, using the basic properties of [Â, B̂]. Indeed, often it’s simplest to express observables
explicitly as functions of the p’s and q’s (using the classical relations) and then compute commutators from
[q̂, p̂] = ih̄. A warning: problems could arise if ordering of non-commuting operators can’t be fixed by the
need for self-adjointness, or if the system has no classical analogue.

Examples: For a particle of mass m, position r and linear momentum p, the kinetic energy
T = 1

2p · p/m and potential energy V (r) are made quantum operators by replacing components
x . . . and px . . . by x̂ . . . and p̂x . . .. Angular momentum L = r × p is quantised likewise. e.g. A
free particle has V̂ = 0 and a one-dimensional simple harmonic oscillator of angular frequency ω
has V̂ = 1

2mω2x̂2. Total energy is Ê = T̂ + V̂ . Then [p̂, T̂ ] = [r̂, V̂ ] = 0 for any components and
e.g.

[x̂, Ê] = [x̂, T̂ ] =
ih̄

m
p̂x.

A free particle can be described by states |E,p〉 of definite energy and momentum and for a given
E there is degeneracy with respect to direction of momentum p.
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2.6 Simple Applications

Commutators determine spectra. Here are 3 cases, including discrete (‘quantised’) spectra of two observables
(energy, angular momentum) that classically take continuous values. Planck’s constant sets the scale of
discreteness.

Each calculation incorporates a similar logical step, namely if Â|?〉 = a|?〉 then |?〉 ≡ c|a〉, where |a〉 is
the eigenvector of Â belonging to eigenvalue a, and c could be zero. The possibility of degeneracy of Â’s
spectrum is ignored in these simple cases because it’s irrelevant. In each example there’s no other observable
or operator that can distinguish degenerate states.

2.6.1 Position and Momentum

Suppose [x̂, p̂] = ih̄Î where x̂ = x̂†, p̂ = p̂† and x̂|x〉 = x|x〉, and let

|?〉 = (Î − i

h̄
εp̂)|x〉

for real ε where |ε| 0 1. Then

x̂|?〉 = (Î x̂ − i

h̄
εx̂p̂)|x〉 = ((Î − i

h̄
εp̂)x̂ + εÎ)|x〉,

using the x, p commutator. So we have

x̂|?〉 = (x + ε)|?〉 + O(ε2)

for any small number ε, implying that (no degeneracy!)

|?〉 = c|x + ε〉

to first order. Now to the same approximation |c| = 1, since

〈?|?〉 = 〈x|(Î +
i

h̄
εp̂)(Î − i

h̄
εp̂)|x〉 = 〈x|x〉 + O(ε2),

and we choose c = 1. The normalisation of states |x〉 is not specified.
An arbitrary finite displacement x → x+ ∆ can be composed of a large number n of small displacements

∆/n:

|x + ∆〉 ≈ (I − i

h̄

∆
n

p̂)n|x〉,

which in the limit n → ∞ gives the unitary transformation

|x + ∆〉 = exp(− i∆
h̄

p̂)|x〉.

Thus, as ∆ is arbitrary, without any other constraints we have that the spectrum of a configuration-
space position operator is continuous and that unitary transformations |x〉 → |x + ∆〉 are ‘generated’ by the
canonically conjugate self-adjoint momentum p̂. Translations in y and z are generated by p̂y and p̂z and
commute with those in x since e.g. [p̂x, p̂y] = 0.

Interchanging position and momentum gives independent translations in components of momentum:

|p + k〉 = exp(
ik

h̄
x̂)|p〉

where k is arbitrary unless other conditions apply.
Comments:

• 1. The sign is different due to the asymmetry of the commutator.
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• 2. Similar results hold for any canonically conjugate q, p pair where [q̂, p̂] = ih̄. In particular continuous
angular displacements (rotations) about an axis are generated by the conjugate angular momentum.
(Replace x̂ by an angle and p̂ by the operator for the component of angular momentum about the
rotation axis).

• 3. However, the fundamental fact that rotations about different axes in three dimensions don’t commute
implies that components of angular momentum in quantum mechanics don’t commute. Then, because
of these extra conditions, continuous changes in angular momentum cannot be generated by an angular
position operator.

2.6.2 Angular Momentum

Classically L = r × p and quantising by writing each Cartesian component of r and p as a self-adjoint
operator we have

L̂j = εjkl r̂kp̂l,

i.e. L̂x = ŷp̂z − ẑp̂y and so on. Now L̂j = L̂†
j since [r̂k, p̂l] = 0 for k ,= l; there is no operator-ordering

ambiguity. With the commutation rules for position and linear momentum or direct from Poisson brackets
we find

[r̂2, L̂j ] = [p̂2, L̂j] = 0,

consistent with lengths of vectors being unaffected by rotations. At the same time we find the fundamental
commutator for angular momentum operators:

[L̂j , L̂k] = ih̄εjklL̂l,

or [L̂x, L̂y] = ih̄L̂z and so on.
Definition: any self-adjoint operators, Ĵ1,2,3 say, that obey these commutators are called angular mo-

mentum operators. Then as
[Ĵ2, Ĵk] = 0

where Ĵ2 = Ĵ2
1 + Ĵ2

2 + Ĵ2
3 = (Ĵ2)† the length of J and just one of its components (say Ĵz ≡ Ĵ3) can be

sharply defined together. This is in contrast to classical mechanics where all components of the vector can
be determined completely.

So there is a set of orthonormal states |a, b〉 where simultaneously

Ĵ2|a, b〉 = a|a, b〉 Ĵz|a, b〉 = b|a, b〉

for real a,b. To find them, first observe that a ≥ b2 ≥ 0, because a − b2 = 〈a, b|(Ĵ2 − Ĵ2
z )|a, b〉 and this is a

sum of terms of the form
∥∥∥Â|α〉

∥∥∥
2
, where Â ≡ Ĵx,y = Â†.

To deal with Ĵ2
x + Ĵ2

y define
Ĵ± = Ĵx ± iĴy = (Ĵ∓)†,

and calculate
Ĵ∓Ĵ± = Ĵ2

x + Ĵ2
y ± i[Ĵx, Ĵy] = Ĵ2 − Ĵ2

z ∓ h̄Ĵz.

So
〈a, b|Ĵ∓Ĵ±|a, b〉 = a − b2 ∓ bh̄ ≥ 0

since this is
∥∥∥Ĵ±|a, b〉

∥∥∥
2
. Now since

[Ĵz, Ĵ±] = [Ĵz, Ĵx] ± i[Ĵz, Ĵy] = ±h̄Ĵ±

we find that
Ĵz(Ĵ±|a, b〉) = (Ĵ±Ĵz ± and h̄Ĵ±)|a, b〉 = (b ± h̄)(Ĵ±|a, b〉)
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and conclude that either Ĵ±|a, b〉 = 0 or Ĵ±|a, b〉 = c±|a, b ± h̄〉 where from above |c±|2 = a− b2 ∓ bh̄. Since
[Ĵ2, Ĵ±] = 0 the eigenvalue a is unaffected by Ĵ± and keeps an upper limit on b2.

Thus from a given |a, b〉 with b2 ≤ a successive applications of Ĵ+ yield eigenvectors of Ĵz with b increasing
in steps of h̄ until b = b′ where Ĵ+|a, b′〉 = 0, when c+ = 0 and a = b′(b′+h̄). Likewise, successive applications
of Ĵ− step down in b until c− = 0, or b = b′′ where a = b′′(b′′ − h̄). Clearly (b′ − b′′)/h̄ = n, an integer, so
solving:

b′ = −b′′ =
n

2
h̄ and a =

n

2
(
n

2
+ 1)h̄2.

The spectra are discrete; length and z-projection of angular momentum are quantised in units of h̄.
Introduce angular momentum ‘quantum numbers’ j and m as labels for the state |j, m〉 where

Ĵ2|j, m〉 = j(j + 1)h̄2|j, m〉 and Ĵz|j, m〉 = mh̄|j, m〉

for j = n/2 = 0, 1
2 , 1, 3

2 , 2, . . . with m = −j,−j + 1,−j + 2, . . . j − 1, j; i.e. (2j + 1) values and where
〈j, m|j′, m′〉 = δjj′δmm′ . The usual phase choice is c± real and positive, giving for the ‘ladder operators’

Ĵ±|j, m〉 =
√

(j ∓ m)(j ± m + 1)h̄|j, m ± 1〉.

Since Ĵx = (Ĵ+ + Ĵ−)/2 and Ĵy = (Ĵ+ − Ĵ−)/2i, although the x- and y-components of angular momentum
are not sharply defined in an eigenstate |j, m〉 we still have 〈Jx,y〉 = 0.

Comments:

• 1. For ordinary (‘orbital’) angular momentum of a particle L = r × p only integer values of l ≡ j are
realised; all possibilities are encountered for ‘spin’ angular momentum, an internal degree of freedom
of a quantum particle.

• 2.

– a. For j = 1
2 two values m = ± 1

2 are possible; the a.m. vector of length 1
2

√
3h̄ is either nearly

parallel (m = 1
2 ) or antiparallel (m = − 1

2 ) to the z-axis.

– b. For j = 1 the values m = 1, 0,−1 correspond to a vector of length
√

2h̄ nearly parallel,
perpendicular, nearly antiparallel, to the z-axis. And so on. In each case the projection on the
x − y plane is not simultaneously measurable but its average is zero.

2.6.3 Energy of a Simple-Harmonic Oscillator (one dimension)

For a particle of mass m executing SHM on the x-axis about the origin with angular frequency ω we have
the Hamiltonian (which is the same as the total energy operator)

Ĥ =
1

2m
p̂2 +

mω2

2
x̂2 = Ĥ†

where [x̂, p̂] = ih̄ and x̂ = x̂† and p̂ = p̂†, and we wish to solve Ĥ |E〉 = E|E〉. Firstly we have E = E∗

and, because Ĥ is a sum of squares of self-adjoint operators, E ≥ 0. For the previous sum of squares a
‘factorisation’ into what proved to be ladder operators did the trick. So define

â = (p̂ + imωx̂)/
√

2m, â† = (p̂ − imωx̂)/
√

2m.

Then
ââ† = Ĥ +

iω

2
[x̂, p̂] = Ĥ − 1

2 h̄ωÎ â†â = Ĥ + 1
2 h̄ωÎ.

Thus
Ĥâ = (ââ† + 1

2 h̄ω)â = â(â†â + 1
2 h̄ω) = â(Ĥ + h̄ω),

or [Ĥ, â] = h̄ωâ. Likewise Ĥâ† = â†Ĥ − h̄ωâ†.
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The similarity with the Jz, J± commutator is clear and indeed

Ĥ(â|E〉) = (âĤ + h̄ωâ)|E〉 = (E + h̄ω)(â|E〉),

so unless â|E〉 = 0 we infer that
â|E〉 = c+|E + h̄ω〉.

Similarly either â†|E〉 = 0 or
â†|E〉 = c−|E − h̄ω〉.

Using the formulae for ââ† and â†â and with normalised states |E〉 we have

|c+|2 = 〈E|â†â|E〉 = E + 1
2 h̄ω ≥ 0,

|c−|2 = 〈E|ââ†|E〉 = E − 1
2 h̄ω ≥ 0.

So from given |E′〉 with E = E′ ≥ 0 successive uses of of â† step E down by h̄ω at a time until E = E0

where â†|E0〉 = 0. Evidently this happens at E0 = 1
2 h̄ω, when c− = 0. To avoid negative |c−| only starting

values E′ = 1
2 h̄ω, 3

2 h̄ω, 5
2 h̄ω, . . . are possible. Clearly â steps up this sequence indefinitely.

Summary: The one-dimensional simple-harmonic oscillator has a discrete energy spectrum, with eigen-
states of Ĥ labelled by quantum number n:

{|n〉; 〈n|n′〉 = δnn′}

and eigenvalues
En = (n + 1

2 )h̄ω,

where
Ĥ = 1

2 (ââ† + â†â),

â|n〉 =
√

(n + 1)h̄ω|n + 1〉, â†|n〉 =
√

nh̄ω|n − 1〉

for n = 0, 1, 2, 3, . . .. The ‘ground state’ |0〉 obeys â†|0〉 = 0 and

|n〉 =
1√

n! (h̄ω)n
(â)n|0〉.

Observables p̂ and x̂ are proportional to â ± â† where the ‘annihilation’ and ‘creation’ operators obey

[â†, â] = h̄ωÎ.

Comments:

• The quantum oscillator is never at ‘rest’ for its ground-state energy has ‘zero-point’ value 1
2 h̄ω.

• Note the appearance of a relation of form Energy = h̄× (angular frequency), which has general
significance in discussion of time-dependence.

3 Representation Theory

3.1 Position Representation

3.1.1 Wave function

Consider a system which classically has N degrees of freedom. Then q̂1, ..q̂N form a complete set of commuting
operators and we have

[q̂i, q̂j ] = 0, [p̂i, p̂j ] = 0, [q̂i, p̂j] = ih̄δij .

18



Hence we can take as a basis in the space of states of the system the basis formed by all eigenstates of
q̂i i.e.

|q1, ..qN 〉 = |q〉,

where
q̂i|q〉 = qi|q〉

As we already know these eigenvalues are continuous; they generalise the concept of position of a particle.
To see this consider one particle and the self-adjoint operator r̂ that measures its position components as
generalised variables, coinciding with its coordinates in ordinary three-dimensional space. An eigenstate |r〉
of r̂ is labelled by the continuously-variable real vector eigenvalue r. Orthonormality must be generalised
from the discrete case that uses the Kronecker delta, and completeness (resolution of the identity) from a
simple sum over eigenvalues.

Proceed by generalising the completeness relation. Define

Î =
∫

d3r |r〉〈r|,

where d3r stands for dx dy dz and the integral extends over all space. Then the basis expansion is

|α〉 =
∫

d3r|r〉〈r|α〉

and from considering 〈r′|α〉 we find
〈r′|r〉 = δ(r′ − r).

So the presence of operators with continuous spectra necessarily leads to state vectors with ‘delta-function
normalisation’, i.e. orthogonal but with a certain type of infinite norm. We will see later that this is equally
so if the basis of r is replaced by another continuous basis, e.g. momentum.

In our N dimensional space we have as normalisation

〈q′|q〉 = 〈q′1...q′N |q1...qN 〉 =
∏

i=1,N

δ(q′i − qi) = δN (q′ − q)

and in this basis
1 =
∫

dNq|q〉〈q|.

Moreover,

|α〉 =
∫

dNq|q〉〈q|α〉

The representative of |α〉 is the complex number 〈q|α〉 that depends continuously on the real (N dimen-
sional) vector q. This is a complex function of q, which we can denote by wavefunction ψα(q). This function
is called the wavefunction of the state |α〉 in the basis {|q〉}. Note that in many texts and we adopt this
convention too this function is denoted, simply, as α(q).

The inner product is

〈α|β〉 =
∫

dNq ψ∗
α(q)ψβ(q)

and for normalisable states |α〉 the wavefunction is square-integrable:

〈α|α〉 =
∫

dN q |ψα(q)|2 = 1.

This implies that the wavefunction decreases faster than |q|−N/2 as |q| → ∞.
When labels α, β, . . . are themselves continuous eigenvalues then evidently the eigenfunctions are not

square-integrable but:

〈α|α′〉 =
∫

dNq ψ∗
α(q)ψα′(q) = C(α)δ(α − α′),
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if Î =
∫

dαC−1|α〉〈α|. The converse implication in fact holds too: eigenfunctions that are not square-
integrable but have δ-function norm imply continuous eigenvalues (and normalisable eigenfunctions imply a
discrete spectrum).

Comment:

• Note that
|α〉 → ψα(q)

defines an isomorphism between the ‘abstract’ Hilbert space of states |α〉 and L2(RN ), the Hilbert
space of functions, square integrable on RN .

How does any operator ξ̂(q̂) act on ψα(q)? Clearly

ξ̂(q̂)|q〉 = ξ(q)|q〉.

So
ξ̂(q̂)|α〉 = ξ̂(q̂)

∫
dNqψα(q)|q〉 =

∫
dNqψα(q)ξ(q)|q〉

so the wavefunction of ξ̂(q̂)|α〉 is ξ(q̂)ψα(q) and so the action of ξ̂(q̂) is the multiplication by ξ(q).
Definition: The basis {|q〉} is said to be a position representation of the Hilbert space of states in

which ψα(q) is the wavefunction of |α〉.

3.1.2 Change of basis

Note that the equation
q̂i|q〉 = qi|q〉

defines the eigenstates up to a factor; normalisation condition defines the eigenvectors up to a factor of
modulus 1. Thus we can replace the basis {|q〉} by a new basis

|q, ∗〉 = eiξ(q)|q〉.

In this basis |α〉 will be represented by ψα∗(q), where

ψα∗(q) = 〈q, ∗|α〉 = e−iξ(q)ψα(q)

and
|α〉 =

∫
dNqψα∗(q)|q, ∗〉.

3.1.3 Finding the action of the p̂ operator (setting up the Schrödinger representation)

Next we have to decide how the operators p̂ act in the space of wave functions. We will argue that we can
represent their action by

p̂i = −ih̄
∂

∂qi

in the sense that
p̂iψ(q) = −ih̄

∂

∂qi
ψ(q).

First define
∂̂i|ψ〉 ≡

∫
dN q

∂ψ

∂qi
(q)|q〉

and then we will show that −ih̄∂̂i behaves as p̂i. Note that here we are using the convention that ψ(q) =
〈q|ψ〉.
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Next we calculate

〈φ|∂̂i|ψ〉 =
∫

dNq φ%(q) ∂ψ∂qi
(q) =

=
∫

dNq ∂
∂qi

[φ%(q)ψ(q)] −
∫

dNq ψ(q) ∂
∂qi
φ%(q) =

=
∫

dN−1q φ%(q)ψ(q) |∞−∞ −
[∫

dNq ψ%(q) ∂φ∂qi
(q)
]%

,

where in going from the first line to the second we have integrated by parts. Assuming that the functions
vanish at infinity the first term in the last line vanishes and we have

〈φ|∂̂i|ψ〉 = −(〈ψ|∂̂i|φ〉)%

and so
〈φ| − ih̄∂̂i|ψ〉 = (〈ψ| − ih̄∂̂i|φ〉)%

and so we see that −ih̄∂̂i is Hermitian in the space of functions which vanish at infinity.
Next we consider the commutator [−ih̄∂̂i, −ih̄∂̂j ]. We have

(−ih̄∂̂i)(−ih̄∂̂j)|ψ〉 = −h̄2
∫

dNq ∂2ψ
∂qi∂qj

|q〉 = (−ih̄∂̂j)(−ih̄∂̂i)|ψ〉

thus showing that
[−ih̄∂̂i, −ih̄∂̂j ] = 0 = [p̂i, p̂j ].

Next we consider [−ih̄∂̂i, q̂j ] or, more generally, [−ih̄∂̂i, γ̂(q̂)]. We have

(−ih̄∂̂i)γ̂(q̂)|ψ〉 = −ih̄∂̂i γ̂(q̂)
∫

dNq ψ(q)|q〉

= −ih̄∂̂i

∫
dNqψ(q)γ(q)|q〉 = −ih̄

∫
dNq ∂

∂qi
{ψ(q)γ(q)} |q〉

= −ih

∫
dNq[γ(q) ∂ψ∂qi

+ ∂γ
∂qi
ψ(q)]|q〉 = [−ih̄γ̂(q̂)∂̂i − ih̄ ∂γ

∂qi
(q̂)]|ψ〉.

So we see that
[−ih̄∂̂i, γ̂(q̂)] = −ih̄

∂γ

∂qi
(q̂).

In particular

[q̂i, −ih̄∂̂j ] = ih̄δij = [q̂i, p̂j ]

and so we see that
[q̂i, p̂j + ih̄∂̂j ] = 0.

Thus p̂j + ih̄∂̂j commutes with a complete commuting set of observables (q̂i) and so must be a function of
them. So

p̂j + ih̄∂̂j = Zj(q̂).

However, as [p̂i, p̂j] = 0 we have

[Zi(q̂) − ih̄∂̂i, Zj(q̂) − ih̄∂̂j ] = [Zi, Zj ] + [−ih̄∂̂i, Zj ] − [−ih̄∂̂j , Zi] + [−ih̄∂̂i, −ih̄∂̂j ] = 0.

Thus
0 = [−ih̄∂̂i, Zj] − [−ih̄∂̂j , Zi] = −ih̄

(
∂Zj

∂qi
− ∂Zi

∂qj

)

and so we see that
Zi = ∂Z

∂qi
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for some Z. Thus
p̂i = −ih̄∂̂i + ∂Z

∂qi
.

Finally, we now change the basis and use [|q, /〉} and ψ%(q). This leads to a new ∂̂i which we denote by
∂̂i
%
. Its action is given by

∂̂i
%
|ψ〉 ≡

∫
dNq ∂ψ!

∂qi
|q, /〉 =

∫
dNq ∂

∂qi

(
e−iξψ

)
eiξ|q〉

=
∫

dNq
(
∂ψ
∂qi

− i ∂ξ∂qi
ψ
)
|q〉 =

(
∂̂i − i ∂ξ∂qi

)
|ψ〉.

So choosing ξ = −Z
h̄ we have p̂i = −ih̄∂̂i

%
. Thus, dropping / we see that we can take

p̂i = −ih̄∂̂i.

The representation in which this is the case is called the Schrödinger representation and ψ(q) is called
the Schrödinger wave function.

3.1.4 Example

Operators that are functions of p̂ are differential operators in wave mechanics; e.g. kinetic energy of a particle
in 3 dimensions T̂ = p̂2/2m becomes −(h̄2/2m)∇2 and its angular momentum operator is −ih̄r×∇. Matrix
elements are calculated as

〈α|Â(q̂, p̂)|β〉 =
∫

d3q ψ∗
α(q)A(q,−ih̄∇)ψβ(q).

As an example let us consider a simple harmonic oscillator in 1 dimension.
With energy eigenfunctions φn(x) ≡ 〈x|n〉, n = 0, 1, 2, . . . and Ĥ |φn〉 = En|φn〉 the differential equation

− h̄2

2m

d2φn

dx2
+ 1

2mω2x2φn = Enφn, 〈x|Ĥ |φn〉 = En〈x|φn〉

determines eigenvalues En = (n + 1
2 )h̄ω if the solution is required to be normalisable — i.e. to vanish as

|x| → ∞. The textbook procedure of series solution (Schiff, p. 66 and see later) gives φn as the product of
a factor exp(− 1

2 (x/x0)2) and a Hermite polynomial in x/x0, where x2
0 ≡ h̄/mω (x0 is the amplitude of a

classical oscillator of energy 1
2 h̄ω). In fact instead we can find the energy eigenfunctions starting from the

definition of the ground-state, â†|0〉 = 0, which for the wavefunction φ0(x) ≡ 〈x|0〉 is the differential equation

h̄
dφ0

dx
+ mωxφ0 = 0.

The solution, normalised using
∫∞
−∞ exp(−x2) dx =

√
π, is easily found:

φ0(x) = (
mω

πh̄
)1/4 exp(− 1

2mωx2/h̄) = π−1/4x−1/2
0 exp(− 1

2 (x/x0)2).

Then n applications of â = (−ih̄ d/dx + imωx)/
√

2m gives the (normalised) eigenfunction

〈x|n〉 ≡ φn(x) =
1√
n!

(
−i√

2

)n(
x0

d

dx
− x

x0

)n

φ0(x),

showing the origin of the Hermite polynomial. Also note that φn(−x) = (−1)nφn(x).
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3.2 Probabilistic Interpretation

Let us consider first one particle in 3 dimensions and as q use Cartesian coordinates x, y, z. The expectation
value of observable A in state |α(t)〉 of a particle is

〈A〉 = 〈α(t)|Â|α(t)〉 =
∫

dV ψ∗
α(r, t)Â(r,−ih̄∇)ψα(r, t),

where dV = dx dy dz. For a quantity A independent of momentum is

〈A〉 =
∫

dV Â(r) |ψ|2 .

Recalling the formalism of elementary probability theory makes clear the standard interpretation of the
wavefunction, namely that

|ψα|2 δV ≡ |〈r|α(t)〉|2 δV

is the relative probability of a measurement showing the particle to be in volume δV = δx δy δz at position r
at time t.

For a system with N degrees of freedom and generalised coordinates

q = (q1, . . . qN ),

which by virtue of their commutators with canonically-conjugate variables have continuous spectra, |〈q|α〉|2 dqN

is interpreted as a relative probability of observing the system in a state described by a point in a small
volume dNq at q in the abstract N -dimensional configuration space.

Compare with the discrete case where |〈a|α(t)〉|2 is the relative probability of a measurement of A at
time t giving as outcome the eigenvalue a.

So for a single particle in a potential ρ(r, t) ≡ |ψ|2 can be viewed as a ‘density of the particle’ in ordinary
space.

3.3 Harmonic Oscillator Revisited

Previously we discussed the eigenstates of the harmonic oscillator using algebraic methods. Now we discuss
this problem using the wave functions and then show the relation between the two approaches.

V =
1
2
mω2x2 hence Ĥ =

1
2

p̂2

m
+

1
2
mω2x̂2.

So, the wavefunction satisfies

− h̄2

2m

d2ψ(x)
dx2

+
1
2
mω2x2ψ(x) = Eψ(x).

To get bound states (ie normalisable states) we require that ψ(x) → 0 as x → ∞ (as V → ∞).
To do this we rewrite

−(
h̄

mω

d2

dx2
− mω

h̄
x2)ψ =

2E

h̄ω
ψ

and change the variable x → y =
√

mω
h̄ x and introduce λ = 2E

h̄ω . Then our equation becomes

d2ψ

dy2
+ (λ− y2)ψ = 0.

When y → ∞ the equation becomes d2ψ
dy2 − y2ψ = 0 and its solutions are

ψ ∼ e±
1
2 y2

to order O( 1
y2 ).
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So to satisfy our boundary condition we take e−
1
2 y2

. Thus we put

ψ = e−
1
2 y2

H(y)

and derive the equation for H(y). As dψ
dy = e−

1
2 y2

Ḣ − ye−
1
2 y2

H we see that

d2ψ

dy2
= e−

1
2 y2

Ḧ − 2ye−
1
2 y2

Ḣ + (y2 − 1)e−
1
2 y2

H

and we find that H satisfies
d2H

dy2
− 2y

dH

dy
+ (λ − 1)H = 0

This equation (Hermite’s equation) appears harder to solve. We seek its solutions by a power series
expansion around y = 0. We put

H = yσ
∞∑

r=0

ar yr,

where a0 ,= 0 and then we try to determine σ and all the coefficients ar r ,= 0. The left hand side of Hermite’s
equation is now

∑∞
r=0 aryσ[(r + σ)(r + σ − 1)yr−2 − 2(r + σ)yr + (λ − 1)yr]

= yσ−2a0σ(σ − 1) + yσ−1a1σ(σ + 1) +
∑∞

r=0 yr+σ[(r + σ + 2)(r + σ + 1)ar+2 − (2r + 2σ + 1 − λ)ar ] = 0

So comparing powers of y we see that we have to require

a0σ(σ − 1) = 0
a1σ(σ + 1) = 0

(σ + r + 2)(σ + r + 1)ar+2 = [2r + 2σ + 1 − λ]ar.

As a0 ,= 0 we have either σ = 0 or σ = 1. If σ = 0 a1 is arbitrary, but if σ = 1 then a1 = 0. So, we take
σ = 0 and have a0 (times a function of y2) + a1 (times an odd function of y).

Note that the behaviour of H(y) as y → ∞ is determined by

ar+2

ar
→ 2

r
as r → ∞,

which, unless series terminates, gives

H(y) ∼ yσ
∑ 1

r!
y2r ∼ yσey2

thus leading to a non-normalisable ψ which goes as ψ ∼ yσe
1
2 y2

. Hence to have a normalisable wave
function ψ we have to require that the series terminates; i.e. that

a2r+2 = 0

for some r = m, say. Then

(2(m + σ) + 1 − λ = 0 i.e. λ = 2(m + σ) + 1.

Then H(y) is a polynomial of degree m + σ and parity (−1)σ.
Call m + σ = n. This polynomial is Hn(y) - the Hermite polynomial.
Thus

ψn = ψn(y) = Hn(y)e−
1
2 y2

∼ yne−
1
2 y2

as y → ∞. The corresponding energy eigenvalue is λ = 2n + 1 which gives us

En =
h̄ω

2
λ = (n +

1
2
)h̄ω.

Comments

24



• As ψm correspond to different eigenvalues they are orthogonal.
∫ ∞

−∞
ψ%m(y)ψn(y)dy =

∫ ∞

−∞
e−y2

Hm(y)Hn(y)dy = Knδnm.

• The normalisation constant Kn is chosen so that
∫∞
−∞ ψ2

n dx = 1 i.e. ψn = 1
π

1
4

1√
n!2n

Hn(y)e− 1
2 y2

.

3.4 Relation to the Algebraic Approach

In our algebraic approach we used

â = (p̂ + imωx̂) 1√
2m

â† = (p̂ − imωx̂) 1√
2m

and |0〉 was the ground energy state, i.e. it satisfied â†|0〉 = 0. In the Schrödinger representation

â† = (p̂ − imωx̂)
1√
2m

= (−ih̄ ∂
∂x − imωx) 1√

2m

= −i(h̄
∂

∂x
+ mωx)

1√
2m

= −i
√

ωh̄
2 (y + ∂

∂y ).

So the Schrödinger wave function for the lowest state

〈y|0〉 = ψ0(y) satisfies − i

√
ωh̄

2

(
y +

∂

∂y

)
ψ0(y) = 0

and so is given by ψ ∼ Ae−
1
2 y2

.
Higher states |n〉 ∼ (a)n|0〉 and so ∼ (..)n(y − ∂

∂y )nψ0(y) and so

ψn(y) ∼ An

(
y − ∂

∂y

)n

ψ0(y).

But note that
e

1
2 y2 ∂

∂y

(
e−

1
2 y2

f
)

=
∂f

∂y
− yf =

(
∂

∂y
− y

)
f

and so we have
y − ∂

∂y
= e

1
2 y2

(− ∂

∂y
)e−

1
2 y2

(y − ∂

∂y
)n = e

1
2 y2

(− ∂

∂y
)ne−

1
2 y2

.

So
ψn ∼ const e

1
2 y2

(− ∂

∂y
)ne−y2

= const e−
1
2 y2

Hn(y)

as Hn(y) = ey2
(− ∂

∂y )ne−y2
.

The last result can be derived from the generating function for Hn(y). Recall that this function is given
by

e−η
2+2ηξ =

∞∑

n=0

Hn(ξ)
n!

ηn.

But as e−η
2+2ηξ = eξ

2−(η−ξ)2 we see that Hn(ξ) is related to the coefficient of ηn in the expansion of e−(η−ξ)2 .
This coefficient is given by

1
n!

(
∂

∂η
)ne−(ξ−η)2 |η=0 =

1
n!

(
−∂
∂ξ

)ne−ξ
2
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and so
Hn(ξ) = eξ

2
(− ∂

∂ξ
)ne−ξ

2

as required.
So the two methods give the same spectrum of the Hamiltonian.
Comments:

• This time, as we saw earlier, we have 1
2 h̄ω as the zero point energy.

• In many theories we can treat fields as sets of harmonic oscillators (when resolved into normal modes).
Then each mode has its own zero point energy.

3.5 Momentum Representation

The commutation relations
[q̂i, q̂j ] = 0 = [p̂i, p̂j ], [q̂i, p̂j ] = ih̄δij

have a symmetry
q̂i → p̂i, p̂j → −q̂j

(corresponding to a canonical transformation in phase space) and so we can take a representation in which
p̂i acts by a multiplication and q̂i acts as ih̄ ∂

∂pi
. This corresponds to choosing as our basis momentum

eigenstates {|pi〉} with

|ψ〉 =
∫

dNp ψ̃(p)|p〉.

Then
q̂i|ψ〉 = ih̄

∫
dNp ∂ψ

∂pi
|p〉.

Note that the function ˜ψ(p) is the momentum representation analogue of the wave function, called momentum
wave function.

What is 〈q|p〉, i.e. an eigenstate on p̂ in the position representation {|q〉}?
To answer this question let us restrict our attention to one dimension. Then we have q̂ and p̂ which

satisfy
q̂p̂ − p̂q̂ = ih̄.

Then we observe that
〈q|q̂p̂|q′〉 − 〈q|p̂q̂|q′〉 = ih̄〈q|q′〉 = ih̄δ(q − q′).

Thus
(q − q′)〈q|p̂|q′〉 = ih̄δ(q − q′).

However we can use the following property of the Dirac delta function:

xδ′(x) = −δ(x), xδ(x) = 0

and so we see that
〈q|p̂|q′〉 = h̄

i δ
′(q − q′)

and

p〈q|p〉 =
∫

dq′〈q|p̂|q′〉〈q′|p〉 = h̄
i

∫
dq′δ′q(q − q′)〈q′|p〉 = − h̄

i

∫
dq′δ′q′(q − q′)〈q′|p〉 = h̄

i
∂
∂q (〈q|p〉)

and so
〈q|p〉 = Ae

ipq
h̄ ,

where A is a normalisation factor.
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Note that 〈q|p〉 is a wave function of a state with a well defined momentum. Naively, we may expect this
function, like any wavefunction to be normalised i.e. to satisfy

∫
dqψ(q)%ψ(q) = 1

but from the above we get

|A|2
∫

dq e
ipq
h̄ e

−ipq
h̄ = |A|2

∫
dq = 1

and so we see that |A|2 = 1
V where V is the range of integration (i.e. ∞).

Thus we have run into the well known problem of normalisation. There are three ways of dealing with
this problem:

• consider only wave packets (i.e. always have some spread in momentum)

• normalise in a “box” of finite dimensions and later take these dimensions to ∞.

• practical - not worry about normalisation (but keep it at the back of our mind).

Returning to the case of N degrees of freedom we see that in the momentum representation

|ψ〉 =
∫

dNp |p〉〈p|ψ〉 =
∫

dNp |p〉ψ̃(p)

=
∫

dNq |q〉〈q|ψ〉 =
∫

dNq |q〉ψ(q).

Thus

ψ(q) = 〈q|ψ〉 =
∫

dNp 〈q|p〉〈p|ψ〉

=
∫

dNp 〈q|p〉ψ̃(p).

So
ψ(q) = A

∫
dNp e

iqp
h̄ ψ̃(p)

and
ψ̃(p) = A

∫
dNq e

−iqp
h̄ ψ(q).

Note that if we choose

A =
(

1√
2πh̄

)N

we have
〈ψ|ψ〉 =

∫
dN q |ψ(q)|2 =

∫
dNp
∣∣∣ψ̃(p)

∣∣∣
2

Then the interpretation of ψ̃(p) is analogous to the interpretation of ψ(q) and we see that going from
the momentum to the position representation wave functions involves taking Fourier transforms.

Comments:

• 1. Note that ψ(q) =
∫

dNp e
1qp

h̄ ψ̃(p) has a meaning of a superposition of plane waves of momentum p
with weights provided by the function ψ̃(p). Thus we have a wave packet.

• 2. If ψ̃(p) ,= Bδ(p − p0) then the momentum of the system is not uniquely defined and we have a
spread in momentum.
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4 Equation of Motion - Dynamics

4.1 Introduction

In classical mechanics, as we have said earlier, the time evolution (the dynamics) can be described in terms
of Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

or, equivalently, in terms of Poisson’s brackets

dA

dt
=
∂A

∂t
+ {A, H}

etc. In Quantum Mechanics there are, similarly, also several equivalent ways of describing the dynamics.
Such descriptions are called pictures.

4.2 The Schrödinger picture

The theory involves both state vectors and certain operators that extract the information they encode. As
times progresses either or both could change. It is perhaps more “natural” to associate this change with the
the state vector. The observables correspond to fixed operators - although the results of their action on the
state depend on time as the state changes with time. This way of describing the development of the system
is called the Schrödinger picture. Then as long as the system is left undisturbed it evolves causally and
its evolution is described by the equation of motion.

But warning; when any measurement is performed the system is perturbed and during this measurement
its change is acausal.

So what is this causal evolution?
Let us assume that at time t the state is |ψt〉 and at t = t0 it is |ψt0〉. We expect that there is an unitary

operator Û(t, t0) which connects these two states of the system. i.e. which acts as

|ψt〉 = Û(t, t0)|ψt0〉.

Why? In classical mechanics the time evolution can be thought of as a continuous unfolding of canonical
transformations which preserve Hamilton’s equations and Poisson’s brackets. So we may even expect that
the operator U has “something to do” with the Hamiltonian of the system.

Let us assume that the operator Û(t, t0) is linear, i.e. that it satisfies

µ|ψt〉 + λ|φt〉 = Û(t, t0) [µ|ψt0〉 + λ|φt0 〉]

and that the operator Û is independent of the state vector |ψ〉. Let us assume further that

〈ψt|ψt〉 = 〈ψt0 |ψt0〉,

although, this may appear less clearly motivated (this is equivalent to the statement that Û is unitary, i.e.
Û †Û = 1̂) and

Û(t1, t2) Û(t2, t3) = Û(t1, t3).

This last requirement tells us that as Û(t0, t1)Û(t1, t0) = 1̂, Û(t0, t1) = Û−1(t1, t0) and so that

Û †(t0, t1) = Û−1(t0, t1) = Û(t1, t0).

Let us now derive the equation of motion in a differential form. To do this define

d

dt
|ψt〉 = lim

ε→0

1
ε

(|ψt+ε〉 − |ψt〉) = lim
ε→0

1
ε

(
Û(t + ε, t0) − Û(t, t0)

)
|ψt0〉

=
dÛ(t, t0)

dt
|ψt0〉 =

dÛ(t, t0)
dt

Û †(t, t0)|ψt〉.
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So
d

dt
=

dÛ(t, t0)
dt

Û †(t, t0).

Defining Ut ≡ Û(t, t0) we see that
d

dt

(
UtU

†
t

)
= 0

gives
dUt

dt
U †

t + Ut
dU †

t

dt
= 0

which shows that the operator
dUt

dt
U †

t

is anti-Hermitian. So putting in ih̄ we have
[
ih̄

dUt

dt
U †

t

]
= ih̄

dUt

dt
U †

t ≡ Ĥ(t),

where Ĥ is a Hermitian operator. Thus our equation becomes

ih̄
d

dt
|ψt〉 = Ĥ(t)|ψt〉.

This equation, called the Schrödinger equation specifies the dynamics in the Schrödinger picture.
What is Ĥ(t)? This will become clearer after we have introduced an alternative formulation of the

dynamics - in terms of the Heisenberg picture.
At the moment let us note that if Ĥ ,= Ĥ(t), i.e. Ĥ=const then we can solve

ih̄
dUt

dt
U †

t = Ĥ

as then
ih̄

dUt

dt
= ĤUt

and so we see that

Ut = Û(t, t0) = exp

(
− iĤ(t − t0)

h̄

)

where we have determined the constant of integration from Û(t0, t0) = 1̂.

4.3 The Heisenberg Picture

In the Schrödinger picture we had
|ψt〉 = Û(t, t0)|ψt0〉

and all the operators were fixed Â. However, we can perform an unitary transformation

|ψt〉 → Û(t0, t)|ψt〉 = |ψt0〉.

and transform the operators
Â → Ât = Û(t0, t)ÂÛ(t, t0)

and then we will have an equivalent description of the dynamics of the system as all matrix elements

〈ψt|Â|φt〉 = 〈ψt0 |Ât|φt0〉

are unchanged (we have defined the transformation of Â so that this is the case!).
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This way we have a second description of the dynamics - the Heisenberg picture, in which the states
are fixed (coinciding with the states in the Schrödinger picture at t = t0, i.e. |ψt0〉) but all observables are
represented by time dependent operators Ât.

What is the equation of motion? Now this is the equation governing the time evolution of Ât.

To find it let us assume, for simplicity, that Ĥ ,= Ĥ(t). Then Û(t, t0) = exp

(
− iĤ(t−t0)

h̄

)
and

ih̄
dÂt

dt
= ih̄

d

dt

(
e

iĤ(t−t0)
h̄ Âe

−iĤ(t−t0)
h̄

)

= −Ĥ

(
e

iĤ(t−t0)
h̄ Âe

−iĤ(t−t0)
h̄

)
+
(

e
iĤ(t−t0)

h̄ Âe
−iĤ(t−t0)

h̄

)
Ĥ = [Ât, Ĥ ].

This equation

ih̄
dÂt

dt
= [Ât, Ĥ]

is called the Heisenberg’s equation of motion; or the equation of motion in Heisenberg’s picture.
By comparing it with

dA

dt
= {A, H}

in classical mechanics and the quantisation condition

{A, H} → [Â, Ĥ]
ih̄

we see that it is natural to identify Ĥ with the Hamiltonian.
Notes:

• 1 If Ĥ = Ĥ(t) then

ih̄
d

dt
Ât = [Ât, Ĥt(t)]

where Ĥt(t) = Û †(t, t0)Ĥ(t)Û(t, t0) i.e. has the same expression as Ât.

• 2 If Â = Â(t) then

ih̄
dÂt

dt
= [Ât, Ĥt] + ih̄

∂

∂t
Ât,

where ∂
∂t Ât ≡ Û †(t, t0)dÂ

dt (t)Û(t, t0). Note that Ht = H if H ,= H(t).

4.4 Conserved quantities; constants of motion

So which picture is the most convenient? In practice, it is the Schrödinger picture. However, the Heisenberg
picture is very useful as it tells us how to find constants of motion. To see this note that for any operator Â
its Heisenberg equation of motion is

ih̄
d

dt
Ât = ih̄

∂

∂t
Ât + [Ât, Ĥt].

So if ∂
∂t Ât = 0, i.e. Â = Â(p, q) only, and if

[Ât, Ĥt] = 0, then Ât = const.

However,
[Ât, Ĥt] = 0, ⇀↽ [Â, Ĥ ] = 0

and so we see that this result is true in any picture. Thus, the observables, which in the Schrödinger picture
do not depend explicitly on time are conserved if they commute with the Hamiltonian. The constants of
motion are represented by time independent observables which commute with the Hamiltonian.
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4.5 Stationary states. Time independent Schrödinger equation

4.5.1 Stationary states

Consider
ih̄

d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉.

Then, if Ĥ ,= Ĥ(t)

|ψ(t)〉 = exp(−i
t

h̄
Ĥ)|ψ(0)〉.

Next insert Î =
∑

E |E〉〈E| (the identity resolved into energy eigenstates) immediately to the right of
exp(−i t

h̄Ĥ) giving

|ψ(t)〉 =
∑

E

〈E|ψ(0)〉 exp(−i
Et

h̄
)|E〉.

Time dependence is exhibited in a phase factor for each component and is harmonic with angular frequency
E/h̄.

Note that if |ψ(0)〉 = |E〉, where
Ĥ |E〉 = E|E〉

i.e. the system starts in an energy eigenstate, then

|ψ(t)〉 = |E(t)〉 = exp(−i
Et

h̄
)|E〉

and the energy-value remains sharp — always ∆E = 0. Also for any Â

〈E(t)|[Â, Ĥ ]|E(t)〉 = 0

and so for all observables A where ∂Â/∂t = 0 we have 〈A〉 = constant. An energy eigenstate exp(−iEt
h̄ )|E〉

or just simply |E〉 is called a stationary state. An isolated atom in a stationary state is stable. However,
‘isolation’ is an idealisation and real atoms in excited states (energy eigenstates above the ground state)
usually decay quickly.

Thus in general, we have all terms in the expression above. If the Hamiltonian Ĥ has both continuous
and discrete parts of the spectrum, then

|ψ(0)〉 =
∑

i

ai|Ei〉 +
∫

dE′a(E′)|E′〉

and so

|ψ(t)〉 =
∑

i

ai exp(−i
Eit

h̄
)|Ei〉 +

∫
dE′a(E′) exp(−i

E′t

h̄
)|E′〉.

We see that the problem of determining the dynamics reduces to that of finding solutions of the eigenvalue
equation for Ĥ i.e.

Ĥ|E〉 = E|E〉.

This equation is called the time independent Schrödinger equation.

4.5.2 Schrödinger wave equation

Consider one particle of mass m in a potential field V (r). The Schrödinger Equation

ih̄
d

dt
|ψt〉 = Ĥ |ψt〉
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where Ĥ = p̂2/2m + V̂ (r̂) becomes the Schrödinger Wave Equation

− h̄2

2m
∇2ψ + V (r)ψ = ih̄

∂ψ

∂t

for the wavefunction ψ(r, t). We can think of this equation as having come from the equation above by
acting on it, from the left, with the bra vector 〈r|. Then exploiting the fact that the potential V is a function
of r only we get the Schrödinger Wave Equation. Its solution, using the energy eigenbasis

|ψ(t)〉 =
∑

E

〈E|ψ(0)〉 exp(−i
Et

h̄
)|E〉,

becomes the separation-of-variables solution

ψ(r, t) =
∑

E

cE exp(−i
Et

h̄
)φE(r)

where φE(r) = 〈r|E〉 is a normalised energy eigenfunction obeying

− h̄2

2m
∇2φ+ V (r)φ = Eφ

(often called the ‘time-independent Schrödinger Wave Equation’ — this was actually the first form guessed
by Schrödinger, in June 1926). Here cE = 〈E|ψ(0〉 =

∫
dV φ∗E(r)ψ(r, 0). The eigenfunctions φE also obey

the eigenvalue differential equations corresponding to mutually compatible conserved quantities such as
momentum or angular momentum.

If the spectrum of Ĥ is continuous (or has a continuous sector) then the
∑

E becomes an integral over
(part of) E and the energy eigenfunctions have Dirac δ-function normalisation. Otherwise the solutions are
square-integrable and ψ and φ vanish quickly at large |r|.

4.5.3 Example - Free particle

For a particle experiencing no force we define V (r) = 0, (adding a constant to Ĥ adds only an overall
phase to solutions of the Schrödinger Equation). A free particle of mass m then has Ĥ = p̂2/2m. Since
[Ĥ, p̂] = 0, momentum p is conserved and eigenstates |E,p〉 of p̂ are eigenstates of Ĥ with eigenvalues
related by E = p · p/2m. Note that angular momentum is conserved too, [Ĥ, L̂] = 0, but L and P are
incompatible, [P̂ , L̂] ,= 0.

In wave mechanics a momentum eigenfunction φp(r) obeys

−ih̄∇φ = pφ,

which, as we have said earlier, is satisfied by

φ = φp(r) ≡ 〈r|p〉 = C exp(
i

h̄
p · r).

Here C is a constant and in the absence of other constraints components of p take any (real) values.
With continuous p the wavefunctions φ are unnormalisable with inner product

∫
d3r φ∗p(r)φp′ (r) = |C|2

∫
dx dy dz exp(

i

h̄
(p′ − p) · r) = |C|2 (2πh̄)3δ(p′ − p).

Choose C = 1 so that

〈p|p′〉 = (2πh̄)3δ(p − p′) and Î =
∫

d3p

(2πh̄)3
|p〉〈p|,

where the momentum-space volume element d3p is dpx dpy dpz in Cartesian coordinates.
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Box Normalisation: While δ-function normalisation is generally no problem, there are some
difficulties: e.g. in the proof that r̂ has a continuous spectrum and in the handling of the
parity operator, as we will see later, where infinite factors are cancelled! Also simply checking
self-adjointness of p̂ = −ih̄∇ is a puzzle if wavefunctions do not vanish at ∞. One escape
device is to use ‘box normalisation’ where space is given torus topology by putting the particle
into a cube of edge-length L and identifying parallel faces. Then the wavefunction φp(r) (for
instance) obeys periodic boundary conditions which imply that Cartesian components pi of p are
quantised by piL = 2πnih̄ for ni = 0,±1, . . . and which ensure that p̂ is self-adjoint. Choosing
C = L−3/2 integration over the box gives 〈p|p′〉 as a product of Kronecker deltas on integers ni

and Î =
∑

ni
|p〉〈p|. Factors of L cancel from results of observation. For more details see Schiff,

p. 48.

Momentum eigenstates obey the free-particle energy eigenvalue equation

− h̄2

2m
∇2φ = Eφ

provided |p|2 = 2mE and with this relation understood we have

φ ≡ 〈r|E(p),p〉 = exp(
i

h̄
p · r).

For each E there is degeneracy with respect to direction of p and all directions must be counted in summing
over the complete set of energies to construct the wavefunction ψ(r, t).

So with continuous momentum eigenstates instead of discrete energy eigenstates the sum solution to the
Schrödinger Wave Equation for a free particle becomes the Fourier Integral expression

ψ(r, t) =
∫

d3p

(2πh̄)3
ψ̃(p) exp(

i

h̄
(p · r − p2

2m
t)),

where
ψ̃(p) ≡ 〈E,p|ψ〉 =

∫
d3r exp(− i

h̄
p · r)ψ(r, 0)

is the Fourier Transform of the initial data, its ‘momentum-space wavefunction’. This form of ψ(r, t) is a
‘wavepacket’ solution to the Schrödinger Wave Equation.

For a particle with definite momentum p0 at t = 0 we have

ψ̃(p) = 〈E,p|p0〉 = (2πh̄)3δ(p − p0)

and the Schrödinger Wave Equation has plane-wave solution

ψ(r, t) = exp(i(k · r − ωt))

with wave-vector k ≡ p0/h̄ and angular frequency ω ≡ E/h̄ connected by the ‘dispersion relation’ ω(k) =
h̄k · k/2m. This is the particle’s de Broglie wave, just as experiment observes, with group velocity

dω

dk
=

p0

m
,

which is the classical particle velocity.

Example: The ‘Two-slit Experiment’. This is discussed as a thought experiment in textbooks
(e.g. Schiff pps. 12–14; Feynman Ch. 1) but certainly has been performed in the lab). Here a
stream of electrons of definite momentum p falls normally on a screen with two narrow slits,
parallel and close-spaced, and the point of arrival of each particle on a parallel screen behind
is recorded. The electrons fall in bands, forming the diffraction pattern appropriate to the
wavevector p/h̄. The stream ‘looks like a wave’. But the pattern builds up even if the intensity
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is so low that only a single electron is in transit at any time. The wave is usually pictured like
a water wave, propagating from source to screen each time an electron travels. But it must be
recalled that in fact the wave is a solution of the Schrödinger Wave Equation with boundary
conditions appropriate to the physical circumstances; here an arrangement of source, screens and
slits, and it is a complex-valued function defined in an entirely abstract configuration space for
the electron. The position of arrival of each electron (its configuration at the that instant) is a
random event with probability density given by the wavefunction’s squared modulus. The wave
serves to describe the possible outcomes of observation in the quantum model, just as a set of
p, q coordinates obeying Hamilton’s equations would do (albeit with greater certainty!) in a
classical model. The quantum particle is no more a wave than the classical particle is a point
in phase space. If a slit is closed the diffraction pattern disappears, for the boundary conditions
on the Schrödinger Wave Equation are changed and the wavefunction changes. In fact then the
position of the electron is known as it passes the first screen. The same is true if any observation
determines the particle’s position in transit. A position measurement changes its wavefunction
to a position eigenfunction. With all this in mind it’s instructive to read accounts of the two-slit
experiment in Feynman, Secs. 1-4 to 1-11; Polkinghorne, Chap. 4.

4.6 Spreading of a wave packet

Let us how that a wave packet always spreads as time evolves. To see this let us take a (one dimensional)
wave packet which at t = 0 is centred at x = 0 with a spread a0. For this we can take a Gaussian

ψa0(x, 0) =
1

(a0
√
π)

1
2

e
− x2

2a2
0 .

Notice that this wave function happens to be real (this does not matter) and that the normalisation has
been so chosen that

∫∞
−∞ dx |ψ|2 = 1.

Then

ψ̃a0(p, 0) =
1√
2πh̄

∫ ∞

−∞
dx e−

ixp
h̄ ψa0(x, 0) =

1√
2πh̄

1

(a0
√
π)

1
2

∫ ∞

−∞
dx e−

ixp
h̄ e

− x2

2a2
0 =

1√
2πh̄

1

(a0
√
π)

1
2

∫ ∞

−∞
dx e

−
(

x√
2a0

+
ia0p√

2h̄

)2

e−
a2
0p2

2h̄2 =
√

2a0√
2πh̄
√

a0
√
π

e−
a2
0p2

2h̄2

∫
dxe−x2

=
√

2a0
√
π√

2πh̄
e−

a2
0p2

2h̄2 .

In this calculation we have used
∫∞
−∞ dx e−x2

=
√
π and assumed that we can alter the path of the

integration from the real line (in x) to the line (parallel to the real axis) in the complex x plane .
If the particle is free then E = p2

2m and

ψ̃a0(p, t) = ψ̃a0(p, 0) e−i p2t
2mh̄ .

Thus

ψ(x, t) = 1√
2πh̄

∫∞
−∞ dp e

ixp
h̄ ψ̃a0(p, t) =

√
2a0

√
π

2πh̄

∫∞
−∞ dp e−

ip2t
2mh̄ + ixp

h̄ −
a2
0p2

2h̄2

=
√

2a0
√
π

2πh̄

∫∞
−∞ dp e−z(p+Rx)2ezR2x2

,

where z = a2
0

2h̄2 + it
2mh̄ and R = − i

2zh̄ .
Again, we change the integration variable from p to (p + Rz)

√
z and, distorting the contour, obtain

√
2a0

√
π
√
π

2πh̄

√(
a2
0

2h̄2 + it
2mh̄

)e−
x2

4h̄2z =
1

(π)
1
4

√
a0 + ith̄

ma0

e
− x2

2(a2
0+ ith̄

m ) .
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Note that
|ψa0(x, t)| = |ψa(x, 0)|

where

a2 = a2
0 +

h̄2t2

m2a2
0

.

So we see that our Gaussian wave packet is spreading; its width grows as a(t). This effect is called the
spreading of the wave function. To prevent this from happening you need some non-linearity in ψ - such
phenomena, (non-linear Schrödinger equation etc.) are discussed in a course on solitons.

4.7 Ehrenfest’s theorems; Energy-time uncertainty principle

4.7.1 Ehrenfest’s theorems

Ehrenfest showed that the mean values of observables 〈Â〉 behave like classical quantities; they satisfy
equations of classical mechanics.

To see this assume that Â ,= Â(t). Then

d

dt
〈Â〉 =

d

dt
〈ψ|Â|ψ〉 =

(
d

dt
〈ψ|
)

Â|ψ〉 + 〈ψ|Â
(

d

dt
|ψ〉
)

=
1
ih̄

〈ψ|[Â, Ĥ ]|ψ〉 =
1
ih̄

〈[Â, Ĥ ]〉.

Recall that in classical mechanics we had (Poisson brackets)

d

dt
A = {A, H}.

Thus, for a particle of mass m in one dimension, we have

d

dt
〈x̂〉 =

1
ih̄

〈[x̂,
p2

2m
]〉 =

〈p̂〉
m

.

If
Ĥ =

p̂2

2m
+ V̂ (x̂)

and if F̂ (x̂) = − ∂
∂x V̂ then

d

dt
〈p〉 =

1
ih̄

〈[p̂, V̂ (x̂)]〉 = −〈∂V
∂x

〉 = 〈F̂ 〉.

This last equation looks very much like the Newton law. But note that we have 〈∂V
∂x 〉 and not

∂V

∂x
(〈x〉)

and so we cannot talk about the centre of the packet as moving classically; moreover, as we already know,
we have also some additional effects due to the spreading out of the packet.

4.7.2 Time-energy uncertainty principle

Recall that

d

dt
〈Â〉 =

1
ih̄

〈[Â, Ĥ ]〉

But,

∆A =
(
〈Â2〉 − 〈Â〉2

) 1
2
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so
∆A∆B ≥ 1

2

∣∣∣〈[Â, B̂]〉
∣∣∣ .

So applying this to Â and Ĥ we have

∆A∆H ≥ 1
2

∣∣∣〈[Â, Ĥ ]〉
∣∣∣ = h̄

2

∣∣∣ d
dt〈Â〉

∣∣∣ .

But ∆Ĥ = ∆E so
τA ∆E ≥ h̄

2
,

where

τA =
∆Â∣∣∣ d

dt 〈Â〉
∣∣∣
.

Here τA is the time characteristic of the statistical evolution of the system as seen via its effects on the
observable Â; i.e. the time required for the centre 〈Â〉 of this distribution to be displaced by an amount
equal to its width; i.e. time necessary for the statistical distribution to be appreciably altered.

Take τ = minA τA. Then

τ∆E ≥ h̄

2
.

which is the Time-Energy uncertainty principle.
Comments:

• If a system is in a stationary state then d〈Â〉
dt = 0 (as then 〈ψ|[Â, Ĥ ]|ψ〉 = 0) and so τ = ∞ but then

energy is well defined and so ∆E = 0.

• Note that the origin of the time-energy uncertainty principle is different from ∆q∆p ≥ h̄/2. There’s
no self-adjoint ‘time’ operator but instead an operator for ‘evolution time as measured by A’ has been
introduced as Â/ |∂〈A〉/∂t|. It’s clear that the less well-defined is energy, the more frequencies E/h̄
contribute to the series solution of the Schrödinger Equation and the faster the system may appear to
evolve in terms of any measurable A. Conversely a sharper definition of energy forces slower evolution.
The time-energy uncertainty relation is often invoked in picturing, say, an electromagnetic interaction
of two charged particles as exchange of a photon. It is said that violation of energy conservation in
emission and absorption can be allowed if it occurs quickly enough. Similar statements are often made
in connection with ‘tunnelling’, e.g. Polkinghorne pps. 50 – 52.

Examples:

• 1. Decay of nuclear matter (energy not well defined).

• 2. Superposition of 2 stationary states. Take a superposition of 2 stationary states of energies E1 and
E2.

ψ(r, t) = ψ1(r)e−
iE1t

h̄ + ψ2(r)e−
iE2t

h̄ .

Then
P (r, t) = |ψ1(r)|2 + |ψ2(r)|2 + 2Re

(
ψ%1ψ2 e

i(E1−E2)t
h̄

)
.

This quantity oscillates in time between 2 extreme values (|ψ1|−|ψ2|)2 and (|ψ|+ |ψ2|)2 with the period
of the oscillation given by τ = h

(E1−E2)
.

Thus the statistical distribution of the results of measurements made at t1 and t2 will be practically
identical if ∆t = |t1 − t2| is small compared to τ .
Thus, in order that the properties of the system be significantly modified over the time period ∆t,
∆t ∆E must be at least ∼ h̄.
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4.8 Probability current; Conservation of probability

Recall that |ψ(r, t)|2 d3x gives the probability (when ψ is properly normalised) of finding the particle within
r and r + dr at time t. Thus

PΩ =
∫

Ω
d3x |ψ(r, t)|2 =

∫

Ω
d3xρ(r, t)

is the probability of finding the particle in Ω. Note that PΩ → 1 as V ol(Ω) → ∞ and Ω → RR3.
But PΩ = PΩ(t). So calculate

dPΩ

dt
=

d

dt

∫

Ω
d3xψ%ψ =

∫

Ω
d3x

∂ψ%

∂t
ψ +
∫

Ω
d3xψ%

∂ψ

∂t
,

if Ω ,= Ω(t).
Using Schrödinger equation this is equal to

ih̄

2m

∫

Ω
d3x∇ [ψ%∇ψ − ψ∇ψ%] =

ih̄

2m

∫

S
dS(ψ%∇ψ − ψ∇ψ%),

where S is the surface bounding Ω.
Then define

j(r, t) = − ih̄

2m
(ψ%∇ψ − ψ∇ψ%) = − ih̄

m
Im(ψ%∇ψ) = −Re(

ih̄

m
ψ%∇ψ),

the probability current and we see that we have

∂ρ

∂t
(r, t) + ∇ · j(r, t) = 0.

i.e. a continuity equation.
This has similar status to the local conservation laws that apply in fluid mechanics, electromagnetism,

heat, etc. The ‘density of the particle’ is not created or destroyed, it just moves about. Indeed in a normal-
isable state

∫
dτ ρ(r, t) = 1 independent of t, (the Schrödinger Wave Equation preserves norms).

Note: if the particle is in a stationary state then PΩ ,= PΩ(t) as ρ(r, t) = ρ(r) and ∇(ψ%∇ψ) = 0 thus

∇[ψ%(r)∇ψ(r)] = 0

as the time dependent factors cancel out. This helps us to determine the boundary conditions on ψ(r) when
we consider it in a given region Ω.

[− h̄2

2m∇2ψ + V (r)ψ] = ih̄∂ψ
∂t , or = Eψ.

Boundary conditions (as this is a second order equation for ψ(r, t) or ψ(r)):

• 1. Conditions at |r| → ∞
〈ψ|ψ〉 =

∫
d3x |ψ|2 = 1

so
ψ(r) → 0 as |r| → ∞

sufficiently fast.
Comment: Sometimes we use generalised eigenstates, i.e. use replace wave packets by plane waves
eipr. Such states are not realisable physically but they simplify the calculations, For such states |ψ| ∼
const as |r| → ∞)

• 2. Points of discontinuity of V (r). We patch solutions in each region in which V is continuous. At the
discontinuity surfaces we demand that ρ and j are continuous. This implies that ψ and ∇ψ · n, where
n is a unit vector normal to the boundary of the region, have to be continuous.

• 3. Points where V (r) = ±∞. At such points it may happen thatψ = 0 and ∇ψ has a discontinuity.
(This will be discussed in the next chapter)
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5 One-Dimensional Systems

5.1 Preliminary (recall also 4.9)

Justification: We study wave mechanics first in one dimension for practice and to discover generalities
(e.g. tunnelling) without needing to deal with angular momentum. This is just like classical mechanics
and, just as there, in (important) circumstances where angular momentum is conserved three-dimensional
problems can be reduced to equivalent one-dimensional form.

Problem: A quantum particle of mass m moves on the x-axis in a potential field V (x). Discuss
boundary conditions on the wavefunction.

Solution: The wavefunction ψ(x, t) obeying the one-dimensional Schrödinger Wave Equation is a sum
or integral over E involving the energy eigenfunction φE(x) which solves

φ′′ =
2m

h̄2 (V (x) − E)φ.

Localised or bound solutions with discrete E-values occur for E < min{V±} where V± ≡ V (x → ±∞)
and have φ(x → ±∞) ∼ exp(−K± |x|) where K2

± = 2m(V± − E)/h̄2. If V (|x| → ∞) → ∞ then φE → 0
faster at ∞.

Scattering solutions φE(|x| → ∞) ∼ exp(±ikx) where k2 = −K2
± occur for E > min{V±}, have continu-

ous E-values and correspond to leftward (-) and rightward (+) motion, being asymptotically eigenfunctions
of p̂ = −ih̄d/dx with momentum eigenvalues ±h̄k (k > 0 by definition).

Integrating the energy-eigenvalue equation we have

φ′E(x1) − φ′E(x2) =
2m

h̄2

∫ x2

x1

(V (x) − E)φE(x) dx

and so, using the continuity of φ,

φ′E(x + ε) − φ′E(x − ε) ≈ 2m

h̄2 φE(x)
∫ x+ε

x−ε
V (x) dx

for very small |ε|. The right-hand side vanishes as ε→ 0 whenever V (x) is continuous or, we note, whenever
V (x) is piecewise continuous. So at a finite jump in V (x) both φE(x) and φ′E(x) are continuous. This
ensures continuity of the one dimensional probability current j = (h̄/m)Im(ψ∗∂ψ/∂x).

As examples will illustrate, in the limit of an infinite jump in V (x) where the integral on the right-hand
side diverges consistency demands that φE vanishes. Then generally φ′E has a finite discontinuity, and j is
continuous and zero. A wavefunction that penetrates a region of very large V is exponentially damped and
an infinite jump in V is an impenetrable barrier; the particle bounces back.

If, bizarrely, V (x) has an infinite jump of zero width, i.e. V (x) = gδ(x−a)+. . ., then φ′ has a discontinuity
at x = a:

φ′E(a+) − φ′E(a−) =
2m

h̄2 gφE(a)

where φE is continuous and not necessarily zero at x = a.

5.2 Examples

5.2.1 Free Particle

For a ‘free particle’ define V = 0. A particle of mass m and energy E > 0 moving freely on the x-
axis has wavefunction ψ(x, t) = exp(−iEt/h̄)φE(x) and everywhere the energy eigenfunction φE(x) obeys
φ′′ + k2φ = 0 where k = +

√
2mE/h̄ for any E > 0. The solution

φE(x) = c1 exp (ikx) + c2 exp (−ikx)

is a superposition of right- and left-moving parts, eigenstates of p̂ = −ih̄d/dx with eigenvalues ±h̄k. Energy
eigenstates are two-fold degenerate. The discussion of wavepackets in Sec. 3.5 simplifies: r → x, p → p,
(2πh̄)3 → 2πh̄.
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5.2.2 One Dimensional Step Potential

Consider the stationary problem; i.e. the time independent Schrödinger equation corresponding to the po-
tential

V (x) =
{ 0, x < 0

V0 > 0 x > 0
and consider the case of E < V0. Classically the particle can be anywhere for x < 0 and the region x > 0 is
not accessible.

Quantum mechanically, we study the wave function in each region and then use the continuity conditions
to relate the functions in each region.

So we put ψ(x) = ψ>(ψ<) for x > 0 (x < 0). So Ĥψ = Eψ gives

x < 0 − h̄2

2m
d2ψ<

dx2 = Eψ< → ψ< = A sin(kx) + B cos(kx)

x > 0 − h̄2

2m
d2ψ>

dx2 = (E − V0)ψ> → ψ> = C exp(−αx) + D exp(αx),

where k =
√

2mE
h̄2 , α =

√
2m(V0−E)

h̄2 .
Next we impose our boundary conditions. At x = ∞ the function is not infinite so D = 0.
At x = 0 we have

ψ> = ψ< → B = C

ψ̇> = ψ̇< → Ak = −Cα → C = −kA
α .

So ψ>(x) = −kA
α e−αx and ψ<(x) = A(sin kx − k

α cos kx).
Note that as V0 → ∞ then α→ ∞ and ψ>(x) → ∞ (due to the exponential) and ψ<(x) → A sin kx, as

mentioned before.
Note that our wavefunction cannot be normalised as

∫ 0
−∞ ψ∗

<(x)ψ<(x) < 0 is impossible to satisfy as
∫ 0
−∞ sin2(kx) dx = ∞. So we interpret this situation as describing a beam of particles (we will come back

to this case later when we will discuss transmission and reflection phenomena).
Comment: Note that quantum mechanically there is a non-zero probability of finding our particles in the

region of x > 0.

5.2.3 One Dimensional Potential with Rigid Walls

A surface for which V = ∞ is called rigid. Hence transition from V ,= ∞ to V = ∞ due to F = − 4 V
involves very strong forces. This would be the case if we had, say, very strong reaction forces preventing the
particle from entering such a region.

To study such a case we consider

V =
{

0, |x| < a
∞, |x| > a

So for |x| > a ψ = 0 and for |x| < a we have

− h̄2

2m

d2ψ

dx2
= Eψ

which has as solutions ψ(x) = A sin(kx) + B cos(kx) with k as before.
The continuity at |x| = a gives us

A sin(ka) + B cos(ka) = 0
−A sin(ka) + B cos(ka) = 0.

Its solutions are A = B = 0 (i.e. no state) or sin(ka) = 0 and B = 0 or cos(ka) = 0 and A = 0.
The two choices give us k = nπ

a or k = 2n+1
2

π
a so we see that

k =
nπ

2a
, n = 1, 2, 3...

39



and so the possible values of energy are

En =
h̄2k2

2m
=
π2h̄2n2

8ma2
.

Comments:

• We have a completely discrete spectrum of E. This is characteristic of potentials which go to ∞ as
|x| → ∞.

• En → ∞ as n → ∞

• E1 = π2h̄2

8ma2 . The lowest energy ,= 0. (The particle is never at rest; this phenomenon is called zero
point energy).

Note; we can understand why E1 ,= 0 (from the uncertainty principle). As |∆x| ≤ a we have that
∆p ≥ h̄

2∆x . So

E =
1

2m
〈p2〉 ∼ 1

2m
(∆p)2 =

h̄2

8ma2
.

If you plot a few lowest energy wave functions (say, ψ1(x), ψ2(x) and ψ3(x)) we see that ψ1 has no nodes;
ψ2 has one node, ψ3 has 2 nodes etc.

The larger the number of nodes - the higher the energy. This can be understood as follows; more nodes
corresponds the larger variation of the wave function and, in consequence, the larger energy and momentum.

5.3 Parity

Bound-state wavefunctions of the square well and, as we will see later, of the simple-harmonic oscillator
have definite symmetry under the ‘parity’ operation x → −x. This is reflection through the origin; in three
dimensions r → −r.

In quantum mechanics a parity operator P̂ for one particle can be defined by its effect on elements of the
Schrödinger basis, eigenstates of r̂:

P̂|r〉 = c| − r〉
or in position representation as

P̂ψ(r) = cψ(−r).

Requiring that two reflections return to the start, P̂2 = Î and hence c2 = 1. Choose c = 1. Since
〈r|P̂†P̂|r〉 = 〈−r| − r〉 = 〈r|r〉 then P̂ is unitary (skating over normalisation!) So both P̂ = P̂−1 and
P̂−1 = P̂†. Hence P̂ is self-adjoint, with (by inspection) eigenvectors (|r〉 ± | − r〉)/

√
2 for any r and

eigenvalues ±1.
In the position representations the eigenfunctions of P̂ are (1 ± P̂)ψ for any ψ as

P̂(1 ± P̂)ψ = (P̂ ± 1)ψ = ±(1 ± P̂)ψ.

Note that P̂ does not have unique eigenvectors but simply partitions the r-basis into two parts. The
spectrum is complete, so P̂ is observable, even though it cannot be constructed from basic degrees of freedom.
(It is not a rotation because left- and right-handed Cartesian axes transform to each other).

Note that
(1 ± P̂)ψ(r) = ψ(r) ± ψ(−r)

so the eigenfunctions are even and odd functions of r with corresponding eigenvalues +1 and -1.
Now P̂ r̂P̂|r〉 = −r|r〉 = −r̂|r〉 for any |r〉 and so r̂P̂ = −P̂ r̂. Thus, since [r̂, p̂] = ih̄, we also have

p̂P̂ = −P̂p̂. (Note that this means P̂|p〉 = c′| − p〉 with c′2 = 1, which can be an alternative definition of
P̂). Therefore it follows that [r̂2, P̂ ] = [p̂2, P̂] = 0.

Indeed, under parity the self-adjoint operator corresponding to any observable A(r,p) transforms as

Â(r̂, p̂) → P̂ÂP̂ = Â(−r̂,−p̂).

If Â is unchanged (invariant) then [P̂ , Â] = 0 and Â and parity are compatible.
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Examples: Kinetic energy T = p · p/2m and angular momentum L = r × p of a particle are
parity-invariant. Intrinsic spin is also parity-invariant.

For one particle, mass m, in a potential we have Hamiltonian Ĥ = p̂2/2m+ V̂ (r̂) and so if [V̂ , P̂ ] = 0 we
have [Ĥ, P̂ ] = 0 and parity is conserved. The condition on V̂ is equivalent to V̂ (r̂) = V̂ (−r̂) — i.e. that V̂
depends only on r̂2.

If parity is conserved, energy eigenstates can also be also eigenstates of P̂ — indeed they must have
definite parity if the spectrum of Ĥ is non-degenerate.

Examples: For a free particle (V = 0) momentum eigenstates |E,p〉 can be partitioned into
parity eigenstates (|E,p〉 ± |E,−p〉)/

√
2 with parity ±1. For a central potential, where V =

V (|r|), parity is conserved alongside angular momentum.

In wave mechanics for a particle in a symmetrical potential V (r) = V (−r), and when Ĥ has non-
degenerate spectrum, for the wavefunction we have

φE(r) ≡ 〈r|E〉 = 〈r|P̂†P̂|E〉 = 〈−r|(±|E〉) = ±φE(−r),

i.e. definite symmetry under r → −r. If there is degeneracy then energy eigenfunctions may have definite
parity, but it must be checked explicitly. For bound states of a central potential (see Chap 6), where parity is
conserved, there is angular-momentum degeneracy. But even so, the wavefunctions turn out to have definite
parity, for [L̂, P̂ ] = 0 and L̂ has a non-degenerate spectrum.

In one-dimensional wave mechanics parity is conserved iff V (−x) = V (x), which is true, as we have seen,
for the symmetrical square-well potential and for the simple harmonic oscillator. There is no degeneracy for
bound states (as shown in the next Section) and so the energy eigenfunctions are necessarily eigenfunctions
of parity. Thus in the case of the square well our wavefunctions are eigenfunctions of P̂ . Note that

P̂ψn(x) = (−1)n+1ψn(x)

and so ψn(x) has parity (−1)n+1. Note that the ground state wavefunction has parity +1, i.e. is an even
function of x). This is the case for all “reasonable” potentials (which are even).

Note that if ψ is even then ψ(x) = ψ(−x). Then ψ̇(x) = −ψ̇(−x) and so ψ̇(0) = 0. And if ψ is odd we
have ψ(−x) = −ψ(−x) and so ψ(0) = 0.

We can exploit this observation as follows. If ψ(x) is a solution of Ĥψ = Eψ (with V (−x) = V (x)) for
x > 0 then if

ψ̇(0) = 0 ψ(−x) = ψ(x)

is a solution for x < 0 and if
ψ(0) = 0 then ψ(−x) = −ψ(x)

is a solution for x < 0.
Message For even potentials we may look for eigenstates of definitive parity. We do this by solving

Ĥψ = Eψ

in x > 0 subject to ψ(0) = 0 or ψ̇(0) = 0 and extend as above.
For scattering from a symmetrical potential the asymptotic energy eigenfunctions are degenerate with

respect to momentum direction and there is no automatic even/odd symmetry of energy eigenfunctions.
Indeed incoming- or outgoing-wave boundary conditions generally exclude it.

5.4 Finite Square Well

Next we consider a finite square well potential, i.e. a system with V (x) given by

V (x) =
{

0, |x| < a
V0, |x| ≥ a

.
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Classically, if E > V0 the particle can move off to ∞ and so is not bound, but when E < V0 - the particle
must remain in the hole and we have a bound state. This aspect of the problem is preserved in Quantum
Mechanics but is modified.

First look at bound states (i.e. consider E < V0). Then

x < a − h̄2

2m

d2ψ

dx2
= Eψ → ψ(x) = B sin(kx) + A cos(kx), k =

√
2mE

h̄2

x ≥ a − h̄2

2m

d2ψ

dx2
= (E − V0)ψ → ψ(x) = Ce−αx + Deαx, α =

√
2m(V0 − E)

h̄2

and to stop ψ from |ψ| → ∞ as |x| → ∞ we have to put D = 0
Hence for even parity states we take ψ̇(0) = 0 and so B = 0 and the continuity of ψ and ψ̇ at x = a

gives us

A cos(ka) = Ce−αa

−Ak sin(ka) = −Cαe−αa

and so
k tan(ka) = α

is our condition for a non-zero wavefunction. This is our eigenvalue equation for E.
For odd parity states we put

ψ(0) = 0 → A = 0

and so continuity of ψ and ψ̇ at x = a gives us

B sin(ka) = Ce−αa

Bk cos(ka) = −Cαe−αa

and so
k cot(ka) = −α.

The equations for E i.e. for k can be solved only numerically or graphically.
graphical analysis
Change variables to x1 = ka and y1 = αa. Then

x12 + y12 = (k2 + α2)a2 =
2mV0

h̄2 a2 = R2a2

and so we see that the solutions of our equations lie on the intersection of this circle with x1 tan(x1) = y1
(for even states) and x1 cot(x1) = −y1 for odd states.

We see that the number of states is finite and that there is always at least one state.
If V0 is such that R2 ∼ R2

1 (where R1 < π
2 ) we have only one (positive parity) state. If R ∼ R2, where

π
2 < R2 < π we have two states (one odd, one even); if R ∼ R3, where π < R3 < 3π

2 we have three states
(two even, one odd).

In general, if √
2mV0a2

h̄2 ∈ [nπ, (n +
1
2
)π]

we have n + 1 even and n odd states while if
√

2mV0a2

h̄2 ∈ [(n +
1
2
)π, (n + 1)π]

we have (n + 1) odd and (n + 1) even states.
Notes
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• If V0 → ∞ the momenta ka → nπ
2 and so E → π2h̄2n2

8ma2 as before.

• Even when the particle is bound there is a small probability that the particle is outside the well. This
probability is proportional to exp(−2αx).

It is easy to sketch the wave functions for a few lowest states.
Next consider the continuous part of the spectrum, For this we need E > V0. Then

ψ = A sin(kx) + B cos(kx), −a < x < a

and
for x > a ψ = Ceiγ(x−a) + De−iγ(x−a),

where γ =
√

(E−V0)2m
h̄2 = iα.

Now the condition of x → ∞ gives no restriction on C and D and the states cannot be normalised.
We can still take eigenstates of definitive parity (even or odd). For even states A = 0 and B cos(ka) =

C + D and −kB sin(ka) = (C − D)iγ. These can be solved for any E thus the spectrum is continuous.
Similarly for odd states. Thus we have two eigenstates (not normalised), one of each parity, for every value
of E > V0.

5.5 Reflection and Transmission Phenomena

Consider the step potential as before (V = 0, x < 0; V = V0 for x > 0). We have found eigenstates for
0 < E < V0. Let us now show that this problem has also eigenstates for E > V0. Moreover, there are no
states for E < 0 so the spectrum satisfies 0 < E < ∞.

Return to the case of E < V0. Then for x < 0 the wave function satisfies

ψ(x) = ψ<(x) = A(sin(kx) − α
k cos(kx))

= A
2i (1 − ik

α )eikx − A
2i(1 + ik

α )e−ikx,

where k =
√

2mE
h̄2 and α =

√
2m(V0−E)

h̄2 .
For x > 0

ψ(x) = ψ>(x) = − k

α
Ae−αx.

Thus in x < 0 the wavefunction is a superposition of eikx and e−ikx. But

p̂(e±ikx) = −h̄i
∂

∂x
(e±ikx) = −h̄i(±ikx)e±ikx = ±h̄ke±ikx.

So e±ikx is an eigenfunction of momentum with ±h̄k as its eigenvalue.
But e±ikx is not normalisable. So it cannot represent a single particle of exact momentum ±h̄k. As∣∣e±ikx
∣∣2 = 1 we would have probability 1 of finding the particle in a unit interval. Thus we interpret e±ikx

as representing a beam of particles, of density 1 per unit length, each of momentum ±h̄k.
Similarly Aeikx gives density |A|2 per unit length. Thus eikx(e−ikx) describes particles moving to the

right (left).
The flux of particles is density× velocity so for Aeikx the flux is |A|2 h̄k

m .
Thus, in our case, the flux moving to the right is

|A|2

4
(1 +

k2

α2
)
h̄k

m
, x < 0

and to the left also
|A|2

4
(1 +

k2

α2
)
h̄k

m
, x < 0.

In the region of x > 0 the wave is exponentially decreasing and so no particles get to x = ∞. This
explains why the flux to the left is the same as the flux to the right - we have complete reflection.
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We can relate these observations to the continuity equation.
As ψ is stationary ∇j = 0 so in one dimension d

dxj = 0 and so j(a) = j(b) where, in one dimension

j = − ih̄

2m

(
ψ%

dψ

dx
− ψdψ%

dx

)
.

So for ψ = Aeikx we see that j = h̄k
m |A|2 confirming our observations.

For a more general case
ψ< = Aeikx + B e−ikx, ψ> = C e−αx

Then, it is easy to check that

j(x < 0) =
h̄k

m
[|A|2 − |B|2], j(x > 0) = 0

So, as we have already verified, there is no flux to the right and |A| = |B|.
Note; this is exactly like in the classical case. There, if E < V0 the particles would be stopped by the

potential at some point x′ where V (x′) = E, T (x′) = 0. Their motion is then reversed by the action of the
force resulting in the complete reflection of the beam.

If E > V0 the situation is different. Classically, the particles emerge with kinetic energy T1 and momentum
p1 such that

T1 =
p2
1

2m
= E − V0 > 0.

And in Quantum mechanics? We have, for x < 0

ψ = ψ<,
d2ψ<

dx2
+ k2ψ< = 0, k =

√
2mE

h̄2 → ψ< = Aeikx + Be−ikx

while for x > 0

ψ = ψ>,
d2ψ>

dx2
+ β2ψ> = 0, β =

√
2m(E − V0)

h̄2 → ψ> = Ceiβx + De−iβx.

The conditions on ψ and ψ̇ are not sufficient to determine 3 constants (the overall constant is irrelevant
as it is related to the density of the beam).

Having A ,= 0 and D ,= 0 means that we have beams incident from both x = −∞ and x = ∞.
Physically we expect some reflection etc so if the incoming beam is from the left (i.e. from −∞) then we

do not expect any beam from ∞ so D = 0. By this requirement we specify that the beam is fired at the
barrier from −∞.

Then the continuity conditions give us

ψ>(0) = ψ<(0) → A + B = C

ψ̇>(0) = ψ̇<(0) → k(A − B) = βC

giving

C =
2k

k + β
A, B =

k − β
k + β

A.

So the incident flux is h̄k
m |A|2, reflected flux is

h̄k

m
|B|2 =

h̄k

m

∣∣∣∣
k − β
k + β

∣∣∣∣
2

|A|2

and the transmitted flux is
h̄β

m
|C|2 =

h̄β

m

4k2

|k + β|2
|A|2
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So

j(x < 0) = h̄k
m (|A|2 − |B|2)

j(x > 0) = h̄β
m |C|2 .

Due to j(x > 0) = j(x < 0) we see that the incident flux is a sum of the reflected and transmitted fluxes.
We define R - the reflection coefficient

R =
reflected flux
incident flux

=
(k − β)2

(k + β)2

and T - the transmission coefficient

T =
transmitted flux

incident flux
=

4βk

(k + β)2

and we see that T + R = 1.

5.6 The Tunnelling Effect

Consider V as indicated

V (x) =

{ 0, x < 0
V0 > 0, a > x > 0
0, x > a

.

Then let us study what happens when a beam of particles, of unit density is incident from −∞ with some
particular energy E. Classically, if E < V0 the beam will be reflected and if E > V0 it will be transmitted.
In Quantum mechanics we have reflection and transmission in each case.

Study first E < V0. Then

x < 0 − h̄2

2m

d2ψ

dx2
= Eψ, → ψ = eikx + Be−ikx, k =

√
2mE

h̄2

0 < x < a − h̄2

2m

d2ψ

dx2
= (E − V0)ψ, → ψ = Ceαx + De−αx, α =

√
2m(V0 − E)

h̄2

x > a − h̄2

2m

d2ψ

dx2
= Eψ, → ψ = Ẽeikx

(we have set A = 1 for simplicity). We relate B, C, D and Ẽ by the continuity of ψ and ψ̇ at x = 0 and
x = a. The conditions at x = 0 give us

1 + B = C + D, ik − ikB = α(C − D)
→ 2ik = (α+ ik)C − (α− ik)D.

and at x = a we get

Ceαa + D−αa = Ẽeika, αCeαa − αDe−αa = ikẼeika

→ (−ik + α)Ceαa = (α+ ik)De−αa.

To solve them we put C = λ(α + ik)e−αa and D = λ(α − ik)eαa, which solves the last condition, and
find

2ik

λ
= (α+ ik)2e−αa − (α− ik)2eαa.

So

λ = 2ik
(α+ik)2e−αa−(α−ik)2eαa = 2ik

(α2−k2)(e−αa−eαa)+2ikα(e−αa+eαa)

= ik
(k2−α2)sh(αa)+2ikαch(αa) .
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Then

Ẽ = (Ceαa + De−αa)e−ika = 2λαe−ika =
2ikαe−ika

(k2 − α2)sh(αa) + 2ikαch(αa)

And

B = C + D − 1 = λ(α + ik)e−αa + λ(α− ik)eαa − 1 = 2λαch(αa)

−1 − 2ikλsh(αa) = (k2+α2)sh(αa)
(k2−α2)sh(αa)+2ikαch(αa) .

Then R = |B|2 and T =
∣∣∣Ẽ
∣∣∣
2

and

∣∣∣Ẽ
∣∣∣
2

+ |B|2 =
4k2α2

(k2 − α2)2sh2(αa) + 4k2α2ch2(αa)
+

(k2 + α2)2sh2(αa)
(k2 − α2)2sh2(αa) + 4k2α2ch2(αa)

= 1

as required. The fact that we have a transmitted wave in the region that is not accessible classically is called
the tunnelling effect.

Note that if the barrier is very narrow i.e. a is small we have αa ∼ 0 and so B ∼ 0, Ẽ ∼ 1 and the whole
wave is transmitted.

This effect plays a very important role in nuclear physics, in the description of the α decay of nuclei.

5.7 Lessons

If V (∞) is finite the spectrum of Ĥ has two sectors, scattering and bound-state. Scattering energy-values
are continuous with asymptotic double degeneracy with respect to momentum (in, out). The square-well
example shows that the linear and homogeneous continuity conditions are consistent with all E-values if both
in and out asymptotic components of the wavefunction are present, but that they restrict allowed E-values
to just a discrete set when the asymptotic form is a single decaying exponential.

Scattered particles may reflect from sudden changes in V (x) and the ‘tunnelling’ may occur. Confined,
localised, or bound particles have zero-point energy (a non-trivial wavefunction vanishing at both ±∞ must
be curved, so that 〈p2〉 > 0).

Discrete energy levels are bound states, with square-integrable wavefunctions. They are always non-
degenerate in one dimension. This is easily seen by supposing otherwise when both φ1(x) and φ2(x) obey

φ′′ =
2m

h̄2 (V (x) − E)φ

with the same E and, multiplying each equation by the other φ and subtracting, we have

φ1φ
′′
2 − φ′′1φ2 = 0.

Integrating, the Wronskian of the two supposedly independent functions is a constant. But the constant is
zero, evaluating at x = ±∞ where the (bound-state) φ’s vanish, so they are in fact linearly dependent.

With a symmetric potential parity is a good quantum number. The ground state is always symmetrical
(theorem) and eigenfunctions have zeroes increasing by one going up the spectrum (theorem) and interleaving
(theorem). Refer to Messiah, Vol I, pps. 98 to 113 for proofs of these theorems, which follow from the Sturm-
Liouville nature of the Hamiltonian operator.

6 Three-Dimensional Systems

6.1 Square well with rigid walls

Now we look at more “physical” cases i.e. particles in 3 dimensions. We start with problems that can be
solved with the knowledge of 1-dim results.
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Let us look at the stationary Schrödinger equation.

[− h̄2

2m
∇2 + V (r)]ψ(r) = Eψ(r).

Usually we can make progress by exploiting some symmetry of the problem or by separating the equation
in some set of coordinates.

Here we look at case of the potential

V (r) =
{ 0 |x| < a, |y| < b, |z| < c,
∞ otherwise

In this case it is convenient to use Cartesian coordinates.
Clearly ψ(r) = 0 for |x| > a or |y| > b or |z| > c so the particle is confined to a box.
We seek a solution of the Schrödinger equation in the form ψ(r) = ψ1(x)ψ2(y)ψ3(z). Then

− h̄2

2m

(
ψ̈1

ψ1
+
ψ̈2

ψ2
+
ψ̈3

ψ3

)
= E.

Thus

− h̄2

2m

ψ̈i

ψi
= Ei,

where
∑

i Ei = E and
ψ1(±a) = 0, ψ2(±b) = 0, ψ3(±c) = 0

and so we have 3 one dimensional problems whose solutions are known.
As possible values of E1 are n2

1π
2h̄2

8a2m we see that

E =
π2h̄2

8m

(
n2

1

a2
+

n2
2

b2
+

n2
3

c2

)

The corresponding eigenfunctions are

ψ(r) = A sin
(n1π

2a
x +

n1π

2
)

sin
(n2π

2b
y +

n2π

2
)

sin
(n3π

2c
z +

n3π

2
)
,

which are complete (n1, n2, n3 = 1, 2, 3, ..).
Note that if a2 = b2 = c2 = d2 then

E =
π2h̄2

8md2
[n2

1 + n2
2 + n2

3]

so states like (1,2,2), (2,1,2,) and (2,2,1) have the same energy. There must be operators which allow us to
distinguish between these states; they are p̂i.

6.2 3 Dimensional Harmonic Oscillator

For the 3 dimensional Harmonic oscillator we take

Ĥ =
p̂2

2m
+

1
2
mω2r̂2,

where r̂2 = x̂2 + ŷ2 + ẑ2. We solve it as a problem in wave mechanics i.e. in position representation. Then

p̂2 = −h̄2∇2 = −h̄2(∂2
x + ∂2

y + ∂2
z )

and we put
ψ(r) = ψ1(x)ψ2(y)ψ3(z).
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We get 3 equations
(
− h̄2

2m

d2

dx2
+

1
2
mω2x2

)
ψ1(x) = E1ψ1(x)

and similar equations for ψ2(y) and ψ3(z).

E = E1 + E2 + E3.

We use our previous knowledge to discuss their solutions. As one dim. SHO has eigenvalues E1 =
(n1 + 1

2 )h̄ω, n1 = 0, 1, 2... with eigenfunctions

ψn1(x) = Hn1(x
′)e−

1
2 x′2

, x′ =
√

mω

h̄
x

we see that
E =

(
n1 + n2 + n3 +

3
2

)
h̄ω

with eigenfunctions
ψ(r) = ψn1(x)ψn2(y)ψn3(z).

To put it differently, we set
Ĥ =

∑

i=x,y,z

Ĥi

where
Ĥx =

p̂2
x

2m
+

1
2
mω2x̂2, etc.

As Ĥi commute and are Hermitian we can find a basis of simultaneous eigenstates of all Ĥi and Ĥ . So
we take |n1, n2, n3〉 where

Ĥx|n1, n2, n3〉 = h̄ω

(
n1 +

1
2

)
|n1, n2, n3〉

Ĥy|n1, n2, n3〉 = h̄ω

(
n2 +

1
2

)
|n1, n2, n3〉

Ĥz|n1, n2, n3〉 = h̄ω

(
n3 +

1
2

)
|n1, n2, n3〉

and so
Ĥ |n1, n2, n3〉 = h̄ω

(
n1 + n2 + n3 +

3
2

)
|n1, n2, n3〉.

Thus we see that our theorem about commuting operators is closely related to the separation of variables;
in fact, the separation of variables is really just our usage of this theorem.

6.3 Central Potentials

In three-dimensional wave mechanics the wavefunction ψ(r, t) of a particle of mass M in a potential V (r)
obeys the Schrödinger Wave Equation

−h̄2

2M
∇2ψ + V (r)ψ = ih̄

∂ψ

∂t

and may be expressed as a superposition of energy eigenfunctions φE(r) satisfying

−h̄2

2M
∇2φ+ V (r)φ = Eφ.

Each eigenfunction may be chosen to be simultaneously an eigenfunction of all the mutually compatible
conserved quantities.
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Examples: Free-particle energy eigenfunctions ψ may be eigenstates of −ih̄∇ with momentum
p in any direction so long as E = 1

2 |p|
2 /M . Alternatively they may be eigenstates of parity or

of angular momentum, or of both.

With a central potential V (r) = V (r), where r = |r| =
√

r · r, all components of angular momentum
L̂ commute with Ĥ since they commute with both p̂2 and r̂2. So angular momentum is conserved, as in
classical mechanics (and note that parity is conserved too). Then φ = φE/m(r) obeys simultaneously

−h̄2

2M
∇2φ+ V (r)φ = Eφ,

L̂2φ = 6(6+ 1)h̄2φ, L̂zφ = mh̄φ,

where L̂2 = L̂2
x + L̂2

y + L̂2
z and

L̂x = ŷp̂z − ẑp̂y = −ih̄

(
y
∂

∂z
− z

∂

∂y

)
etc.

The commutators of angular momentum alone permit 6 = 0, 1
2 , 1, 3

2 , . . . and constrain m = −6,−6+ 1, . . . , 6.
Because V depends only on radial distance r, spherical polar coordinates (r, θ, ϕ) are better than Carte-

sians. Then the angular momentum operators that commute with V (r) can depend only on angular deriva-
tives. So the angular-momentum equations fix the (θ, ϕ)-dependence of φE/m(r, θ, ϕ) for any central V . Its
remaining r-dependence is determined by the energy eigenvalue equation and depends on details of V (r).
This is an effective one-dimensional problem.

6.4 Separation of Variables

Standard spherical polar coordinates (r, θ, ϕ) are related to right-handed Cartesians by

(x, y, z) = r(sin θ cosϕ, sin θ sinϕ, cos θ)

and all space is covered by 0 ≤ r < ∞, 0 ≤ θ ≤ π (or − 1 ≤ cos θ ≤ 1) and 0 ≤ ϕ < 2π. The volume element
is

dτ = dx dy dz = r2 sin θ dr dθ dϕ = r2dr dΩ

where the solid-angle element is dΩ = d(cos θ) dϕ and
∫

dΩ = 4π.
Simple calculation of derivatives (∂/∂x, ∂/∂y, ∂/∂z) leads to angular momentum operators in spherical

polars:

L̂± = ih̄e±iϕ

{
cot θ

∂

∂ϕ
∓ i

∂

∂θ

}
,

L̂z = −ih̄
∂

∂ϕ

and so
L̂2 = −h̄2

{
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

}
.

Note that
L̂∓L̂± = L̂2 − L̂2

z ∓ h̄L̂z.

The form of L̂z is just as expected for the generator of rotations about the z-axis. Note that

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2

(
− 1

h̄2 L̂2

)
.

(This suggests decomposition of p̂2 = −h̄2∇2 into radial and angular components as in classical mechanics:
P2 = P 2

r +L2/r2. But the radial part of ∇2 is not simply the square of the radial component of ∇. Messiah
(p. 346) shows how to define a self-adjoint p̂r obeying [r̂, P̂r] = −ih̄ with wavefunctions bounded at r = 0).
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Thus in spherical polars φ = φE/m(r, θ, ϕ) obeys

∂φ

∂ϕ
= imφ,

− 1
sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

m2

sin2 θ
φ = 6(6+ 1)φ

and
−h̄2

2Mr2

{
∂

∂r

(
r2 ∂φ

∂r

)
− 6(6+ 1)φ

}
+ V (r)φ = Eφ.

These are eigenvalue equations for L̂z, L̂2 and Ĥ respectively with each simplified using its predecessor.
Hence this process corresponds to the separation of variables. Thus effectively we are putting

φ(r, θ, ϕ) = f(r)χ(θ)h(ϕ).

The Lz equation gives
φE/m(r, θ, ϕ) = χE/m(r, θ)eimϕ

and, since ϕ and ϕ + 2nπ are identified for all integer n, we have m = 0, 1, 2, . . . if φ is to be single-valued.
This implies 6 = 0, 1, 2, . . . only. That is, ‘orbital’ angular momentum L = r × p of a quantum particle can
be only integer multiples of h̄.

6.5 The Legendre Equation

Next we look at the equation for χ (neglecting for the moment the fact that χ depends also on r as here it
still means χ(r, θ) = f(r)χ(θ)):

1
sin(θ)

d

dθ

(
sin(θ)

dχ

dθ

)
− m2χ

sin2(θ)
+ kχ = 0,

where k = l(l + 1),
To solve this equation it is convenient to change variables and introduce x = cos(θ) (do not confuse it

with the original x). Then

dχ

dθ
=

dχ

dx

dx

dθ
= −dχ

dx
sin(θ) → 1

sin(θ)
d

dθ
= − d

dx

and so
d

dx

(
sin2(θ)

dχ

dx

)
− m2

sin2(θ)
χ + kχ = 0

ie
d

dx

(
(1 − x2)

dχ

dx

)
− m2

1 − x2
χ + kχ = 0

or
(1 − x2)

d2χ

dx2
− 2x

dχ

dx
+ kχ =

m2

1 − x2
χ.

This is clearly a very complicated equation.
Let us consider first the case when m − 0. Then this equation becomes

(1 − x2)
d2χ

dx2
− 2x

dχ

dx
+ kχ = 0

and is called the Legendre equation. Its solutions are called Legendre functions.
Let us solve our equation for χ by a power series expansion around x = 0 (note that x = 0 corresponds

to θ = π
2 i.e. the equator).
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So put

χ(x) =
∞∑

n=0

an xn+α.

Actually, we do not need α in this expression (ie we can put α = 0 but ... it does not hurt to put it there
either).

Then
∞∑

r=0

[
(r + α)(r + α− 1)ar(1 − x2)xr+α−2 − 2ar(r + α)xr+α + karx

r+α
]

= 0

ie
∞∑

r=0

(r + α)(r + α− 1)arx
r+α−2 −

∞∑

r=0

[(r + α)(r + α+ 1) − k] arx
r+α = 0.

Look at the powers of x. The two lowest ones are xβ where β = (α−2) and β = (α−1). Their coefficients
are respectively

α(α − 1) a0 = 0
(α+ 1)αa1 = 0

Then when β = α we have
(α + 2)(α+ 1) a2 − [α(α + 1) − k] a0 = 0

and in general (for β = α+ n)

(α+ n + 2)(α+ n + 1) an+2 − [(n + α)(n + α+ 1) − k] an = 0.

So we see that if we satisfy the first two equations the remaining ones can be satisfied recurrsively; ie we
can use them to define an+2 given an. So we treat the last expression as the recurrence relation for an.

To satisfy the first two equations we note that if α = 0 both a0 and a1 are arbitrary and the equations
are satisfied. Then, as the recurrence relation involves only ak with k differing by 2, a2 can be expressed in
terms of a0, a3 in terms of a1, a4 in terms of a2 and thus in terms of a0 etc. Thus all the an for n even are
expressible in terms of a0 and all the ones with n odd, in terms of a1.

In both cases the recurrence relation is given by

an+2 =
n(n + 1) − k

(n + 1)(n + 2)
an.

Let us calculate an for n even. We have

a2 = −k

2
a0, a4 = 2×3−k

4×3 a2 = −k(6−k)
2×3×4 a0

a6 =
4 × 5 − k

6 × 5
a4 = −k(6−k)(20−k)

2×3×4×5×6 a0 etc

So if a1 = 0 the solution is given by the a0 series and is of the form

χ = χ1 = a0

[
1 − k

2!
x2 − k(2 × 3 − k)

4!
x4 − k(2 × 3 − k)(4 × 5 − k)

6!
x6 − ...

]
.

The coefficients of the odd series (ie the series starting with a1) take the form:

a3 =
1 × 2 − k

2 × 3
a1, a5 =

3 × 4 − k

4 × 5
a3 =

(1 × 2 − k)(3 × 4 − k)
5!

a1 itc

and so this series is given by

χ = χ2 = a1x

[
1 +

1 × 2 − k

3!
x2 +

(1 × 2 − k)(3 × 4 − k)
5!

x4 + ...

]
.
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The total solution is given by
χ = χ1 + χ2,

where x = cos θ, and so is characterised by two arbitrary constants a0 and a1.
Note:

• A possible way of solving the first two equations would involve α = 1 and a1 = 0. However, a little
thought shows that the resultant series gives again function χ2.

6.6 Convergence Problems - Legendre Polynomials

Look at the recurrence relations
an+2

an
=

(n + α)(n + α+ 1) − k

(n + α+ 2)(n + α+ 1)

so for large n
an+2

an
→ 1

Hence the series becomes (for large n > N , for some N)

χ ∼ ..... + aN (xN + xN+2 + xN+4 + ....)

This series diverges at x2 = 1 ie for x = ±1.
However, x = cos(θ) so x = 1 → θ = 0 and x = −1 corresponds to θ = π.
So if we want χ(r, θ) = χ(θ)f(r) to be finite when θ = 0 or π (ie on the z axis) we have to impose the

conditions that
lim

θ→0,θ→π
χ(θ) = lim

x→±1
χ(x) = finite.

However, we recall that k = l(l + 1), and so we see that for each value of α one solution is a polynomial
and the other one diverges. So what are these polynomials? (they are polynomials as they involve only finite
series)

For α = 0 (n even and the series starting with a0, or n odd and the series starting with a1) we have

an+2 =
n(n + 1) − l(l + 1)

(n + 2)(n + 1)
an

so al+2 = 0 and we have a polynomial of degree l.
Such (polynomial) solutions of our equation are called Legendre polynomials. They are either odd or

even in x as they involve either odd (or even) powers of x.
Examples

l = 0 χ0(x) = a0

l = 1 χ1(x) = a1x

l = 2 χ2(x) = a0(1 − 3x2)

l = 3 χ3(x) = a1x(1 − 5
3
x2)

We can choose a convenient normalisation - the conventional choice is χl(1) = 1; this normalisation
fixes the values of a0 and a1 in the expressions above. With this normalisation the polynomials are called
Legendre polynomials and are denoted by Pl(x).

The lowest Legendre polynomials are therefore

P0(x) = 1
P1(x) = x

P2(x) =
1
2
(3x2 − 1)
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P3(x) =
1
2
(5x3 − 3x)

P4(x) =
1
8
(35x4 − 30x2 + 3)

P5(x) =
1
8
(63x5 − 70x3 + 15x)

Recall, however, that χ is really also a function of r. Hence we can have (for m = 0)

χE/0 = fE/0(r)P/(cos θ),

where P/(x = cos θ) is the familiar Legendre Polynomial of degree 6. (The other solution, Q/(x), as we have
argued, is singular at x = ±1, or θ = 0, π and so can be ignored).

6.7 Spherical Harmonics

Our previous results were obtained when we put m = 0 in our equation for χ:

(1 − x2)
d2χ

dx2
− 2x

dχ

dx
+ kχ =

m2

1 − x2
χ

Then when we put m = 0, we eliminated dependence of χ on ϕ and our equation for χ became the Legendre
equation.

Let us now look at the case when m ,= 0.
To solve this equation let us recall that k = l(l + 1) and set

χ = (1 − x2)
m
2 u.

Then
dχ

dx
= (1 − x2)

m
2

du

dx
− mx(1 − x2)

m−2
2 u

and
d2χ

dx2
= (1 − x2)

m
2

d2u

dx2
− 2mx(1 − x2)

m−2
2

du

dx

−m(1 − x2)
m−2

2 u + m(m − 2)x2(1 − x2)
m−4

2 u

So

(1 − x2)d2u
dx2 − 2mxdu

dx − mu + m(m−2)x2

1−x2 u

−2xdu
dx + 2mx2 u

1−x2 + l(l + 1)u − m2u
1−x2 = 0.

ie
(1 − x2)ü − 2(m + 1)xu̇ + [l(l + 1) − m(m + 1)]u = 0.

But Pl(x) satisfies
(1 − x2)P̈l − 2xṖl + l(l + 1)Pl = 0.

Differentiate this equation once and obtain

−2x
d2Pl

dx2
+ (1 − x2)

d3Pl

dx3
− 2

dPl

dx
− 2x

d2Pl

dx2
+ l(l + 1)

dPl

dx
= 0.

ie
(1 − x2)

d3Pl

dx3
− 4x

d2Pl

dx2
+ [l(l + 1) − 2]

dPl

dx
= 0.

So we note that dPl
dx solves the equation for m = 1.
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It is easy to check that d2Pl
dx2 solves the equation for m = 2 and, in general, χ is given by

χ = Al(1 − x2)
m
2

(
d

dx

)m

Pl(x) = Al Pm
l (x),

where Al are some functions of r. These functions (for Al = 1) are called associated Legendre functions.
Special cases of associated Legendre functions:
As Pm

l (x) = (1 − x2)m
2 dm

dxm Pl(x) we have

• P 0
l (x) = Pl(x)

• P 1
1 (x) = (1 − x2) 1

2 = sin(θ)

• P 1
2 (x) = 3x(1 − x2) 1

2 = 3 cos(θ) sin(θ)

so Pm
l are polynomials in sin(θ) and cos(θ).

Moreover, choosing a normalisation constants of χ when Al = 1, appropriately, we have

Y m
n (θ, ϕ) =

√
2n + 1

4π
(n − m)!
(n + m)!

Pm
n (cos(θ))eimϕ

which are called spherical harmonics. They form a complete set of functions on (θ, ϕ), satisfy the orthog-
onality condition ∫ 2π

0
dϕ

∫ π

0
sin(θ) dθ Y m1%

n1
(θ, ϕ)Y m2

n2
(θ, ϕ) = δn1n2 δm1m2

and any function on (θ, ϕ) can be expanded

f(θ, ϕ) =
∑

n,m

anm Y m
n (θ, ϕ)

with the coefficients of the expansion found from the orthogonality relations.
Returning to our problem we see that calling our A(r) = fE/m(r)

φE/m(r, θ, ϕ) = fE/m(r)Pm
/ (cos θ)eimϕ.

Then f obeys the radial (energy) equation.
Writing f(r) = u(r)/r the radial equation simplifies and u = uE/(r) satisfies

−h̄2

2M

d2u

dr2
+
(

V (r) +
6(6+ 1)h̄2

2Mr2

)
u = Eu.

This is in the form of a one-dimensional problem with effective potential

V1 = ∞ (r < 0) and V1 = V (r) +
6(6+ 1)h̄2

2Mr2
(r > 0),

which includes the boundary condition u(0) = 0 needed for finiteness of φE/m at the origin. Notice the
‘additional” centrifugal potential term.

The radial equation is independent of m so there is always (26 + 1)-fold degeneracy for given E and 6.
For a central potential the eigenfunctions of energy and angular momentum are then

φE/m(r, θ, ϕ) =
uE/(r)

r
Y/m(θ, ϕ),

where the angular-momentum wavefunctions are the spherical harmonics defined before

Y/m(θ, ϕ) ∝ Pm
/ (cos θ) eimϕ.

54



Note that Y/m satisfy
L̂±Y/m =

√
(6∓ m)(6± m + 1)h̄Y/,m±1

as well as both
L̂2Y/m = 6(6+ 1)h̄2Y/m and L̂zY/m = mh̄Y/m.

With P 0
/ ≡ P/(cos θ) and conventional phase we have

Y/0 =
√

26+ 1
4π

P/(cos θ),

involving an ordinary Legendre Polynomial. Then Y/m for m ,= 0 can be found by application of the
differential operators L̂± = ih̄e±iϕ(cot θ ∂/∂ϕ∓ i∂/∂θ).

Clearly Y00 = 1/
√

4π and states with 6 = 0 are spherically symmetric. Then from P1(cos θ) = cos θ it
follows at once that

Y10 =
√

3
4π

cos θ and Y11 = −Y ∗
1,−1 = −

√
3
8π

sin θ eiϕ.

Likewise from P2(cos θ) = (3 cos2 θ− 1)/2 we have Y20 =
√

5/16π(3 cos2 θ− 1), from which L̂± and L̂2
± give

Y21 = −Y ∗
2,−1 = −

√
15
8π

sin θ cos θ eiϕ and Y22 = Y ∗
2,−2 =

√
15
32π

sin2 θ e2iϕ.

Generally

Y/m(θ, ϕ) =

√
26+ 1

4π
(6− m)!
(6+ m)!

Pm
/ (cos θ) eimϕ.

Moreover, it can be shown that
Pm
/ = P−m

/ .

Note also that for a given value of l the possible values of m are m = −6,−6 + 1, ...6 − 1, 6 as for m > 6
d#+m

dx#+m (x2 − 1)/ = 0.
The 6 = 1, 2 examples above illustrate that Y/,−m = (−1)mY ∗

/m. Note that Messiah (p. 495) and Schiff
(p. 80) have unusual (and different) phase conventions, apparently clashing with that adopted for the ladder
operators.

The spherical harmonics are complete on the sphere; also it is useful to note the existence of a relation

cos θ Y/m(θ, ϕ) = A/mY/+1,m(θ, ϕ) + B/mY/−1,m(θ, ϕ)

where A and B are independent of (θ, ϕ). For m = 0 this is just the recurrence formula for Legendre
polynomials.

Comment on Jargon;

• 6 is called the angular quantum number

• m is called the magnetic quantum number (due to the coupling HL ∼ Lz)

• n; when we have discrete values of energy they can be ordered using an integer - normally denoted by
n which is then referred to as the principal quantum number.

More jargon:
The states corresponding to 6 = 0, 1, 2, 3, 4, 5... are called s, p, d, f, g, h,.. wave states. The term

h̄2

2M
/(/+1)

r2 is called the centrifugal potential.
Under parity, r → −r, angles go θ → π− θ and ϕ→ π+ϕ. So cos θ changes sign and sin θ is unaffected,

implying Pm
/ → (−1)/−mPm

/ . With eimϕ → (−1)meimϕ then we have simply Y/m → (−1)/Y/m, confirming
that angular momentum eigenstates have definite parity, equal to (−1)/. Therefore, since r is unaffected,

φE/m(r) = (−1)/φE/m(−r).
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6.8 An Algebraic Approach to Angular Momentum

Previously we analysed the spectrum of angular momentum algebraically. We took L̂i = εijkx̂j p̂k and showed
that

[L̂i, L̂j] = ih̄εijkL̂k

and then having found that [L̂2, L̂k] = 0 we decided to use simultaneous eigenstates of L̂2 and L̂z

L̂2|λ, m〉 = h̄2λ|λ, m〉
L̂z|λ, m〉 = h̄m|λ, m〉.

By analysing various properties of such states we have found that λ = 6(6 + 1), m = −6, ..6 where 26 is an
integer. So we have found more possibilities than we have here.

Clearly our cases 6 = 0, 1, 2, ... m = −6,−6+ 1, ..0..6 are the ones we have found before. So |6, m〉 are
represented, in the position representation, by our spherical harmonics Y/m.

But what about the others?; those that correspond to half odd integer values of l? e.g. 6 = 1
2 , m = − 1

2 ,
m = 1

2 or 6 = 3
2 , m = − 3

2 , − 1
2 , 1

2 or 3
2?

The non-integer values of m would make the wave function φE/m not single valued so for our orbital
angular momentum we have only integer values of 6. But the general theory allows for the existence of
another angular momentum - called spin. This new angular momentum is realised in nature; in fact, many
elementary particles, such as electron and proton, have it. This extra degree of freedom is not described in
terms of orbital wave functions Y/,m(θ, ϕ) but is described by the purely quantum mechanical spin operators
Ŝx, Ŝy and Ŝz which satisfy

[Ŝi, Ŝj ] = ih̄ εijk Ŝk.

For electron, proton, neutron Ŝ2 = s(s+1)h̄2 where s = 1
2 . Thus the eigenvalues of Ŝz have two values ± 1

2 h̄;
we have two spin states of each electron. For an electron a complete set of commuting observables involves
its position operators x̂, ŷ, ẑ and Ŝz (Ŝ2 is fixed). Its total angular momentum is Ĵi = Ŝi + L̂i.

6.9 Radial Equation

With φE/m(r, θ, ϕ) = uE/(r)Y/m(θ, ϕ)/r the radial function u = uE/ obeys

−h̄2

2ME

d2u

dr2
+
(

V (r)
E

+
6(6+ 1)h̄2

2MEr2

)
u = u

for r ≥ 0. The boundary condition u(0) = 0 applies and, with normalised spherical harmonics, we have
∫ ∞

0
dr u∗

E/(r)uE′/′(r) = δEE′δ//′

to ensure that ∫
dτ φ∗E/mφE′/′m′ = δEE′δ//′δmm′ .

For continuous eigenvalues E replace δEE′ → δ(E − E′).
The division by E ,= 0 makes plain the dimensionless variable kr where k ≡

√
2M |E|/h̄. For ‘non-

singular potentials’ where r2V (r) → 0 as r → 0 the ‘centrifugal’ term dominates as r → 0 and then

d2u

d(kr)2
≈ 6(6+ 1)

(kr)2
u

with solutions u ∼ (kr)/+1, (kr)−/. Since 6 = 0, 1, 2, . . . only the former is acceptable if u(0) = 0.
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6.9.1 Free Particle

Here V = 0 and E > 0. The radial equation is

d2u

d(kr)2
+
(

1 − 6(6+ 1)
(kr)2

)
u = 0.

For 6 = 0 we have uE0(r) ∝ sin kr, rejecting the cosine that isn’t zero at r = 0. For general 6 the non-singular
solution is kr j/(kr), where j/ is the (first kind of) ‘spherical Bessel function’.

These functions can be shown to be given by:

j/(x) = x/
(
− 1

x

d

dx

)/ sin x

x
.

Clearly j0(x) = sin x/x and we can prove by induction that xjl, for l ,= 0, satisfies the equation above:
To see this define

ul = xl+1

(
1
x

d

dx

)l sinx

x
.

Then
ul+1 =

dul

dx
− (l + 1)

x
ul.

So
dul+1

dx
= − (l + 1)

x

dul

dx
+

(l + 1)
x2

ul +
d2ul

dx2

and
d2ul+1

dx2
=

d3ul

dx3
− (l + 1)

x

d2ul

dx2
+ 2

(l + 1)
x2

dul

dx
− 2

(l + 1)
x3

ul.

Putting all this into the equation we find that

d3ul

dx3
+
[
1 − l(l + 1)

x2

]
dul

dx
+ 2

l(l + 1)
x3

ul

However this expression vanishes as can be seen from differentiating the equation for ul.
See Jackson (pps. 84-87) for more details.
A free-particle solution with definite momentum p = h̄k is (Sec 2.4) φE,p(r) = exp ik · r, which must

be expressible as a superposition of free angular-momentum eigenstates φE/m(r, θ, ϕ) = j/(kr)Y/m(θ, ϕ).
Choosing z-axis along k there is no ϕ dependence and the link is through the well-known formula

exp(ikr cos θ) =
∞∑

/=0

(26+ 1)i/j/(kr)P/(cos θ).

6.9.2 Spherical Square Well

Here V = V0θ(r − a).
The radial equation now takes the form

−h̄2

2M

d2u

dr2
+
6(6+ 1)h̄2

2Mr2
u = Eu 0 < r < a

and
−h̄2

2M

d2u

dr2
+
6(6+ 1)h̄2

2Mr2
u = (E − V0)u r > a

The boundary conditions

• u → 0 r → 0
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1. u → 0 r → ∞ for bound states
2. u → const r → ∞ for cont. states

Consider first the s wave states; i.e. 6 = 0. For E < V0 we have
for 0 < r < a

(
d2

dr2
+ α2)u = 0, α =

√
2ME

h̄2

i.e.
u = A cos(αr) + B sin(αr)

while for r > a we have

(
d2

dr2
− β2)u = 0, β =

√
2M(V0 − E)

h̄2

and so
u = Ce−βr + Deβr.

The boundary conditions impose D = 0 and A = 0 and we see that we have only odd solutions of the
corresponding one dimensional problem (where we had odd and even solutions).

Comments:

• Of course r > 0 so the fact that we have odd solutions (for r < 0) is irrelevant

• Recall that the number of bound states depends on 2MV0a2

h̄2 . Since we are permitting only odd states
there need not be any bound states (if V0 is small enough) in contradistinction to the one-dimensional
case where there is always at least one state. For E > V0 we have the continuous spectrum as in the
one dimensional case).

Next we look at the case of general 6. We put ρ = αr and note that our equation becomes

d2

dρ2
(ρf) + [1 − 6(6+ 1)

ρ2
]ρf = 0,

where 0 < ρ < a
α and, as before, α =

√
2ME

h̄2 .
However, this is exactly like the free case discussed before; and its solutions are the spherical Bessel’s

functions j/(ρ) and n/(ρ). The function j/(ρ) was defined in the free case; n/(ρ) is singular at the origin and
is more complicated. So the boundary condition at ρ = 0 gives us

f = Aj/(αr) for 0 < r < a

and for r > a we have
f = C j/(iβr) + D n/(iβr) for r > a,

where the constants C and D are related by the requirement that f ,→ ∞ as r → ∞. This gives us one
condition between C and D. The continuity of f and its derivative at r = a gives us two further conditions
which together not only fix C and D but also determine the energy levels. Thus in particular, it can be
shown that there is at least one p wave bound state if

π ≤
√

2MV0a2

h̄2 < 2π

and two if

2π ≤
√

2MV0a2

h̄2 < 3π. etc

Comparing this result with the condition for an s wave we see that the minimum value of 2MV0a2

h̄2 for the
p wave is higher. This is because of the additional repulsion present due to the angular momentum barrier
/(/+1)

r2 . As 6 increases V0a2 has to get larger for the system to have bound states for angular momentum 6.
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6.10 Two Particle Systems

So far we have been looking at systems involving only one particle under the influence of a fixed potential.
However, our discussion generalises to two particles moving under the influence of mutual forces.

A system of two particle can be described by two position vectors r1 and r2 and momenta p1 and p2.
Let us assume that the particles have masses m1 and m2, respectively. So

H =
1

2m1
(p1)2 +

1
2m2

(p2)2 + V (r1 − r2).

Such a system is invariant under translations:

ri → ri + a

and also under rotations, if V (r1 − r2) = V (|r1 − r2|). In classical mechanics we can treat such a system as
corresponding to a one particle in a fixed potential. We do this by introducing centre of mass, and relative
coordinates. To do this we define

r = r1 − r2

MR = m1r1 + m2r2, M = m1 + m2

We can introduce similar variables in quantum mechanics.
We have

{
− h̄2

2m1
(∇1)2 −

h̄2

2m2
(∇2)2 + V (|r1 − r2)|)

}
Ψ(r1, r2) = EΨ(r1, r2),

in the Schrödinger representation. Here, (∇i)2 = ∂2

∂x
(i)
k ∂x

(i)
k

summed over k.
But

∂

∂x(1)
i

=
m1

M

∂

∂Ri
+

∂

∂xi

∂

∂x(2)
i

=
m2

M

∂

∂Ri
− ∂

∂xi

we see that

1
m1

(∇1)2 +
1

m2
(∇2)2 =

1
m1

(m1

M

∂

∂Ri
+

∂

∂xi

)2 +
1

m2

(m2

M

∂

∂Ri
− ∂

∂xi

)2

=
1
M

(∇c)2 +
1
µ
∇2

where (∇c)2 = ∂2

∂Ri∂Ri
, (∇2) = ∂2

∂xi∂xi
and µ = m1m2

m1+m2
is the reduced mass.

So the Schrödinger equation becomes

[
− h̄2

2M
(∇c)2 −

h̄2

2µ
∇2 + V (r)

]
Ψ = EΨ

and so it is convenient to separate in R and r.
We write Ψ = Ψc(R)ψ(r) and obtain

− h̄2

2M
∇2

cΨc(R) = EcΨc(R)

i.e. like the equation of a free particle of mass M = m1 + m2 and

[− h̄2

2µ
∇2 + V (r)]ψ(r) = E′ψ(r)
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like a particle of reduced mass in a fixed potential.
Note that the solutions of the free equation are

Ψc = AeiPR
h̄

of energy Ec = P2

2M and we are left with having to solve the relative position problem and then the total
energy is the sum of the two.

Comment: Our procedure (of separating variables), once again, can be regarded as choosing an appro-
priate set of commuting observables. For if we define P = p1 + p2 and p = m1

M p1 − m2
M p2 we have

[xi, Pj ] = 0, [xi, pj ] = ih̄δij

[Ri, pj ] = 0, [Ri, Pj ] = ih̄δij

and so we can choose as our basis the simultaneous eigenstates of P̂ and − h̄2

2µ∇
2 + V (r).

6.10.1 Isotropic Simple-Harmonic Oscillator - once again

Here V = 1
2Mω2r2. The spectrum is of bound states for E > 0 and the radial function uE/(r) obeys

− d2u

d(kr)2
+

{(
kr

λ

)2

+
6(6+ 1)
(kr)2

}
u = u,

where λ2 ≡ 2Ek2/Mω2, i.e. E = λh̄ω/2. We seek a solution

u = (kr)/+1 exp(− (kr)2

2λ
)F (kr),

where acceptable behaviour as r → 0 and r → ∞ is made explicit. A solution with F a polynomial
(and therefore harmless at 0,∞) is found by the usual series method when λ = 2n + 3 for ‘principal
quantum number’ n = 0, 1, 2, . . .. The degree of F is 0, 2, 4, . . ., and is equal to n − 6. So energy levels are
E = En = (n + 3

2 )h̄ω and there is degeneracy with respect to 6.
For n = 0 only 6 = 0 is allowed and for n = 1 only 6 = 1; in each case F = constant. For n = 2 the

possibilities are 6 = 0 (F is quadratic) and 6 = 2 (F = constant), and for n = 3 there is 6 = 1 (F quadratic)
and 6 = 3 (F = constant). Remembering m, the n = 0, 1, 2, 3 levels have degeneracy 1, 3, 6, 10 respectively;
for general n degeneracy is 1

2 (n + 1)(n + 2).
This oscillator is ‘isotropic’ because r2 = x2 + y2 + z2 and so in Cartesians Ĥ = −(h̄2/2M)∇2 + V is

a sum of terms for three independent one-dimensional simple-harmonic oscillators with the same frequency.
Each contributes (ni + 1

2 )h̄ω to E and n = nx + ny + nz. Counting degeneracy is straightforward: n = 0 is
all ni = 0; n = 1 = 1 + 0 + 0 (3 ways); n = 2 is 2 + 0 + 0 (3 ways) and 1 + 1 + 0 (3 ways); n = 3 is 3 + 0 + 0
(3) and 2 + 1 + 0 (6) and 1 + 1 + 1 (1) in complete agreement with our discussion at the beginning of this
chapter.

6.11 Hydrogen Atom

The simplest model of a one-electron atom is a point electron of charge −e and mass M moving non-
relativistically in the inverse-square electrostatic (Coulomb) attraction of a point nucleus of charge +Ze
fixed at the origin. Hydrogen has atomic number Z = 1 and so we have a three-dimensional potential
problem with V (r) = −e2/r. There is a scattering sector to the energy spectrum for E > 0 and a bound-
state sector when E < 0. Here we deal with the latter.

With E = − |E| and k2 = 2M |E| /h̄2 the radial wavefunction u = uE/(r) obeys

d2u

d(kr)2
+
(
α

kr
− 6(6+ 1)

(kr)2

)
u = u,
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where

α ≡ e2k

|E| =
e2

h̄

√
2M

|E| .

Writing
u(r) = (kr)/+1e−krF (kr),

with required behaviour as r → 0 and r → ∞ extracted (note u′′ ≈ u for large r), we find that F (x) obeys

x
d2F

dx2
+ 2[(6+ 1) − x]

dF

dx
+ [α− 2(6+ 1)]F = 0.

A routine series expansion finds (Laguerre) polynomial solutions (harmless as r → 0 and r → ∞) of degree
N = 0, 1, 2, . . . if α = 2(N + 6+ 1). Therefore the bound-state energies for this model of the hydrogen atom
are

En = − Me4

2h̄2n2
,

labelled by ‘principal quantum number’ n = N + 6+ 1 = 1, 2, 3, . . .. The ground state is at E1 ≈ −13.6 eV
and the infinite set of levels packs closer as n increases, blending into the continuum at E = 0.

The unique ground state is n = 1, where N = 6 = m = 0. All higher (‘excited’) states are degenerate.
For n = 2 there is N = 1, 6 = m = 0 plus N = 0, 6 = 1 with m = −1, 0, +1. Indeed for every n
degeneracy is 1 + 3 + 5 + . . . + (2n − 1) = n2. This high degree of ‘accidental’ or ‘dynamic’ degeneracy is
special to the Coulomb potential, although the isotropic simple-harmonic oscillator shows something similar.
It is symptomatic of conserved quantities beyond angular momentum and parity so far identified. For the
inverse-square force law there is the (Laplace-)Runge-Lenz vector, as described by H. Goldstein, Classical
Mechanics, Addison Wesley, 2nd Ed., 1980, p. 102 etc.

The lowest few wavefunctions φn/m(r, θ, ϕ) = un/(r)Y/m(θ, ϕ)/r are

φ100 =
1√
πa3

0

exp(− r

a0
),

φ200 =
1√
8πa3

0

(
2 − r

a0

)
exp(− r

2a0
)

and

φ21m =
1√
8πa3

0

r

a0
exp(− r

2a0
) ×






1√
2

sin θe−iϕ

cos θ
− 1√

2
sin θeiϕ

with m = −1, 0, +1 respectively, and where a0 = h̄2/Me2 is the Bohr radius.
The formula for the energy levels agrees quite well with experiment, being the same as that given by

the Bohr model. However n, the principal quantum number, is no longer the electron’s orbital angular
momentum in units of h̄ and has nothing to do with fitting de Broglie waves into a circle. And while a0 is
the radius of the lowest orbit of the Bohr atom, now we have 〈r〉 = 3

2a0 in the ground state.
Transitions E → E′ conserve energy by absorption and emission of radiation of characteristic frequency

ν = |E − E′| /2πh̄ and wavelength λ−1
nn′ = R∞

∣∣n−2 − n′−2
∣∣. The latter formula was discovered empirically

by spectroscopists before 1900. The ‘Rydberg Constant’ is

R∞ ≡ Me4

4πh̄3c
= 10973731.571m−1,

according to recent measurements of fundamental constants (see Physics Letters B, vol. 239, 12 Apr 1990,
page III.1).

A simple refinement of this model treats the atom as two moving and interacting bodies. Then r
is a relative coordinate and otherwise results are identical except that M is replaced by ‘reduced mass’
Mm0/(M + m0) where m0 is the mass of the nucleus. (See e.g. Schiff pps. 88-90). For hydrogen corrections
are order M/m0 ∼ 1/2000.
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Another refinement recognises the intrinsic spin angular momentum 1
2 h̄ of the electron. As a classical

spinning charge −e its consequent magnetic moment is −eh̄/2Mc. This interacts with magnetic fields, adding
terms to Ĥ that tend to lift the degeneracy of its eigenvalues. Magnetic fields are provided by the spatial
motion of the charged nucleus relative to the electron (giving ‘fine structure’ to the spectrum) and may be
provided by any intrinsic spin of the charged nucleus (‘hyperfine structure’). Hydrogen, with one proton of
spin 1

2 , shows both effects.
External static magnetic fields couple to the effective electric current of the orbital electron (producing

the ‘(normal) Zeeman effect’) and couple to its intrinsic magnetic moment to give the ‘anomalous Zeeman
effect’.

Relatively small effects can be treated perturbatively.

7 Conclusion

7.1 Summary

Observable quantities are associated with (self-adjoint) operators that work in a linear state space with
inner product. A measurement gives a (real) eigenvalue of the appropriate operator. State vectors are
linear combinations of its (orthogonal, complete) eigenvectors. A measurement is a random realisation of
an outcome (eigenvalue) and the relative probability of each is the squared modulus of the coefficient of the
corresponding eigenvector in the basis expansion. After a measurement the state vector is changed to the
eigenvector belonging to the eigenvalue realised.

Quantisation is discreteness of eigenvalues and is a consequence of commutation rules for operators, where
h̄ enters. Commutation rules and positivity also lead to the Uncertainty Principle, constraining statistical
scatter of results of mutually incompatible measurements on systems with identical state vectors.

Time-dependence of state vectors between measurements is determined by the Schrödinger Equation as
a unitary transformation. Again h̄ enters and unitarity keeps consistency with measurement axioms. The
Schrödinger Equation and commutation rules give Ehrenfest’s theorems, which ensure the proper classical
limit.

States of definite energy are stable and external time-dependent perturbations cause transitions, with en-
ergy interchange. Transitions between quantised atomic and molecular levels involve emission and absorption
of energy as electromagnetic radiation of characteristic frequencies.

Wave mechanics represents a state vector in a basis of eigenstates of an operator measuring the system’s
configuration-space coordinates. The Schrödinger Equation becomes the Schrödinger Wave Equation and the
squared modulus of its solution (wavefunction) gives a probability density for measurements of configuration-
space coordinates. For one particle these may coincide with coordinates of ordinary spatial position; this is
‘wave-particle duality’.

The formalism gives predictions that agree with experiment although important questions of principle
remain, connected with measurement and the collapse of the state vector.

7.2 Measurement

Measurement gives an eigenvalue of a self-adjoint operator at random according to a certain probability
density and involves thereupon changing the state vector used to describe a quantum system from a general
superposition of eigenvectors to the single eigenvector belonging to the eigenvalue realised. In the 2-slit
experiment when one slit is closed or when an electron arrives at the detecting screen its position is recorded
and the state vector becomes a position eigenstate. This is called ‘collapse of the state vector’ and is a
change not described by the electron’s Schrödinger Equation.

But the electron’s detection involves its interaction with a detector, colliding with constituent atoms
which are excited and then decay, emitting photons which typically travel to and interact with atoms of a
camera film. Later this is developed and fixed by chemicals, then later still photons bounce off the film and
into your eye, where they interact with the retina to cause electrical impulses to travel via optic nerve to
brain. You ‘see’ the electron’s position.
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We think at first of the ‘quantum system’ as just the electron and the ‘detector’ as being a separate
classical recording device. But the chain of events involved in the observation of the electron’s position is
clearly, from the description above, a set of physical processes at the microscopic level, each of which should
(if we had the computational power) be described by quantum mechanics.

So perhaps, more correctly, part at least of the chain of detection apparatus should be included in a
vastly more complicated Schrödinger Equation for the experiment, when the borderline between quantum
and classical, and so the wavefunction collapse, occurs at a much later stage.

But where? At the camera? When the film is developed? When light bounces off it? When it enters
your eye? When you’re conscious of it? When you tell me about it? The answer is not obvious.

The dilemma is sharpened by the ‘Schrödinger’s Cat’ thought experiment. A cat is shut in a box for a
set time with a radioactive nucleus which has exactly a 50:50 chance of decaying during that period. If (and
only if) it does decay then a bulb of cyanide is broken and the cat dies. When you open the box you see
with equal probability either ‘a cooling corpse or a frisking feline’ (Polkinghorne, p. 62).

The state vector of the unobserved quantum system is an equal mixture of two eigenstates— decayed
and undecayed, or equivalently dead and alive. When the box is opened uncertainty has gone. But surely
the cat alone is competent to tell at least whether it’s dead or alive? Surely without being seen the bulb is
either broken or intact? Just where in the chain of events does ‘observation’ occur and collapse of the state
vector happen?

One possible answer is that collapse occurs at a point where the system becomes so complex that irre-
versible phenomena become important. This tries to identify the quantum/classical interface and is fashion-
able now that deterministic chaos and properties of cellular automata have come to the fore.

But this is so far only a vague idea, and doesn’t answer other questions that we think have some meaning:
What’s the electron really doing before it hits the screen? How is it determined which position eigenstate
it collapses to? How is it fixed when the nucleus decays? What’s happening in the world while we’re not
looking?

We assume that an objective world indeed exists — that’s the simplest hypothesis consistent with every-
day experience, after all, and it seems to work in everyday affairs. But it may be that at a submicroscopic
level things are arranged so that with the tools we can make from the physical processes available we simply
can’t resolve whatever mechanism may guide state vector collapse, any more than without a microscope you
can see the cells of the skin on your hand. Maybe down there effectively there’s no ‘real world’ to be seen
because there’s no way of seeing it!

There are substantial issues here. Einstein talked of ‘God playing dice’ and these questions are in focus
again with technological advances that allow clear-cut experiments. Aspect has done a version of the EPR
thought experiment (Phys. Rev. Letters 49, 91 & 1804(1982)) and for example Nagourney et al. (Phys.
Rev. Letters 56, 2797(1986)) have watched a single calcium ion making quantum jumps.

More modern texts like Ballentine, and Sudbery, give some attention to these issues, and the book by
Polkinghorne and those he cites on his p. 97 explain more and describe alternative theories for whatever may
underlie the ‘fall of the dice’.

7.3 And There’s More . . .

Only the simplest atom (hydrogen) has been treated, in the simplest model. But the theory clearly predicts
that such typical atoms, in their ground state, are stable. The most obvious classical catastrophe of the
Rutherford atom is avoided.

But most atoms have many electrons around their tiny nucleus, and would seem to be mostly empty
space. The next step is to understand how multiple-electron atoms are arranged and how aggregates of
atoms in bulk matter keep themselves apart — why don’t they interpenetrate and collapse? To answer this
needs development of the quantum mechanics of many-body systems and in particular Fermi-Dirac Statistics
and the Exclusion Principle. And if you want to learn more about this and other related concepts do come
to the course on Advanced Quantum Theory.
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