This material is supplementary to the paper "GUT Precursors and Entwined SUSY: The Phenomenology of Stable Non-Supersymmetric Strings" by Steven Abel, Keith R. Dienes and Eirini Mavroudi, the text of which is available at arXiv:yymm.nnnn. It consists of the following Tables:

Table I: $4D \mathcal{N} = 1 SU(5) \text{ GUT string model}$

Tables II-VII: 4D non-SUSY SM-like string model: Spectrum and couplings

- II: Higgs fields
- III: Singlets
- IV: L/R-handed matter fields
- V: L/R-handed *conjugate* matter fields
- VI: L/R-handed s-matter fields
- VII: Trilinear couplings

	State	$U(1)_{0}$	$U(1)_{1}$	$U(1)_{2}$	SO(6)	U(5)	$U(1)_{5}$	$U(1)_{6}$	$U(1)_7 l$	$U(1)_{8} S$	SO(6)	$U(1)_{10} b$	$U(1)_{11}$
	$A^{(1)}$	-1/2		1/2		10	-1/2						
	$A^{(2)}$	1/2		1/2		10	-1/2						
	$A^{(3)}$					10	-1/2	1/2	1/2				
	$A^{(4)}$					10	-1/4	1/4	1/4			-1/2	-1/2
L / R - handed matter fields +	$A^{(5)}$					10	-1/4	1/4	1/4			-1/2	1/2
	$Q^{c(1)}$	-1/2		-1/2		$\overline{5}$	-1/2						
	$Q^{c(2)}$	1/2		-1/2		$\overline{5}$	-1/2						
Higgs	$Q^{c(3)}$	1/2		-1/2		$\overline{5}$		-1/2	1/2				
neius	$Q^{c(4)}$	-1/2		-1/2		$\overline{5}$		-1/2	1/2				
	$Q^{c(5)}$		1/2	1/2		$\overline{5}$	1/4	1/4	1/4	-1/2			-1/2
	$Q^{c(6)}$		-1/2	1/2		$\overline{5}$	1/4	1/4	1/4	-1/2	•		-1/2
	$Q^{c(7)}$		1/2	1/2		$\overline{5}$	1/4	1/4	1/4	-1/2	•	•	1/2
	$Q^{c(8)}$	·	-1/2	1/2		$\overline{5}$	1/4	1/4	1/4	-1/2		•	1/2
	$Q^{c(9)}$	•				$\overline{5}$	1					•	
	$Q^{c(10)}$					$\overline{5}$	-1/2	-1/2	-1/2				
	$Q^{c(11)}$					$\overline{5}$	-3/4	-1/4	-1/4			1/2	-1/2
	$Q^{c(12)}$	•				$\overline{5}$	-3/4	-1/4	-1/4			1/2	1/2
	$Q^{c(13)}$					$\overline{5}$	1/4	3/4	-1/4			1/2	1/2
	$Q^{c(14)}$					$\overline{5}$	1/4	3/4	-1/4			1/2	-1/2
	$Q^{c(15)}$	-1/2	-1/2			$\overline{5}$				-1/2		-1/2	
	$Q^{c(16)}$	-1/2	1/2			$\overline{5}$				-1/2		-1/2	
	$Q^{c(17)}$	1/2	-1/2			$\overline{5}$		•		-1/2		-1/2	
	$Q^{c(18)}$	1/2	1/2	•		$\overline{5}$	·	•	•	-1/2	•	-1/2	
	$A^{c(1)}$					$\overline{10}$	1/2	-1/2	-1/2				
R / L -	$Q^{(1)}$	1/2		1/2		5		-1/2	1/2				
matter	$Q^{(2)}$	-1/2		1/2		5		-1/2	1/2				
fields $+$	$Q^{(3)}$		-1/2	-1/2		5	-1/4	-1/4	-1/4	-1/2			-1/2
Higgs	$Q^{(4)}$		1/2	-1/2		5	-1/4	-1/4	-1/4	-1/2			-1/2
neids	$Q^{(5)}$		-1/2	-1/2		5	-1/4	-1/4	-1/4	-1/2			1/2
	$Q^{(6)}$		1/2	-1/2		5	-1/4	-1/4	-1/4	-1/2			1/2
	$Q^{(7)}$					5	$^{-1}$						
	$Q^{(8)}$					5	1/2	1/2	1/2				
	$Q^{(9)}$					5	-1/4	1/4	-3/4			-1/2	1/2
	$Q^{(10)}$					5	-1/4	1/4	-3/4			-1/2	-1/2
	$Q^{(11)}$	-1/2	1/2			5				-1/2		1/2	
	$Q^{(12)}$	-1/2	-1/2			5				-1/2		1/2	
	$Q^{(13)}$	1/2	1/2			5				-1/2		1/2	
	$Q^{(14)}$	1/2	-1/2			5				-1/2		1/2	

I: 4D $\mathcal{N} = 1 SU(5)$ GUT string model

TABLE I: \mathbb{Z}_2 -untwisted visible-sector states of the $\mathcal{N} = 1$, D = 4 GUT "parent" model. Some of the states that give rise to the **5** and the $\overline{\mathbf{5}}$ of the SU(5) GUT group produce the Higgs doublets. The remaining states give rise to 4 net generations of left-handed chiral matter fields as well as a vector-like set of fermionic matter.

_

							II	: Higgs	s fields	3						
State	$U(1)_{0}$	$U(1)_1$	$U(1)_{2}$	$U(1)_{3}$	U(3)	U(2)	$U(1)_{6}$	$U(1)_{7}$	$U(1)_{8}$	$U(1)_{9}$	$U(1)_{10}$	SO(4)	SO(4)	$U(1)_{13}$	$U(1)_{14}$	Y
$h_u^{(1)}$						2	-1									1/2
$h_u^{(2)}$						2	-1									1/2
$h_u^{(3)}$						2	1/2	1/2	1/2							1/2
$h_u^{(4)}$						2	1/2	1/2	1/2							1/2
$h_u^{(5)}$						2	3/4	1/4	1/4					-1/2	1/2	1/2
$h_u^{(6)}$						2	-1/4	-3/4	1/4					-1/2	1/2	1/2
$h_u^{(7)}$						2	-1/4	1/4	-3/4					-1/2	-1/2	1/2
$h_u^{(8)}$	-1/2	-1/2				2				1/2				1/2		1/2
$h_u^{(9)}$	-1/2	1/2				2				-1/2				1/2		1/2
$h_u^{(10)}$	1/2	1/2				2				1/2				1/2		1/2
$h_u^{(11)}$	1/2	-1/2				2				-1/2				1/2		1/2
$h_u^{(12)}$	1/2		1/2			2	1/2									1/2
$h_u^{(13)}$	1/2		1/2			2		1/2	-1/2				•		•	1/2
$h_u^{(14)}$	-1/2		1/2			2		-1/2	1/2				•			1/2
$h_u^{(15)}$	•	1/2	-1/2			2	-1/4	-1/4	-1/4	1/2			•		-1/2	1/2
$h_u^{(10)}$	•	-1/2	-1/2			2	-1/4	-1/4	-1/4	-1/2		•		·	-1/2	1/2
$h_u^{(17)}$	•	-1/2	-1/2	•	•	2	-1/4	-1/4	-1/4	1/2	•		•	•	1/2	1/2
$h_u^{(10)}$	•	1/2	-1/2	•	•	2	-1/4	-1/4	-1/4	-1/2	•		•	•	1/2	1/2
$h_d^{(1)}$	•		•	·	•	2	1	·	·	•	•					-1/2
$h_d^{(2)}$	•	•	•	·	•	2	1	•	·	•	•		·			-1/2
$h_d^{(3)}$	•	•	•	•	•	2	-1/2	-1/2	-1/2	•	•	·		•	•	-1/2
$h_d^{(5)}$	•		•	·	•	2	-1/2	-1/2	-1/2	•	•			•	•	-1/2
$n_d^{(6)}$	·	•	•	·	·	2	-3/4	-1/4	-1/4	·	·		·	1/2	-1/2	-1/2
$h_d^{(7)}$	•	•	•	·	•	2 2	1/4	3/4	-1/4	•	•	•	·	1/2	-1/2	-1/2
$h^{(8)}$	• _1/2	1/9	•	•	•	⊿ 2	1/4	-1/4	3/4	1/9	•	•	•	1/2	1/2	-1/2
$h_{1}^{(9)}$	-1/2	-1/2	•	·	•	2	•	·	·	-1/2	•		·	-1/2	·	-1/2
$h_{:}^{(10)}$	1/2	-1/2	•	•	•	- 2	•	•	•	1/2	•	•	•	-1/2	•	-1/2
$h_d^{(11)}$	1/2	1/2	•	•	•	2		•		-1/2	•	•	•	-1/2		-1/2
$h_d^{(12)}$	-1/2	-/-	-1/2			2	-1/2			-/-				-/-		-1/2
$h_d^{(13)}$	1/2		-1/2			2	-/-	1/2	-1/2							-1/2
$h^{(14)}_{J}$, <u>-</u> -1/2	•	-1/2			2		-1/2	1/2	•		•				-1/2
$h_d^{(15)}$		-1/2	1/2			2	1/4	1/4	1/4	1/2					-1/2	-1/2
$h_d^{(16)}$		1/2	, 1/2			2	, 1/4	, 1/4	, 1/4	-1/2					_1/2	-1/2
$h_d^{(17)}$		1/2	$^{'}$ 1/2			2	, 1/4	1/4	, 1/4	1/2					1/2	-1/2
$h_d^{(18)}$		-1/2	1/2			2	1/4	1/4	1/4	-1/2					1/2	-1/2

II-VII: 4D non-SUSY SM-like string model: Spectrum and couplings

	III: Singlets															
State	$U(1)_{0}$	$U(1)_{1}$	$U(1)_{2}$	$U(1)_{3}$	U(3)	U(2)	$U(1)_{6}$	$U(1)_{7}$	$U(1)_{8}$	$U(1)_{9}$	$U(1)_{10}$	SO(4)	SO(4)	$U(1)_{13}$	$U(1)_{14}$	Y
$\tilde{x}^{(1)}$		1								1						
$\tilde{x}^{(12)}$		-1								$^{-1}$						
$\tilde{x}^{(2)}$		-1								1						
$\tilde{x}^{(11)}$		1								$^{-1}$						
$\tilde{x}^{(3)}$		1								-1						
$\tilde{x}^{(10)}$		-1								1						
$\tilde{x}^{(4)}$		-1		•						$^{-1}$		•	•			
$\tilde{x}^{(9)}$		1								1						
$\tilde{x}^{(93)}$	1/2		1/2				1	1/2	-1/2							
$\tilde{x}^{(132)}$		-1/2	-1/2				3/4	-1/4	-1/4	1/2					1/2	
$\tilde{x}^{(130)}$	•	1/2	-1/2				3/4	-1/4	-1/4	1/2					-1/2	
$\tilde{x}^{(95)}$	1/2		-1/2				-1	1/2	-1/2							
$\tilde{x}^{(120)}$	•	1/2	1/2				-3/4	1/4	1/4	1/2					1/2	
$\tilde{x}^{(118)}$		-1/2	1/2				-3/4	1/4	1/4	1/2					-1/2	
$\tilde{x}^{(43)}$							-3/4	-1/4	3/4					1/2	1/2	
$\tilde{x}^{(66)}$	1/2	-1/2					-1			1/2				-1/2		
$\tilde{x}^{(64)}$	-1/2	1/2					-1			1/2				-1/2	•	
$\tilde{x}^{(25)}$							3/4	-3/4	1/4					-1/2	1/2	
$\tilde{x}^{(62)}$	1/2	1/2					1			1/2				1/2	•	
$\tilde{x}^{(60)}$	-1/2	-1/2					1			1/2				1/2		

TABLE III: The massless singlets from the twisted and untwisted sectors of the theory that are involved in the Yukawa couplings.

=

_

						IV:	L/R -	hande	ed mat	ter fiel	ds					
State	$U(1)_{0}$	$U(1)_1$	$U(1)_2 l$	$U(1)_{3}$	U(3)	U(2)	$U(1)_{6}$	$U(1)_{7}$	$U(1)_{8}$	$U(1)_{9} l$	$U(1)_{10}$	SO(4)	SO(4)	$U(1)_{13}$	$U(1)_{14}$	Y
$q^{(1)}$	1/2		1/2		3	2	-1/2									1/6
$q^{(2)}$					3	2	-1/2	1/2	1/2							1/6
$q^{(3)}$					3	2	-1/4	1/4	1/4					-1/2	1/2	1/6
$\ell^{(1)}$	1/2		-1/2			2	-1/2									-1/2
$\ell^{(2)}$	1/2		-1/2			2		-1/2	1/2							-1/2
$\ell^{(3)}$	•	-1/2	1/2	•		2	1/4	1/4	1/4	-1/2					-1/2	-1/2
$\ell^{(4)}$		1/2	1/2			2	1/4	1/4	1/4	-1/2					1/2	-1/2
$\ell^{(5)}$						2	-3/4	-1/4	-1/4					1/2	1/2	-1/2
$\ell^{(6)}$	•		•			2	1/4	3/4	-1/4					1/2	1/2	-1/2
$\ell^{(7)}$	-1/2	1/2				2				-1/2				-1/2		-1/2
$\ell^{(8)}$	1/2	-1/2				2				-1/2				-1/2		-1/2
$u^{c(1)}$	-1/2		1/2		$\overline{3}$		-1/2		•							-2/3
$u^{c(2)}$	•	•		•	$\overline{3}$		-1/4	1/4	1/4	•	•	•		-1/2	-1/2	-2/3
$d^{c(1)}$	-1/2		-1/2	•	$\overline{3}$	•	-1/2						•	•		1/3
$d^{c(2)}$	-1/2		-1/2		$\overline{3}$			-1/2	1/2							1/3
$d^{c(3)}$	•	1/2	1/2		$\overline{3}$		1/4	1/4	1/4	-1/2					-1/2	1/3
$d^{c(4)}$	•	-1/2	1/2		$\overline{3}$		1/4	1/4	1/4	-1/2					1/2	1/3
$d^{c(5)}$	•	•		•	$\overline{3}$		1	•	•	•	•				•	1/3
$d^{c(6)}$	•	•	•	•	$\overline{3}$	•	-1/2	-1/2	-1/2	•	•	•	•		•	1/3
$d^{c(7)}$	•	•		•	$\overline{3}$	•	-3/4	-1/4	-1/4	•		•	•	1/2	-1/2	1/3
$d^{c(8)}$	•				$\overline{3}$		1/4	3/4	-1/4		•		•	1/2	-1/2	1/3
$d^{c(9)}$	-1/2	-1/2			3			•	•	-1/2	•			-1/2	•	1/3
$d^{c(10)}$	1/2	1/2	•	•	$\overline{3}$	·		•	•	-1/2	•		•	-1/2	·	1/3
$e^{c(1)}$	-1/2	•	1/2	•	•	•	-1/2	•	·	·	•		•		•	1
$e^{c(2)}$	•	•			•	•	-1/4	1/4	1/4	·		•	•	-1/2	-1/2	1
$\nu^{c(1)}$	-1/2		1/2	•	·		1	1/2	-1/2	·	·	·	·			·
$\nu^{c(2)}$		1/2	-1/2				3/4	-1/4	-1/4	1/2		·			1/2	
$\nu^{c(3)}$		-1/2	-1/2	•		•	3/4	-1/4	-1/4	1/2	•		•	•	-1/2	
$\nu^{c(4)}$	•	•	•	•		·	3/4	-3/4	1/4		·			-1/2	-1/2	
$\nu^{c(0)}$	1/2	-1/2	•	•		·	1	•	•	1/2	·			1/2	·	
$\nu^{c(0)}$	-1/2	1/2	·	•	•	•	1	•	•	1/2	•		•	1/2	·	•
$\nu^{c(r)}$	•	•	·	•	•	•	·	-1	1	·	•		•		•	•
$\nu^{c(\delta)}$	•	•			•	•	•	1	-1	·		•	•		•	·

TABLE IV: The chiral matter fields in the untwisted sectors of the theory that remain massless. There are only two net generations of chiral matter fields. Each one descends from an initial pair in the $\overline{V_0 + V_2}$ and $\overline{V_0 + V_1 + V_2 + \alpha_7 V_7}$ ($\alpha_7 = 1, 3$) sectors after applying the CDC. The third generation is partnered with the conjugate generation in Table V.

					V:	L/R -	hand	ed <i>cor</i>	njugate	e matte	er field	ls				
State	$U(1)_{0}$	$U(1)_1$	$U(1)_{2}$	$U(1)_{3}$	U(3)	U(2)	$U(1)_{6}$	$U(1)_{7}$	$U(1)_{8}$	$U(1)_{9}$	$U(1)_{10}$	SO(4)	SO(4)	$U(1)_{13}$	$U(1)_{14}$	Y
$q^{c(1)}$					$\overline{3}$	2	1/2	-1/2	-1/2							-1/6
$\ell^{c(1)}$	1/2		1/2			2		-1/2	1/2							1/2
$\ell^{c(2)}$		1/2	-1/2		•	2	-1/4	-1/4	-1/4	-1/2	•			•	-1/2	1/2
$\ell^{c(3)}$		-1/2	-1/2			2	-1/4	-1/4	-1/4	-1/2					1/2	1/2
$\ell^{c(4)}$						2	-1/4	1/4	-3/4					-1/2	1/2	1/2
$\ell^{c(5)}$	-1/2	-1/2				2				-1/2				1/2		1/2
$\ell^{c(6)}$	1/2	1/2				2				-1/2				1/2		1/2
$d^{(1)}$	-1/2		1/2		3			-1/2	1/2							-1/3
$d^{(2)}$		-1/2	-1/2		3		-1/4	-1/4	-1/4	-1/2					-1/2	-1/3
$d^{(3)}$		1/2	-1/2		3		-1/4	-1/4	-1/4	-1/2					1/2	-1/3
$d^{(4)}$					3		-1									-1/3
$d^{(5)}$					3		1/2	1/2	1/2							-1/3
$d^{(6)}$					3		-1/4	1/4	-3/4					-1/2	-1/2	-1/3
$d^{(7)}$	-1/2	1/2			3					-1/2				1/2		-1/3
$d^{(8)}$	1/2	-1/2			3					-1/2				1/2		-1/3
$\nu^{(1)}$	-1/2		-1/2				-1	1/2	-1/2							
$\nu^{(2)}$		-1/2	1/2				-3/4	1/4	1/4	1/2					1/2	
$\nu^{(3)}$		1/2	1/2				-3/4	1/4	1/4	1/2					-1/2	
$\nu^{(4)}$							-3/4	-1/4	3/4					1/2	-1/2	
$\nu^{(5)}$	1/2	1/2					-1			1/2				-1/2		
$ u^{(6)}$	-1/2	-1/2					-1			1/2				-1/2		

TABLE V: The chiral conjugates that together with the matter fields form a single vector-like generation of SM matter.

					V	'I:	L/R -	hand	ed s-m	atter fi	elds					
State	$U(1)_{0}$	$U(1)_{1}$	$U(1)_2$	$U(1)_{3}$	U(3)	U(2)	$U(1)_{6}$	$U(1)_{7}$	$U(1)_8$	$U(1)_{9} l$	$U(1)_{1}$	$_0 SO(4) S$	O(4)	$U(1)_{13}$	$U(1)_{14}$	Y
$\tilde{q}^{(1)}$					3	2	-1/4	1/4	1/4					-1/2	-1/2	1/6
$\tilde{q}^{(2)}$	-1/2		1/2		3	2	-1/2									1/6
$\tilde{u}^{c(1)}$					$\overline{3}$		-1/2	1/2	1/2							-2/3
$\tilde{u}^{c(2)}$					$\overline{3}$		-1/2	1/2	1/2							-2/3
$\tilde{u}^{c(3)}$					$\overline{3}$		-1/4	1/4	1/4					-1/2	1/2	-2/3
$\tilde{u}^{c(4)}$	1/2		1/2		$\overline{3}$		-1/2									-2/3
$\tilde{d}^{c(1)}$					$\overline{3}$		-3/4	-1/4	-1/4					1/2	1/2	1/3
$\tilde{d}^{c(2)}$					$\overline{3}$		1/4	3/4	-1/4					1/2	1/2	1/3
$\tilde{d}^{c(3)}$					$\overline{3}$		1/4	-1/4	3/4					1/2	-1/2	1/3
$\tilde{d}^{c(4)}$	-1/2	-1/2			$\overline{3}$					1/2				-1/2		1/3
$\tilde{d}^{c(5)}$	-1/2	1/2			$\overline{3}$					-1/2				-1/2		1/3
$\tilde{d}^{c(6)}$	1/2	1/2			$\overline{3}$					1/2				-1/2		1/3
$\tilde{d}^{c(7)}$	1/2	-1/2			$\overline{3}$					-1/2				-1/2		1/3
$\tilde{d}^{c(8)}$	1/2	•	-1/2		$\overline{3}$		-1/2			•						1/3
$\tilde{d}^{c(9)}$	1/2		-1/2		$\overline{3}$		•	-1/2	1/2							1/3
$\tilde{d}^{c(10)}$	-1/2		-1/2		$\overline{3}$			1/2	-1/2							1/3
$\tilde{d}^{c(11)}$		1/2	1/2		$\overline{3}$		1/4	, 1/4	1/4	1/2					-1/2	1/3
$\tilde{d}^{c(12)}$		-1/2	1/2		3		1/4	1/4	1/4	-1/2					-1/2	1/3
$\tilde{d}^{c(13)}$		-1/2	-, -		3		1/4	1/4	1/4	1/2					1/2	1/3
$\tilde{d}^{c(14)}$		1/2	1/2	•	3	•	1/4	1/4	1/4	-1/2	•	•		•	1/2	1/3
$\tilde{e}^{c(1)}$		1/4	1/2	•	9	·	-1/2	1/2	1/2	1/4	•		•		1/2	1
$\tilde{e}^{c(2)}$	·	·	·	·	·	•	-1/2	1/2	1/2	·	·		·		·	1
$\tilde{e}^{c(3)}$	·	•	•	•	•	•	-1/2	1/4	1/4	•	•	·	•	•	•	1
$\tilde{c}^{c}(4)$	•	•	•	•	·	•	-1/4	1/4	1/4	•	•	•	•	-1/2	1/2	1
еv	1/2	•	1/2	·	·	•	-1/2	·			•		•		•	T

TABLE VI: The massless chiral Smatter fields in the untwisted sectors. Note that the charges of the s-matter fields under the horizontal gauge groups in the $\overline{V_1 + V_2}$ sector are different from those of the matter fields (in the $\overline{V_0 + V_2}$ sector) in Table IV: SUSY is spontaneously broken to *e*-SUSY in the untwisted sectors of the theory that yield the *chiral* fields.

VII: Triliinear couplings

Dynamical " μ -terms" for vector-like matter

$$\frac{1}{\sqrt{2}g_{\mathrm{YM}}} W_{\mu_2} \equiv d^{c(2)} d^{(4)} \tilde{x}^{(93)} + d^{c(3)} d^{(3)} \tilde{x}^{(2)} + d^{c(3)} d^{(4)} \tilde{x}^{(132)} + d^{c(4)} d^{(2)} \tilde{x}^{(1)} + d^{c(4)} d^{(4)} \tilde{x}^{(130)} + d^{c(5)} d^{(1)} \tilde{x}^{(95)} + d^{c(5)} d^{(2)} \tilde{x}^{(120)} + d^{c(5)} d^{(3)} \tilde{x}^{(118)} + d^{c(5)} d^{(6)} \tilde{x}^{(43)} + d^{c(5)} d^{(7)} \tilde{x}^{(66)} + d^{c(5)} d^{(8)} \tilde{x}^{(64)} + d^{c(8)} d^{(4)} \tilde{x}^{(25)} + d^{c(9)} d^{(4)} \tilde{x}^{(62)} + d^{c(9)} d^{(8)} \tilde{x}^{(1)} + d^{c(10)} d^{(4)} \tilde{x}^{(60)} + d^{c(10)} d^{(7)} \tilde{x}^{(2)} + \ell^{c(2)} \ell^{(4)} \tilde{x}^{(2)} + \ell^{c(3)} \ell^{(3)} \tilde{x}^{(1)} + \ell^{c(5)} \ell^{(8)} \tilde{x}^{(1)} + \ell^{c(6)} \ell^{(7)} \tilde{x}^{(2)}$$

Dynamical "µ-terms" for e-partners of vector-like matter

$$\frac{1}{\sqrt{2}g_{\mathcal{M}}} W_{\tilde{\mu}_{2}} \equiv \tilde{d}^{c(5)} \tilde{d}^{(4)} \tilde{x}^{(2)} + \tilde{d}^{c(7)} \tilde{d}^{(6)} \tilde{x}^{(1)} + \tilde{d}^{c(12)} \tilde{d}^{(11)} \tilde{x}^{(1)} + \tilde{d}^{c(14)} \tilde{d}^{(13)} \tilde{x}^{(2)} + h_{u}^{(1)} h_{d}^{(6)} \tilde{x}^{(25)} + \\ h_{u}^{(1)} h_{d}^{(9)} \tilde{x}^{(62)} + h_{u}^{(1)} h_{d}^{(11)} \tilde{x}^{(60)} + h_{u}^{(1)} h_{d}^{(14)} \tilde{x}^{(93)} + h_{u}^{(1)} h_{d}^{(16)} \tilde{x}^{(132)} + h_{u}^{(1)} h_{d}^{(18)} \tilde{x}^{(130)} + \\ h_{u}^{(7)} h_{d}^{(1)} \tilde{x}^{(43)} + h_{u}^{(9)} h_{d}^{(1)} \tilde{x}^{(66)} + h_{u}^{(9)} h_{d}^{(11)} \tilde{x}^{(2)} + h_{u}^{(11)} h_{d}^{(1)} \tilde{x}^{(64)} + h_{u}^{(11)} h_{d}^{(9)} \tilde{x}^{(1)} + \\ h_{u}^{(14)} h_{d}^{(1)} \tilde{x}^{(95)} + h_{u}^{(16)} h_{d}^{(1)} \tilde{x}^{(120)} + h_{u}^{(16)} h_{d}^{(18)} \tilde{x}^{(1)} + h_{u}^{(18)} h_{d}^{(1)} \tilde{x}^{(118)} + h_{u}^{(18)} h_{d}^{(16)} \tilde{x}^{(2)}$$

Yukawa couplings for matter

$$\frac{W_{Yuk}}{\sqrt{2}g_{\rm M}} = h_u^{(1)}\ell^{(2)}\nu^{c(1)} + h_u^{(1)}\ell^{(3)}\nu^{c(2)} + h_u^{(1)}\ell^{(4)}\nu^{c(3)} + h_u^{(1)}\ell^{(6)}\nu^{c(4)} + h_u^{(1)}\ell^{(7)}\nu^{c(5)} + h_u^{(1)}\ell^{(8)}\nu^{c(6)} + h_u^{(1)}q^{c(1)}d^{(5)} \\ + h_u^{(3)}q^{c(1)}d^{(4)} + h_u^{(7)}\ell^{(6)}\nu^{c(7)} + h_u^{(14)}\ell^{(2)}\nu^{c(8)} + h_d^{(1)}q^{(1)}d^{c(1)} + h_d^{(1)}q^{(2)}d^{c(6)} + h_d^{(1)}q^{(3)}d^{c(7)} + h_d^{(1)}\ell^{(1)}e^{c(1)} \\ + h_d^{(1)}\ell^{(5)}e^{c(2)} + h_d^{(1)}\ell^{c(1)}\nu^{(1)} + h_d^{(1)}\ell^{c(2)}\nu^{(2)} + h_d^{(1)}\ell^{c(3)}\nu^{(3)} + h_d^{(1)}\ell^{c(4)}\nu^{(4)} + h_d^{(1)}\ell^{c(5)}\nu^{(5)} + h_d^{(1)}\ell^{c(6)}\nu^{(6)} \\ + h_d^{(3)}q^{(2)}d^{c(5)} + h_d^{(5)}q^{(3)}d^{c(5)} + h_d^{(6)}\ell^{c(4)}\nu^{c(7)} + h_d^{(1)}q^{(1)}d^{c(5)} + h_d^{(1)}\ell^{c(1)}\nu^{c(8)} .$$