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1
Intro and overview

Understanding the physics behind biological systems involves many different top-
ics, such as thermodynamics, classical and statistical mechanics, electrodynamics.
When you learn these individually and in isolated form, it can be hard to see how to
apply the sometimes abstract theory to real-world biological systems. The present
text takes a different route, and uses concrete problems as a basis for teaching just
enough of the essentials so that you can have a good physical understanding of
what is going on.

Typical questions which we would like to know the answer to are

• Why is the world of microbiology so different from the world of macroscopic
living things? Why do bacteria not swim like fish?

• How does the seemingly random motion of things inside cells lead to biolog-
ical structure? Which mechanisms are responsible for creating order inside a
cell?

• How do soft materials assemble together to make molecular motors? How do
they turn energy into useful, directed work?

• How does information gets transported inside biological systems? Why don’t
electrical signals disappear over time?

1.1. Tour of the cell

The topics in this book will focus on what happens with biological cells and inside
of them. This is a world very different from the one we are used to. In order to
get a rough idea of the scales involved, here is one of those “powers of ten” tables
adapted for our course:

size in meter phenomenon

10−2 ultrasound wavelength in tissue
10−3(mm) flea
10−4 amoebas, capillaries
10−5 white blood cell
10−6(µm) bacteria
10−7 phage, DNA strands
10−8 globular proteins, cell membrane thickness
10−9(nm) DNA nucleotides
10−10 atoms in DNA
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We will mainly focus on scales between 10−4 and 10−8 meter: the cell, the way it
behaves in its environment, and its internals.

Cells, even though there are many types, perform a common set of activities,
which include

• They take in chemical or solar energy, of which most gets discarded again as
heat, but some gets used to do mechanical work or to synthetise molecules.

• They make their own internal structure, mostly in terms of proteins.

• They reproduce or duplicate.

• They maintain their internal composition and their volume despite the chang-
ing exterior conditions.

• Many move about by crawling or swimming.

• They sense and respond to environmental conditions.

• They sense their internal conditions and use this in feedback loops.

1.2. Guide to the literature

While these notes contain the basic material necessary to get you through the “Bio-
physics” module, you are strongly encouraged to have a look at some additional
books, if only to see things from a different perspective.

• .
We will mostly follow this book, though in a different order and with a more
mathematical emphasis.

• .
An introductory book on thermodynamics with biological applications through-
out; somewhat basic. Useful for the first chapter of these lectures.

• .
A very readable book to get an insight into the microscopic world of the cell
and its contents.

• .
Nothing about biology, but a lot of good physics.

• We will not do differential equations; see Mathematical Biology and Partial
Differential Equations.

• Although we will touch briefly on some statistical aspects of microscopic biol-
ogy, see e.g. Statistical Methods for more details.
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2
Energy balance

2.1. Biological questions

Just as in other areas of physics, many problems in biophysics can be understood
by simpy ignoring all the details that go on at a small (atomic) scale, and instead
focussing on the way in which energy flows at a more macroscopic level. However,
unlike many standard physics problems, biological physics problems are almost al-
ways governed by the fact that they take place at some non-zero temperature. At
finite temperature, energy balance can be quite complicated and confusing, and we
need a good intuitive grasp of thermodynamics.

Naively, you would perhaps expect that at the micro- or nanometer scale, all or-
der would quickly be washed out by the thermal fluctuations. Thermal fluctuations
look like they would just lead to some generic repulsive force that tries to mix ev-
erything into one big soup (after all, that is what usually happens when you put a
mixture of things in a pot and heat it for a long time). But things are more com-
plicated than that. First of all, membranes prevent things from moving in arbitrary
ways. This results in an effect known as osmosis pressure. We would like to be able
to compute that pressure and see what role it plays in stabilising cells.

Thermal fluctuations often bring a cell from one state to another, as they allow
a system to ‘jump’ over energy barriers. The associated reaction rates have to do
with the energy ‘cost’ to go from one state to the other, and thermodynamics gives a
clear prediction for the rate at which such transitions can occur. Chemical and other
reactions of course play an important role in all sorts of cell processes.

Finally, thermodynamical fluctuations lead to an interesting new type of attrac-
tive force. This force occurs in situations where the thermally dancing soup sur-
rounding large molecules is prevented from entering between two of them. We
never see this kind of force in the macroscopic world, but it can be competing with
Coulomb forces, hydrogen bonds or electromagnetic interaction at very small scales.

▶ See also: , chapter 1, 6 and 7, a bit of 8. For more thermodynamics, see .

2.2. Physical theory

2.2.1 Prerequisite: ideal gasses

There is one concept so dominant in thermodynamics that we need to spend a few
words on it before we delve into more complicated theory: that of an “ideal gas”.
An ideal gas is a gas in which the molecules do not interact with each other. The
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energy of the gas is just the kinetic energy of the molecules summed up, and there
is no potential energy. From an empirical point of view, what defines an ideal gas is
the relationIdeal gas law.

PV = NkBT . (2.1)

Here P is the pressure, V the volume, N the number of molecules, T the temperature
and kB = 1.380 650 3 × 10−23 m2 kg s−2 K−1 the so-called Boltzmann constant. If a
gas has a sufficiently low density, it can be approximated with the above ideal gas
law. It can be derived from statistical mechanics but we will not need that derivation
here.1 The ideal gas law is a combination of Boyle’s law, PV = const., valid when T
and N are constant, the law of Gay-Lussac, P/T = const., valid when V and N are
constant, and Avogadro’s law, V/N = const., valid when P and T are constant.

The second important equation for ideal gasses deals with the energy which is
stored in each individual molecule. This is a simple expression,Average energy of a molecule in an

ideal gas.

⟨Emolecule⟩ =
3
2

kBT . (2.2)

This equation expresses the average kinetic energy of a molecule of an ideal gas in
terms of the temperature. You can again derive this relation from first principles,
but the upshot is all we will need for our biological applications.

2.2.2 Energy, entropy and temperature
Let us begin by recalling a few basic ideas from thermodynamics. From our expe-
rience in everyday life, we know that when we bring two substances at different
temperature in contact with each other, a flow of energy will occur. The internal
thermal energy of the hotter substance will flow to the cooler substance. Once the
combined system has settled into equilibrium, we can again talk about its tempera-
ture.

Temperature is thus a property of systems in equilibrium. But interesting things
(like the energy flow described above) happen precisely because systems are often
not in equilibrium. In order to understand whether a system is in equilibrium, it is
not sufficient to simply know its total energy. After all, we can bring a system with
a large energy into contact with a system with only little energy, but that does not
tell us whether they will be in equilibrium once we allow them to exchange energy.

The reason why the knowing only the total energy is not sufficient is of course
that there are many microscopic states which can result in a system with the same
total energy. Think of a box containing a gas of molecules with some fixed total en-
ergy. At the microscopic level, there are many different ways in which the molecules
can be moving, and since they constantly bump into each other, their velocities and
positions are constantly changing. Whether a system is in equilibrium or not surely
depends on how these velocities and positions are distributed over the molecules.
If all molecules sit in one corner of the box (as in the figure), there surely is no equi-
librium, and the gas will eventually expand to fill the entire box.

If a gas is initially located in a corner,
there is no equilibrium. The gas will
eventually expand to fill the entire con-
tainer, thereby maximising the number
of available microstates at given fixed
total energy.

Let us say the same thing using slightly different wording. Suppose we would
do a rapid set of measurements on our sample system in the initial state, with all
molecules in one corner. We would see that there is a certain order to the results:
the positions of all molecules are always in the corner. In equilibrium, on the other
hand, we can find molecules at any possible position inside the fixed container, and
there is much less correlation between one measurement and the next. We can thus
say that there is a relation between the number of possible microscopic states and

1You may have seen this law in terms of the number of moles of gas molecules, rather than the
number of molecules itself. In that case, kB gets replaced by the gas constant R.
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the “disorder” of the system. If the number of allowed states is maximal, we have
maximal disorder.

A different way to say that the gas will expand to fill all the available volume is
thus:

Statistical postulate: When an isolated system is left alone long enough,
it evolves to thermal equilibrium. Equilibrium is not one microstate,
but rather that probability distribution of microstates having the greatest
possible disorder allowed by the physical constraints on the system.

What we thus need to do is to quantify the concept of “disorder”, given the macro-
scopic constraints (total fixed energy and total fixed available volume, in our case).
The property of the system which does this is the so-called entropy.

In terms of the number of microstates Ω, entropy is defined as Entropy is a constant times the
logarithm of the number of
microstates.S := kB log Ω . (2.3)

The Boltzmann constant kB is there by convention and has no physical meaning.
However, the logarithm is there for a good reason. Suppose each of N molecules
composing the gas can be in one of nstates different states (positions and velocities).
Then we would in total have Ω = (nstates)N different states altogether. The loga-
rithm of this quantity depends linearly on N. In effect, the entropy is a measure of
the number of labels which we have to specify in order to describe the state. If we
string N digits between 1 and nstates together, we have a number which labels our
state.

Note that entropy is not conserved: it increases until the system reaches equilib-
rium. This is actually the statement of the Entropy is not conserved (in

contrast to energy, which is).
Second law of thermodynamics: Whenever we release an internal con-
straint on an isolated macroscopic system in equilibrium, it eventually
comes to a new equilibrium whose entropy is at least as great as before.

In spirit it is of course very similar to the statistical postulate, but now formulated
purely in terms of the macroscopic concept of entropy.

Now that we know what entropy is, let us come back to ‘temperature’. Consider
the system depicted on the right. There are two systems, A and B, initially at differ-
ent temperatures. The systems can exchange energy (but not particles) because we
have just removed a small part of the middle wall, replacing it with a membrane. We
would like to define temperature as the quantity that comes to equal values when
the two subsystems exchanging energy come to equilibrium. But we have just dis-
cussed that equilibrium is the same thing as maximal disorder. So at equilibrium, A B

The exchange of thermal energy be-
tween the two systems results in ther-
mal equilibrium.

dStot

dEA

∣∣∣∣
eq.

= 0 . (2.4)

Now since Stot = SA + SB and Etot = EA + EB = const., this condition translates to

dSA
dEA

∣∣∣∣
eq.

− dSB
dEB

∣∣∣∣
eq.

= 0 . (2.5)

Since we want equilibrium to mean that the temperatures of the two systems have
become equal, TA = TB. This is compatible with the equation above if we define
temperature as

T :=
(

dS
dE

)−1
, (2.6)
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where it is understood that we keep the number of particles fixed2 This is a some-Temperature is the inverse of the
derivative of the entropy with
respect to the energy, keeping the
number of particles fixed.

what abstract definition, quite far away from how you usually think about temper-
ature. But it has the clear advantage that it is an expression which involves only the
two state functions of the system: the energy E and the entropy S.

That was a lot of theory. So let us at the end of this section show that it all makes(end of lecture 2)
sense if we consider a simple ideal gas. Its kinetic energy is

ideal gas : Ekin =
1
2

m
N

∑
i=1

|⃗vi|2 =
1

2m

N

∑
i=1

| p⃗i|2 . (2.7)

For N = 1 this just expresses the fact that the momentum three-vector of the particle
should lie on a two-sphere with radius r =

√
2mEkin. For an arbitrary number of

particles, the condition is that the allowed values of the 3N component vector of
momenta are supposed to lie on a sphere of radius

√
2mEkin in 3N dimensional

space. Using the formula for the area of a hypersphere in 3N dimensions3 we find
that the volume available for the momenta and the coordinates is

Vmomenta =
2π3N/2

(3N/2 − 1)!
(2mEkin)

(3N−1)/2 , Vpositions = VN . (2.8)

Divide by N! to account for particle exchange, get dimensions right,

Sideal = kBN log

[
V
N

(
Ekin
N

)3/2
× m

3πh̄2

]
+

5
2

kBN . (2.9)

This is the so-called Sakur-Tetrode formula. At the present stage, most of the details
of this formula are actually quite irrelevant, as we are only interested in the depen-
dence on the energy E, not on the dependence on V or N. From (2.9) we get that for
an ideal gas the temperature and the energy are related by

T =

(
dSideal
dEkin

)−1
=

1
3
2 kB

Ekin , (2.10)

or Eideal =
3
2 kBT. This is precisely the right expression.

▶ See also: Nelson’s book has a more extensive discussion of entropy in the context
of information theory, as well as of ideal gasses.

2.2.3 First law, reversible and irreversible processes
Now that we know that entropy can be used as a quantity to describe systems in and
out of equilibrium, we should take a closer look at the way in which energy can be
exchanged. We have so far discussed transfer of heat (the molecules bouncing on the
membrane between the two containers, transferring thermal energy). An alternative
way to transfer energy in or out of a system is to make it do work. That will happen
if the volume of a gas is not constant, and there is some force against which the gas
can push. In this context, energy conservation is equivalent to the

First law of thermodynamics: The increase in the internal energy U of
a system is equal to the amount of energy added by heating the system,
minus the amount lost as a result of the work done by the system on its
surroundings.

2We will come back to changes in numbers of particles in section 2.2.5.
3The area of a hypersphere in d dimensions is 2πd/2rd−1/(d/2 − 1)!.
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In a formula we can write this as

dU = δQ − δW , (2.11)

where δQ represents the amount of heat added and δW the amount of work done
by the system.

However, neither heat nor work are what we call state functions of a system.
You cannot, by looking at a system at a particular time, tell what is ‘its heat’ or ‘its
work’. The amount of heat absorbed or the amount of work done depend on the
particular path which the system has taken through the space of thermodynamic
parameters. This is in contrast to the energy E and the entropy S: they can be com-
puted if we know the state of a system at a particular moment in time. We can, State functions do not depend on

the path taken through the space of
thermodynamic parameters. The
heat Q and work W are not state
functions.

however, express the first law (2.11) in terms of changes of state functions alone.
For δW this is familiar: the work done by a gas is the same as the pressure times
the volume change, δW = PdV. For the heat absorbtion, we can make use of the
definition of temperature given in (2.6). It states that the increase of energy due to
absorption of heat is related to the change of entropy by δQ = TdS. Together this
gives

dU = TdS − PdV . (2.12)

This then gives the first law purely in terms of state functions.
Although this result (2.12) is correct, we have been a bit sloppy in deriving it.

To understand what is the problem, consider a situation of the type depicted on the
right. Compartment A is filled with gas, while compartment B is empty. At some
point, we open the separating door, letting the gas from A expand to fill both com-
partments. In this case, there clearly is a change in volume, dV > 0. However,
despite the fact that the pressure of the gas is nonzero, the gas does not push on
anything while it expands, so no work is done. So δW ̸= PdV for this process. Sim-

A B

Upon opening the separating door be-
tween A and B, the gas will expand to
fill both halfs of the box. However, the
pressure in B is zero, so this expansion
does no work.

ilarly, there is no heat absorbed, since the whole box is isolated. Nevertheless, the
entropy changes. So δQ ̸= TdS for this process either. How can this be compatible
with our derivation of the first law?

The key lies in the irreversibility of the process we just described. The gas ex-
pands to fill the entire container, but this process cannot be reversed. The reason
for this irreversibility is that A and B are never anywhere near thermal equilibrium
during the expansion. Our derivation of the form (2.12) of the first law assumed that
we were dealing with a reversible process. Such a process is defined as one which
is always close to equilibrium, and can be ‘run backwards’. 4 However, since (2.12)
is expressed purely in terms of state functions, which do not depend on the history
of the system, it has to be valid irrespective of whether we change the system re-
versibly or irreversibly. It is only the interpretation of the two terms on the right
hand side which is different for the two types of processes (‘heat’ and ‘work’ in the
reversible case, no such interpretation in the irreversible case). (end of lecture 3)

Since the work done by the irreversible process described above was zero, this
type of expansion ‘against nothing’ is clearly not a good way to extract energy from
the system. If we want to extract energy, we have to do things in a controlled way,
ideally making the entropy change vanish so that the second law of thermodynamics
allows us to reverse the process. To illustrate this concept of efficiency in a different
setting, let us consider the setup on the right. The idea is that we make energy flow
from a hot to a cold body, while extracting some useful part of this flow by making
it do work (somehow). Such a setup is called a heat engine. The work done by this

4Note that there is a difference between “quasi-static” and “reversible”: you can have two systems
at two temperatures equilibrate quasi-statically (by an almost perfectly isolating wall between them, so
that the thermal energy exchange goes very slowly). However, this will never be reversible, because the
systems are not, at any time, almost in equilibrium.
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‘engine’ is, by energy conservation, just

δW = dQh − dQc , (2.13)

where dQh is the energy which flows out of the hot body and dQc is the energy

In a heat engine, heat flows from a hot
to a cold body, while some of it is trans-
formed into useful work.

which flows into the cold body. The efficiency (usually called η) is the ratio of the
work done versus the energy taken from the hot body,

η =
δW
dQh

=
dQh − dQc

dQh
= 1 − dQc

dQh
= 1 − TcdSc

−ThdSh
. (2.14)

If we have a reversible process, the total entropy of the system does not change. For
an irreversible process, the entropy increases. Therefore, dSc ≥ −dSh. This means
that the efficiency satisfies

η ≤ 1 − Tc

Th
, (2.15)

with maximal efficiency obtained for a reversible process. Note that an efficiency
of ‘one’ can only be obtained if the heat flows to a body at zero temperature. The
cold body has to compensate the loss of entropy from the hot body, and at non-zero
temperature, it can only do that by absorbing heat, which is then no longer available
to useful work.

Biology does, unfortunately for us, not really make any use of these heat engines.
However, the general lesson which we learn from it (efficiency is maximal when the
entropy change is minimal) holds true in a much more general sense. The impor-
tant lesson which we should learn from this section is that biological processes will
be most efficient if they occur in small, controlled steps. Sudden changes lead to
loss of useful energy. For this reason, organisms contain many small molecular-size
motors, which take only small steps at a time.

2.2.4 Open systems and free energy

If you have some substance at a non-zero temperature, there is energy stored in the
thermal oscillations of the molecules from which the substance is made. However,
this energy clearly cannot be extracted if you want to keep the system at the same
temperature. We saw something similar in the previous section. There, we noted
that if you want to extract heat from a hot body, you need to sacrifice some of the
energy to heat up a cold reservoir and make it absorb the entropy which the hot
body loses. Not all energy in a hot body is therefore ‘free’.

So how much energy can we extract from a hot body and turn into useful work?
As expected from the above, this is determined by entropy balance. Consider the
situation depicted on the left. It is a container with two compartments, one filled

A B

constant T C

L

d

A system connected to a heat bath C
which keeps it at constant tempera-
ture T. The piston is initially fixed
at position L and will move a dis-
tance d (to the left or right, depend-
ing on the pressure) when it is unfixed.
The spring has spring constant f .

with a gas, the other empty, and a movable piston which is connected to a spring.
The whole system sits on a thermal bath which can provide or absorb heat so as to
keep the temperature fixed.

The question now is: how much energy will flow in our out of the spring in
B? That is to say, how much will the piston move when we let it go? First, let us
look at how energy flows. As the gas volume changes, the spring will compress or
stretch, and this results in a flow of energy into or out of B. This would change the
temperature of the gas, but because of the thermal reservoir, an energy flow from or
to C occurs which keeps the energy of A at fixed Egas =

3
2 NkBT. There is thus a net

flow of energy between the thermal reservoir C and the spring in B.
Now how much energy will flow depends on the entropy balance. From the

entropy of an ideal gas (2.9) we can see that the entropy of A changes because of
the change of volume. On the other hand, the entropy of C changes because of the
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energy flow. We can express the latter as

∆SC = T−1∆EC = −T−1∆EB . (2.16)

It is the sum of these two entropy changes which must be positive according to the
second law. So

T∆Stot = −∆(EA + EB) + T∆(SA + SB) > 0 . (2.17)

Here we have added two terms (∆EA and ∆SB) which are identically zero, to make
the expression look more symmetric.

What does (2.17) mean? If we multiply it by −1 on the left and right, it says that
the system does not try to minimise the energy in A+B. Instead, it will try to min-
imise a different quantity, which involves the entropy. This leads to the definition of
the Helmholtz free energy,

F = E − TS . (2.18)

This is the quantity which will come to a minimum when we let the system equi- For open systems, the second law
can be reformulated as the
statement that equilibrium
corresponds to a state of minimal
free energy.

librate. The Helmholtz free energy FA+B of the open system A+B expresses the
amount of useful work obtainable from that system (at a constant temperature and
volume). The fact that a minimum in the free energy corresponds to equilibrium is
a reformulation of the second law, now for open systems. In the formulation using
entropy, it only applies to closed systems.

Returning to our example above, the entropy change of A is

∆SA = ∆
(
kB ln VN) = kB

N∆V
V

= kBN
d
L

. (2.19)

The energy change is purely due to the change of the length of the spring, and thus
given by

∆EB = f d . (2.20)

Together, these two allow us to calculate ∆F. By setting ∆FA = 0, we obtain the
condition for equilibrium.

In summary, we have thus seen that a system which exchanges heat with its
surroundings will go to an equilibrium which is the minimum of the Helmholtz
free energy. But there is of course another way to exchange energy with the sur-
roundings: by doing work.5 For such a situation, we need an additional term in the
free energy, which expresses that some energy will inevitably get lost to the outside
world. This brings us to the definition of the Gibbs free energy,

G = E + pV − TS . (2.21)

The Gibbs free energy is the maximum amount of non-expansion work that can be
extracted from a closed system; this maximum can be attained only in a completely
reversible process. Again, if we have a system at constant pressure and constant
temperature, it will eventually settle down in an equilibrium situation which is char-
acterised by the fact that it minimises the Gibbs free energy. One sometimes sees the
Gibbs free energy written as

G = H − TS (2.22)

where H is the so-called enthalpy. The enthalpy change of an open system is the
heat exchanged by a system at constant pressure. (end of lecture 4)

5Note that we are here talking about doing work which exchanges energy between the open system
A+B and the outside world C. In the previous example, the work was done inside the open system A+B,
and the energy exchange with the outside world C was only through exchange of heat.
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Finally, let us discuss the concept of entropic forces. As you know from classical
mechanics, the derivative of a potential energy corresponds to a force. This is exactly
the same for the Helmhotz free energy which we just discussed.

f = −dF
dx

. (2.23)

In other words, pressure is the derivative of the Helmholtz free energy with respect
to a volume.6

2.2.5 Boltzmann distribution
So far, we have treated combined systems (like the one in the previous section) in
such a way that we essentially ignored the thermal fluctuations in energy in any of
the compartments. Provided all compartments are relatively large, that is of course
a valid approximation. However, when the open system is very small, it may not be
appropriate to only compute quantities like its average energy. Rather, we would
like to see what is the probability to find a system in one of its many states. Thus,
what we would like to do next is to understand the probability for each of the mi-
croscopic states of an open system A, while it is in thermal equilibrium with a much
larger system B (which acts as the heat bath, and is thus for all practical purposes
ensuring that the temperature of both systems is fixed at some value T).

The key ingredient we will use is the statistical postulate, which says that each
and every microstate of the joint system A + B has the same probability, let us call
it P0. We want to obtain from this the probability to find system A in a particular
microstate, if we only know its energy. We can do this by noting that the number of
states available for system B is related to its entropy by

ΩB = eS(EB)/kB , (2.24)

where we have indicated that the entropy in turn depends on the energy in sys-
tem B. Because the energy is conserved, we can use EB = Etot − EA. Moreover,
since system A is small, we can expand the entropy of system B in powers of the
small energy EA. This gives

SB(EB) = SB(Etot − EA) = SB(Etot)− EA
dSB
dEB

+ . . .

= SB(Etot)−
EA
T

+ . . . ,

(2.25)

where in the last step we have again used the definition of temperature (2.6). The
probability of finding system A in a particular state is now

P(EA) = P0 eSB(Etot)/kB × e−EA/(kBT) = N × e−EA/(kBT) . (2.26)

The factor N is just a given numerical constant, which is often not relevant. The
second factor indicates that the probability of finding a particular microstate is sup-
pressed with the exponent of its energy. This is called the Boltzmann distribution
or canonical distribution.

Let us discuss a simple example, in which the system A can only be in two dif-
ferent states. Let these two states have energy E1 and E2 respectively, with ∆E =
E2 − E1. Of course, the probability to be in the first state and the probability to be in

6The reason why the Gibbs free energy does not appear in this formula is that the Gibbs free energy
subtracts the work done by the pressure. It is precisely that work which we want to measure or balance
against an external force.
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the second state have to add up to one, P1 + P2 = 1. Moreover, from the Boltzmann
distribution we have

P1

P2
=

e−E1/kBT

e−(E1+∆E)/kBT
= e∆E/kBT . (2.27)

These two equations can be solved to get

P1 =
1

1 + e−∆E/kBT , P1 =
1

1 + e∆E/kBT . (2.28)

We see that if state 2 is much more energetic than state 1, so that ∆E is large and
positive, the system is predominantly in the first state, as expected.

In the discussion above, we have assumed that when the system A changes from
one microstate to the other, the total number of particles in A remains conserved.
But very often, particles can come from B or disappear into it, making the particle
number of A non-conserved in time. Typically, adding a particle to A will imply
that the energy of A changes. We can express this quite simply by making use of the
first law, dU = TdS for a system at constant temperature and pressure. This leads
us to define

µ := − T
dS

dNA

∣∣∣∣
E const.

. (2.29)

This quantity is called the chemical potential of the particles in system A. You
can roughly think about it as the energy change of A which occurs when we add
one particle to that subsystem; we will return to the interpretation of the chemical
potential in much more detail later.

Now how does our analysis of the distribution of states change if we include the
possibility that particles get exchanged between A and B? This can be computed
using a similar procedure. We now have that

SB(EB, NB) = SB(Etot − EA, Ntot − NA) = SB(Etot)− EA
dSB
dEB

− NA
dSB
dNB

+ . . .

= SB(Etot)−
EA
T

+
NAµ

T
. . . ,

(2.30)
By the same logic we now find that the probability to find system A in a state with
energy EA and number of particles NA is given by

P(EA, NA) = N ′ × e(−EA+µNA)/(kBT) . (2.31)

This probability distribution is called the Gibbs distribution or grand canonical
distribution. Note that large values of µ imply that A is more likely to contain a
large number of particles.

Perhaps the most important outcome of the analysis in this section is that the
probability to find the small system in a particular state only depends on the energy
of that small system. The properties of the large system are practically irrelevant!
The only thing we had to know is that EB ≫ EA and NB ≫ NA. No details about
the microstates of B are ever needed.

We will make use of the results derived in this section when we discuss reaction
rates in section 2.3.2. (end of lecture 5)

2.3. Application

2.3.1 Osmosis, reverse osmosis and surface tension
Osmosis is a typical example of a force which can easily be computed once you un-
derstand the concept of entropy. Consider the system depicted on the right. It has
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two compartments, which are separated by a semi-permeable membrane. Compart-
ment A contains a solvent with a particular concentration of solutes, while compart-
ment B contains only the solvent. The membrane allows solvent to pass through, but
not the larger solute particles. The question is now what happens to this system if
we release the position of the initially fixed membrane.

A B

F

The osmotic pressure forces water out
of region B, through the semiperme-
able membrane, and into region A,
thereby exerting a pressure in the di-
rection indicated.

The easiest way to see what happens is to consider the total entropy. Since the
volume available to the solvent is independent of the position of the membrane, its
entropy will be a fixed number. The entropy of the solute is given by that of an ideal
gas,

Ssolute = kBNsolute log
(
E3/2

soluteV
)
+ const. , (2.32)

and will change as the volume V changes. In addition, there is heat flowing from the
thermal bath, which gets used to do work against the external force, a process which
also changes the entropy. From these two ingredients we can derive the equilibrium
condition. This condition states that a small change in volume does not change the
entropy, i.e. that the entropy has an extremum. We get

dStot = kBNsolute
dV
V

− PosmoticdV
T

. (2.33)

The pressure which is exerted on the membrane is thus given by

Posmotic = c kBT , with c :=
Nsolutes

V
, (2.34)

where c is the number density of the solute molecules. This relation is known as
the van ’t Hoff relation. Note that it precisely the same type of relation as the ideal
gas law (2.1); the only change is that the pressure has been replaced with the osmotic
pressure and the number of particles is not the total number of molecules but instead
the number of solute molecules.7

What we have discussed here is the system in equilibrium: assuming we exert
some pressure on the membrane, we have found the equilibrium position (volume)
given that pressure. A different question is what actually happens if you start in a
situation in which the exerted pressure is lower or higher than the osmotic pressure
for the given volume. In this case, the maximal work that the osmotic pressure
can do is obtained by integrating PosmoticdV over the change in volume. At room
temperature T ≈ 300 K,

W =
∫ V

Vmin

kBT
Nsolute

V′ dV′ = (kBT)Nsolute log
V
V0

≈ Nsoluteγ × 4.1 × 10−21 J , (2.35)

where γ is the logarithm of the maximal and minimal volume of the compartment
which contains the solute.

We can also look at osmosis in a somewhat different way. Imagine that we push
on the system with a force which is larger than the osmotic force. This will make
the compartment with the solutes more concentrated, as we force the solvent to
go to the other compartment. In this process, we perform mechanical work (the
membrane pushes on and moves the solute), which gets converted to heat. At the
same time, the entropy of the subsystem has decreased (but of course the entropy of
the surroundings has increased more). This process is called reverse osmosis. If we
just look at the subsystem, we see that energy passes through it, and leaves behind
increased order (decreased entropy). It is one of the prototypical examples which
show that subsystems can increase their order by having energy pass through it.

7In experimental literature, you will often see concentrations denoted in ‘osmoles per litre’. The
osmole number is simply referring to the number of moles of particles that contribute to osmotic pressure,
i.e. Nsolute/(6 × 1023 ) in our discussion above.
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In biology, osmosis plays a role whenever we have a cell embedded in a so-
lute. An concrete example is a red blood cell, which is embedded in the blood
plasma. The concentration of salt in the plasma surrounding the cell has to be care-
fully tuned, otherwise the osmotic pressure will force water into the cell and make
it tear apart (or lyse). To make this more quantitative, let us find a formula which
relates the tension of a cell membrane to the pressure inside the cell.

Imagine a cell membrane as depicted on the right. There is a surface tension
pulling on both sides of the solid line. More precisely, the surface tension is the
force per unit length. If we pull on the membrane, such that two closely separated
lines get displaced by a distance dx, then the total work that we do equals

l

dx

Stretching a membrane by a dis-
tance dx in one direction increases its
area by dA = l × dx.

δWstretch = Σldx = ΣdA . (2.36)

This expression, involving the product of the surface tension times the increase in
area, is also true for more general membrane shapes. For e.g. a spherical membrane,
the increase in area is related to an increase in the radius, as A = 4πR2. Thus,

dA = dR
dA
dR

= 8πRdR . (2.37)

A spherical membrane will expand until the free energy reaches a minimum. Con-
cretely, this means that the free energy reduction from the expansion of the interior
has to balance the free energy increase from stretching the membrane. So we have

dF = δWstretch − δWinterior = ΣdA − PdV =
(

8πΣR − 4πPR2
)

dR = 0 . (2.38)

where of course we used V = 4
3 πR3. This results a relation between the surface

tension and the pressure inside the spherical membrane, the so-called Laplace for-
mula,

Σ =
1
2

RP . (2.39)

A large cell of radius R in a concentra-
tion c of small globular proteins feels
an osmotic pressure which tends to
tear it apart.

Equipped with Laplace’s formula, we can estimate the surface tension which
would be needed to support the membrane of a cell when it is put in water. A
typical cell has (remember the table in section 1.1) a radius of around R ≈ 10−5 m.
Let us assume that the osmotic pressure comes from the proteins inside the cell, of
which there may be quite a lot. Typically, about 30% of the volume of a red blood
cell is occupied with globular proteins (the ‘volume fraction ϕ equals 0.3’), such as
hemoglobin. These proteins have a radius of around 10 nm, which means that their
concentration is

c =
0.3

4π
3 (1 × 10−8 m)3

≈ 7 × 1022 m−3 . (2.40)

From (2.34) we then find that P ≈ 300 Pa. Plugging this back into the Laplace for-
mula yields Σ ≈ 1.5 × 10−3 Nm−1. (end of lecture 6)

Unfortunately, it turns out that this vastly underestimates the concentration of
particles inside the cell which contribute to the pressure. One can measure that
blood serum (the fluid in which the red blood cell is sitting) has a concentration
of about 0.3 osm L−1, or cserum ≈ 1.8 × 1026 m−3. This would make the osmotic
pressure outside the cell much larger than inside, and result in a collapse of the
cell. The conclusion is that there is, apart from globular proteins, substantially more
inside the cell that contributes to the pressure on the cell membrane. In fact, we will
see later (when we discuss ion transport across membranes) that the cell membrane
does a lot of complicated things to maintain a constant volume.

▶ See also: Osmosis is described in some detail in Fermi’s book, page 118.
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2.3.2 Reaction rates

Equilibrium does not have to mean that nothing happens. In particular, in chemistry
an equilibrium is often dynamic. This means that if we have some solution with
molecules of two types, there will typically be a reaction that takes type 1 to type 2
and a reaction in the other direction. Dynamic equilibrium then simply means that
the two reaction rates are equal, leading to constant concentrations of 1 and 2, even
though both molecules are constantly being created and destroyed.

In the present section, we want to have a look at such reaction rates. They all
follow the pattern as depicted on the left: particles get converted from one type to
the other (not necessarily one-to-one though), and in the process, heat is absorbed
or released. The number of particles of a given type is therefore not the same before

A

constant T C

A chemical reaction, turning a particle
of type 1 (open circles) to type 2 (filled
circles), and using energy in the form
of heat from the thermal reservoir.

and after the reaction step has taken place. The Boltzmann distribution which we
discovered in section 2.2.5 lies at the root of our understanding of transition and
reaction rates in such generic situations.

The concept of chemical potential will play a very important role in this section.
We have seen in section 2.2.5 that it is related to the change of entropy with a change
in number of particles. Before we explain how this defines reaction rates, we will
first take a closer look at the chemical potential concept, and relate it to the more
familiar idea of concentrations. At least for ideal gasses or dilute solutions, these
two are closely related. To see this, let us compute (2.29) for an ideal gas. We haveRelation between chemical

potential and concentration for
ideal gasses.

derived an expression for the entropy of an ideal gas in (2.9), in terms of Ekin, V and
N. It is thus simple to find the derivative of the entropy with respect to the number
of particles at constant kinetic energy,

dSideal
dN

∣∣∣∣
Ekin

=
3
2

kB log

[
1

3π

m
h̄2

Ekin
N

(
V
N

)2/3
]

. (2.41)

However, in order to compute the chemical potential (2.29), we need to keep the
total energy fixed, not just the kinetic energy. And if we change the number of par-
ticles, we will change the total internal energy. So what we need to do in order to
compute µ is to subtract a term ϵ(dS/dN) from the change of the entropy, where ϵ
is the internal energy of a single particle. Using Ekin = 3

2 kBNT this gives

µideal = −T

(
dSideal

dN

∣∣∣∣
Ekin

− ϵ
dSideal
dEkin

∣∣∣∣
N

)

= ϵ + kBT log c − 3
2

kBT log
(

4π

3
m

(2πh̄)2
3
2

kBT
)

, (2.42)

where c = N/V is again the concentration. Since this involves logarithms of dimen-
sionful quantities in the individual terms, it is more natural to write it as

µideal = kBT log(c/c0) + µ0(T) , µ0(T) = ϵ − 3
2

kBT log

(
mkBT

2πh̄2c2/3
0

)
. (2.43)

The expression µ0(T) is called the standard chemical potential for the reference
concentration c0. The important aspect of writing things in this way is that we
have isolated the dependence of the chemical potential on the concentration. The
bit corresponding to the standard chemical potential only depends on temperature,
and is a property of the solution. Even in the presence of interactions between the
solvent and solutes, we will get a form like (2.43). So one typically just takes this to
be a quantitity that simply needs to be looked up in a table.
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Let us now see how this all relates to chemical reactions. Let us first consider a
simple one, such as depicted in the figure above,

P1 ⇌ P2 . (2.44)

Let us also assume first that this conversion does not cost any energy. In that case, Chemical potentials determine the
direction of a chemical reactionthe change of the entropy for one step from the left to the right is

∆S1→2 =
µ1 − µ2

T
, (2.45)

by virtue of the very definition of the chemical potential (2.29). The reaction in
the opposite direction would instead change the entropy by minus this amount. If
you express the chemical potentials in terms of the concentration, we see that the
reaction (2.44) will take place whenever the concentration of particles of type 1 is
larger than the concentration of particles of type 2. However, since the chemical
potentials also contain the internal energies, it is the balance between the two that
determines the direction of the reaction.

In general, a conversion of particles in this way will of course not work without
some energy exchange with the thermal reservoir. If the internal energies of the
two particle types are ϵ1 and ϵ2 respectively, you need an energy ϵ2 − ϵ1 from the
heat bath in order to make the reaction go from left to right. The reaction in the
opposite way will instead release this amount of energy. However, what matters
is, as always, the total entropy change. For the combined system of heat bath and
reservoir, the entropy change due to heat flow is zero. The total entropy change is
thus still ∆Stot = (µ1 − µ2)/T.

However, we can view system A as an open system, and write

δSA
1→2 =

µ1 − µ2

T
+

ϵ2 − ϵ1

T
. (2.46)

We can then use this to compute the change of the free energy in system A. For the
process at hand, with fixed volume, we see that one step of the reaction 1 → 2 leads
to a change of the Helmholtz free energy given by Free energy determines the

direction of a chemical reaction.
constant volume : ∆FA = µ2 − µ1 . (2.47)

A different way to say this is that setting ∆F = 0 implies ∆Stot = 0. If the volume
would not be constant, we instead find that

constant pressure : ∆GA = µ2 − µ1 . (2.48)

Here we see clearly once more the importance of the concept of free energy: it is the
free energy which determines in which direction a reaction will go. (end of lecture 7)

Let us now look at somewhat more complicated reactions, e.g. the conversion of
hydrogen and oxygen to water,

2 H2 + O2 ⇌ 2H2O . (2.49)

The free energy change from left to right will be (we will from now on always write
the Gibbs free energy, assuming constant pressure situations),

∆GL→R = 2µH2O − 2µH2 − µO2 . (2.50)

We can express this in a more useful form by using the expression for the chemical
potentials in terms of concentrations. This gives, for equilibrium

0 =
∆G
kBT

=
2µ0

H2O − 2µ0
H2

− µ0
O2

kBT
+ log

[(
cH2O

c0

)2 ( cH2

c0

)−2 ( cO2

c0

)−1
]

. (2.51)

19



For a given fixed c0, all the µ0 coefficients can be looked up in tables, and the formula
above then gives us an expression for the ratio of the concentrations in equilibrium,

(cH2O)
2

(cH2)
2cO2

=
Keq

c0
, with Keq = e−∆G/kBT = e−(2µ0

H2O−2µ0
H2

−µ0
O2

)/kBT . (2.52)

This kind of expression can be generalised to arbitrary reactions, and is called the
mass action rule. It is often stated in the form of concentrations divided by the
reference concentrations,

[H2O]2

[H2]2[O2]
= Keq , with [X] :=

cX
c0

. (2.53)

and so on.
Using the computed temperature-dependence of the standard chemical poten-

tials (2.43), one can work out the equilibrium constant Keq in terms of the tempera-
ture, and see how the equilibrium changes as the temperature is changed.

▶ See also: chapter 6. chapter 8.

2.3.3 Depletion forces
We have seen that the free energy can be used to compute a force, just like you can
compute a force in classical mechanics by taking the derivative of a potential. Be-
cause the free energy contains a term proportional to the entropy, it is possible to
have forces which are caused purely by entropic effects. One such is the so-called
“depletion force”. The depletion force occurs whenever you have a suspension con-
taining more than one type of particle. An example is depicted on the left. The
picture shows two large particles, surrounded by a number of small particles (only
one of the small particles is displayed). If the separation between the large parti-
cles satisfies a > D + d, the volume V′ available for the centres of the small ones
is simply the total volume minus twice the volume of the large particles with their
“exclusion zones”,

V′ = V − 8π

3

(
D + d

2

)3
. (2.54)

However, when the distance becomes smaller, the exclusion zones start to overlap,
and the volume available to the small particles increases.

a

D

d

Two large particles of diameter D in
the presence of small particles of diam-
eter d. When the separation a becomes
smaller than D + d, the volume avail-
able to the small particles increases, in-
creasing their entropy.

This increase of available volume will lead to an increase of the entropy of the
small particles, and hence a force which attracts the two large particles. This is quite
surprising: even though their is no interaction between the particles except when
they touch each other, there still is an attractive force!

To compute the strength of this force, let us compute the volume V′′ available to
the small particles when a < D + d. This boils down to the geometric problem of
computing the volume of the dark shaded almond-shape region in the figure on the
left and adding it to V′. We have

V′′ = V′ + 2 × π
∫ (D+d)/2

a/2
x2dy , (2.55)

where x and y are the directions in the plane of the figure. In this expression we
are adding together the infinitesimal volumes of the discs at height y, which have
area πx2. We also have x2 = ((D + d)/2)2 − y2 . This gives

V′′ = V′ +
4π

3

(
D + d

2

)3
− π

4

[
(D + d)2a − 1

3
a3
]

= V − 4π

3

(
D + d

2

)3
− π

4

[
(D + d)2a − 1

3
a3
]

. (2.56)
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To compute the force, we first compute the free energy F = E − TS using the fact

D d+

a

( )/2

/2

The dark shaded region of overlap of
the two discs of radius (D + d)/2 is the
double-counted excluded region.

that S = kBN log(VE3/2). We then take the derivative with respect to a to find the
force. This gives

f = −dF
da

= −
(

kBNT
V′′

)
π

4

[
(D + d)2 − a2

]
. (2.57)

If V ≫ (D + d)3, we can replace V′′ with V in the denominator, and we see that the
first factor is simply the osmotic pressure p0 = kBTN/V.

We can convert this force back into a potential energy by integrating with respect
to a, obtaining

U = −p0
π

12

[
2(D + d)3 − 3(D + d)2a + a3

]
. (2.58)

The a-independent constant was chosen such that the potential vanishes for a >
D + d. For D ≫ d we can approximate this result by

U
kBT

= −3
2

ϕβ

(
D + d − a

d

)2
, with ϕ =

π

6
d3 N

V
, β =

D
d

. (2.59)

Here ϕ is the volume concentration of the small molecules. For a numerical estimate
of the strength of this force, let us assume D/d = 50 and ϕ = 0.3 (the ratio we
have seen earlier for proteins within a cell), then we find that the minimum of the
potential (at a = D) takes the value U = −22.5kBT. This is a substantial energy for
biological standards. (end of lecture 8)

▶ See also: , , see also various parts in , especially section 1.4.1 (page 47) and 2.5
(page 108).
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3
Flowing and swimming

3.1. Biological questions

Biological systems are characterised by a lot of activity at the microscopic scale.
Molecules and small organisms move around, fluids like blood flow through capi-
laries and around cells, and so on. In the present chapter, the goal is to understand
these flowing and swimming phenomena from a physics perspective. Just as in the
previous chapter, we will see that things at a microscopic scale behave quite differ-
ently from those at the macroscopic scale we are used to.

One of the more fundamental questions is to understand the basics of fluid flow
in capillaries and around cells and micro-organisms. Inside cells, there are many
different localised “factory” sites which produce things which then have to be trans-
ported to other sites. For example, mitochondria synthesize ATP, which then gets
used throughout the cell. We may speculate that thermal motion, which we have
found is a big effect in the nanoworld, somehow causes molecular transport. For
transport within the cell, this indeed turns out to be true: diffusion is quick enough
to serve as the transport mechanism.1

Another question in this context is that of bacterial swimming. Bacteria do not
actually swim like we humans do, but they instead make use of a mechanism which
has more to do with pumping. There is a simple physical principle underlying this
phenomenon, and it has all to do with the fact that fluid flow can be smooth (lam-
inar) or turbulent. The small machines that bacteria use to propel themselves are
true marvels of engineering, little rotating engines which are only about 45 nm in
size!

▶ See also: Most of what is discussed in this chapter can be found in Nelson’s book
chapter 3, 4 and 5, though not necessarily in the same order.

3.2. Physical theory

3.2.1 Random walks and diffusion
In the previous chapter, we have seen how many properties of multi-particle sys-
tems can be described simply in terms of energy and entropy, which give a rough
macroscopic description. In the present chapter, we want to look a bit closer at how
microscopic systems behave dynamically. The first thing we will analyse is how

1Diffusion does not do the trick on large distances, e.g. to transport information from your head to
your toes; for such transport more advanced mechanisms exist, which we will discuss later.
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individual molecules, embedded in a thermal environment, move about because of
thermal fluctuations.

Consider for simplicity a molecule in one dimension, as depicted on the left.
It starts out at time t = 0 at position x = 0. Our main assumption will be that,
under the effect of thermal fluctuations of the surrounding particles (which are not
displayed here), our molecule will make random steps to the left and right, with an
average size L per unit of time ∆t. position after N − 1 steps as

Setup for a random walk. We con-
sider a particle at position xN−1, with
an equal probability to make a step of
size L left or right in the given time in-
terval ∆t.

xN = xN−1 + kN L , (3.1)

with kN being ±1 with equal probability. On average, over a large number of trials,
the chance of arriving to the left of the origin will be the same as the chance of
arriving to the right, and the average position will simply be zero, ⟨xN⟩ = 0.

However, this of course does not mean that the particle stays put. A better way
to measure how far out the particle gets is to compute the average position squared.
Using (3.1) we can compute this average for the square of the position after N steps,
in terms of the position after N − 1 steps,

⟨(xN)
2⟩ = ⟨(xN−1 + kN L)2⟩ = ⟨(xN−1)

2⟩+ 2⟨xN−1kN⟩+ L2⟨k2
N⟩ . (3.2)

The second term vanishes: for each partial path that goes through a given point
xN−1, there is always a continuation both with kN = 1 and kN = −1, and these
contribute with opposite sign to ⟨xN−1kN⟩. For the last term, we use ⟨(kN)

2⟩ = 1
because kN is either one or minus one, and thus the square is always one. We thus
see that the average position squared increases by L2 for every time step. We can
summarise this by writing

⟨(xN)
2⟩ = NL2 . (3.3)

A different way this is sometimes stated is
√
⟨(xN)2⟩ = L

√
N, which shows that the

range travelled grows with the square root of the number of steps.
If our system makes one step for every time interval ∆t, then we can also write

this expression as

⟨(xN)
2⟩ = 2Dt , where D =

L2

2∆t
, (3.4)

The constant D is called the diffusion constant. We have here discussed the one-
dimensional case, but the generalisation to d dimensions is trivial: motion in each
direction is independent, and we thus get

⟨(x⃗N)
2⟩ = 2dDt . (3.5)

The mean squared distance thus stays linear in t, with a proportionality constant
which depends on the number of dimensions.

The relation (3.5) tells us one particular property of a random walk: if we have
a large number of particles, their average squared displacement grows linearly in
time. But this is far from the only information about a distribution of particles. We
would like to know what happens if we have a large number of particles in some
given distribution, and let it evolve for some time. In this case, it is impractical to
follow the procedure we used above. Instead, it is much simpler to consider all the
particles at once, and see how the distribution itself evolves in time.

A non-constant density gradient of
particles. The system has been divided
into imaginary containers of size L cen-
tered around x, x − L and x + L.

Let us consider the situation depicted on the left. It describes a distribution of
particles which is non-constant in the x-direction. We have, to make the analysis
simpler, artificially divided the volume up into boxes of size L. Remember that we
have assumed that in a time interval ∆t, a molecule will make a step of size L either
to the left or to the right, with equal probability.

We want to compute the number of particles crossing the separation line at
x − L/2 from left to right. This is determined simply by the fact that half of the
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particles in the leftmost box will jump left and half will jump right, and similar for
the particles in the middle box. Therefore,

∆N
∣∣∣
through x − L/2

=
1
2

(
N(x − L)− N(x)

)
≈ − L

2
dN
dx

. (3.6)

The flux of particles j(t, x) is defined as the number of particles crossing one of these
imaginary surfaces, per unit surface area and per unit time, j(t, x) = ∆N/(Aδt). If
we also introduce the concentration c = N/(AL), then we can write this as

j(t, x) = − 1
A∆t

1
2

L
∂

∂x

(
LAc(t, x)

)
. (3.7)

By making use of the definition of the diffusion constant D we can write this as

j(t, x) = −D
∂c(t, x)

∂x
. (3.8)

This relation, which expresses the flux of particles in terms of the spatial gradient of
the concentration, is called Fick’s law.

It is perhaps worthwhile to emphasise once more that the particles do not in-
teract. The change in particle density is simply a consequence of the fact that the
concentration is not homogeneous to start with. Here we see, once more, a manifes-
tation of the effect of the second law, which demands entropy increase (even though
we have not described things in that way here).

With this knowledge about the flux which passes through every imaginary sep-
arator, we can compute the change of particle density in each imaginary box.

∂N(t, x)
∂t

= A ×
(

j(x − L
2
)− j(x +

L
2
)
)

. (3.9)

In the limit in which the imaginary boxes become infinitesimally thin, this becomes

∂c(t, x)
∂t

= −∂j(t, x)
∂x

. (3.10)

where we have divided both sides of the equation by AL. This equation is called the
continuity equation. Combining this equation with Fick’s law gives us

∂c(t, x)
∂t

= D
∂2c(t, x)

∂x2 , (3.11)

which is also known as the diffusion equation. It is first-order in the time deriva-
tive, and second order in the space derivative. (end of lecture 9)

(lecture 10: homework)Let us consider a number of simple cases. As expected, if the concentration is
uniform, it will not change in time, because the second derivative with respect to x
vanishes. The same is actually also true for a concentration which is linear in x.
Diffusion will simply maintain this concentration gradient. However, for all other
concentration profiles, the evolution in time will be non-trivial.

3.2.2 Viscosity and friction
In the previous section we have seen that diffusion is essentially a consequence of
random fluctuations. However, since random fluctuations involve random colli-
sions, we might expect that there is also a connection to friction.

To study friction, we will consider a particle which experiences a constant ex-
ternal force f (think, for instance, about a particle that is suspended in some liquid
and subject to the gravitational force). Let us also restrict ourselves to motion in one
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dimension; again, generalisation to more dimensions is simple. As before, we will
assume that the particle gets a kick every ∆t, resetting its velocity to some random
value with every such kick. In between these kicks, the position changes according
to Newton’s law, i.e.

δx = v0δt +
1
2

f
m
(∆t)2 , (3.12)

where v0 is the velocity just after the kick. What is relevant now is the average of this
displacement. The average velocity which the particle acquires is given by ⟨∆x⟩/∆t.
For the velocity v0, the random kicks will make ⟨v0⟩ = 0. The so-called drift velocity
thus comes out asA falling particle subject to a

constant force and friction reaches
a terminal velocity vdrift which is
linear in the force.

vdrift = f /ζ , with ζ = 2m/∆t . (3.13)

The constant ζ is the viscous friction coefficient. Note the similarity to the way in
which the diffusion constant was obtained.

One very important relation can be derived by noting that the square of the ve-
locity v0 of one of our randomly walking particles is at any time simply (L/∆t)2.2

This quantity appears in the product of ζ and D,

ζD =
L2m
(∆t)2 = m(v0)

2 . (3.14)

Remember now that for an ideal gas in one dimension, the kinetic energy is E =
1/2mv2 but it is also given by E = 1/2kBT. Together, this gives us

ζD = kBT . (3.15)

This relation between the viscous friction coefficient ζ and the diffusion constant DThe Einstein relation relates
diffusion to friction. is called the Einstein relation. It is important because it relates two a priori different

types of experiments. It is a stunning relation, because it is totally independent of
many parameters you might have expected to appear, for instance the mass of the
particle.

Clearly, we expect the coefficient ζ to depend on the shape of the body. There is
an empirical relation, the so-called Stokes formula, which expresses how it depends
on the radius of a spherical body,

ζ = 6πηR . (3.16)

Here η is a parameter which is independent of the body, and determines the vis-
cosity of the fluid. The Stokes formula can be derived from first principles but that
requires quite a bit of fluid dynamics, and we will hence not go into that here.

However, it is useful to see η appear in a different context, so as to understand
how we can measure it. Consider therefore a setup with two parallel plates, one
fixed and the other one moving at some velocity v (a “shearing” motion). In between
the plates is a fluid. We now want to know the force which the plates exert on each
other. Clearly, if the area of the plates is larger, the force should increase, but if the
distance is larger, it should decrease. For small enough v, most fluids follow the
simplest possible force satisfying these conditions,

f
A

= −η
v
d

. (3.17)

For non-constant velocity gradient, the right hand side reads −η(dv/dy). Since this
is shearing motion, the coefficient η is also called the shear viscosity. The dimension
of viscosity can be obtained directly from (3.17), it is

[η] = kg m−1 s−1 . (3.18)

2All of the v0, L and ∆t are of course experimentally unobservable.
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This will be important later.
It is useful to compare the viscosity force we just discussed with the force which

we would get if the material inbetween the plates would be some elastic, rubber
type of material. In this case, the force will follow a hook law,

f = −k(∆z) , (3.19)

where ∆z is the horizontal displacement of the two plates. The constant k often
contains the factor A/d (which makes this expression look a bit more similar to
the viscosity force). However, what is important here is that this elastic force is
proportional to the strain ∆z/d. For fluids it is instead proportional to the strain rate,
v/d. (end of lecture 11)

▶ See also: Chapter 43 of [? ].

3.2.3 Turbulent versus laminar flow

The shear viscosity η is a dimensionful number (dimension kg m−1 s−1), so it does
not make any sense to talk about it ‘being small’: smallness only means something
with respect to another number with the same dimensions. There is typically a scale
in problems involving viscosity, namely the mass density ρ (dimension kg m−3). But
it is impossible to form a single massless number from the two.

What we can do, however, is form a number with the dimension of a force (di-
mension kg m s−2), namely

fcrit =
η2

ρ
. (3.20)

We should thus expect that there might be two different types of fluid flow past and
around objects, depending on whether we apply forces which are smaller or larger
than this viscous critical force fcrit.

When the applied force is much larger than fcrit (intuitively, when the viscosity
is small), we expect that inertial effects dominate the dynamics. This will lead to
turbulent flow: if you set things in motion, they will keep going long after you
stop pushing. On the other hand, if the applied force is much smaller than fcrit, we Large f / fcrit implies that friction is

not very important and turbulent
dynamics is likely to occur; the
opposite situation leads to laminar
dynamics.

expect the viscous forces to be dominant. If you set the fluid in motion and then
stop applying a force, the viscous forces will quickly stop the movement. The flow
is laminar, in the sense that layers of fluid move in a nicely aligned way, without
mixing up or swirling. The ratio f / fcrit, in short, determines whether friction forces
can be neglected (large ratio) or not (small ratio).

For e.g. corn syrup, the mass density ρsyrup ≈ 1 × 103 kg m−3 and the visosity
is ηsyrup ≈ 5 kg m−1 s−1. As a result, the critical force is fcrit ≈ 2.5 × 10−2 N. If
you push a marble through corn syrup with a force less than about 0.01 N, you will
see nice laminar flow and no turbulence. However, for water, the mass density is
similar but the viscosity ηwater ≈ 1 × 10−3 kg m−1 s−1. This leads to a critical force
of f water

crit ≈ 1× 10−9 kg m s−2, some factor 2.5× 107 smaller than for corn syrup! But
the logic remains the same: if you push a small micro-organism through water with
a force of a nanonewton or so, you are well into the laminar regime, and you should
not expect turbulence to play a major role. It is very important to realise that the
scale at which laminar flow takes over from turbulent flow is set by an external force,
not by some intrinsic length of the fluid.

A segment of fluid of typical linear
size l flows around a spherical object of
radius r.

Let us now try to get away from this dimensional handwaving, and try to make
things a bit more quantitative. Let us focus on a spherical object, which sits in some
fluid flow, as depicted on the right. The object has radius r, and we are going to
follow a small fluid segment of typical size l (we will drop all factors of 2 and π from
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now on, so you do not actually need to know the precise shape of this segment). The
first thing we need to do is to write down the forces on this fluid segment,

fext + ffrict = m × a , (3.21)

where m = ρl3 is the mass of the segment and a its acceleration. We can estimate
the acceleration by noting that if the segment would be in orbit around the obstacle,
it would undergo a centrifugal acceleration a = v2/r. Together, we thus have

fext + ffrict ∼ ρl3v2/r . (3.22)

We now want to compute fcrit to see when it is of the same order of the right hand
side (in which case friction cannot be neglected and laminar flow will result), or
much smaller (in which case turbulence will occur).

The friction force can be estimated directly from the defining relation (3.17), or
rather the one in terms of the derivative of v given immediately below that. The net
force on our segment of volume l3 will be given by the force on the top minus the
force on the bottom, or (d f /dy)× l. Therefore

ffrict ∼ l3η
d2v
dy2 . (3.23)

We do not know much about the fluid velocity profile, but to estimate the order of
magnitude, we can safely say that the relevant scales here are the velocity itself and
the radius of the obstacle. So we will take d2v/dx2 ∼ v/r2. Together this gives

ffrict ∼ ηl3v/r2 . (3.24)

Of course, any more accurate estimate would require more knowledge about the
fluid flow, but that is not the point here.

We can now define a dimensionless number which determines when friction
dominates. This is the Reynolds number, defined as the ratio of the inertial force
(the right-hand side of (3.22)) and the frictional force,

R = vrρ/η . (3.25)

When R is small, frictional effects dominate, and laminar flow results. When R is
large, inertial effects dominate, and turbulent flow results. Of course, precisely what
is ‘small’ and ‘large’ in this context cannot be determined from the derivation which
we gave, and will have to be observed experimentally.

3.3. Application

3.3.1 Oxygen and blood flow
Bacteria need oxygen, and they will have to aborb that from the environment. We
can get a good idea of the rate at which they can absorb oxygen by making use of
the diffusion theory we discussed earlier, in particular Fick’s law.

Imagine a bacterium as a sphere of radius R. Around it, there is a fluid with
a certain non-constant concentration of oxygen. Far away from the bacterium, this
concentration will be some fixed number c(∞) = c0. At the surface of the bacterium,
on the other hand, we will set the concentration to zero (all oxygen gets absorbed),
i.e. c(R) = 0. The question is now what is the rate of flow of oxygen given these
boundary conditions.

Since there is no oxygen being produced in the fluid, if you draw concentric
spheres around the bacterium, the same amount of oxygen per unit time has to pass
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through each of them. That is to say, the flux times the area of each sphere has to be
a constant, let us call it I,

j × 4πr2 = −I . (3.26)

Inserting this into Fick’s law (3.8), we can find the concentration,

c(r) = A − 1
r

I
4πD

, (3.27)

where A is a constant. If we now impose the boundary conditions, we can fix both
A and I, and obtain

c(r) = c0

(
1 − R

r

)
. (3.28)

because I = 4πDRc0. This expression for I is important, because it shows that
(as perhaps expected) the amount of oxygen per unit time scales linear with the
concentration of oxygen, but it also shows that (perhaps unexpected) the maximum
rate at which a bacterium can absorb oxygen scales linear with its radius R. That is
not particularly good. The oxygen consumption most likely scales with the volume,
i.e. with R3. This means that a bacterium cannot get too large, because it will not be
able to absorb enough oxygen. (end of lecture 12)

A better and more efficient way to transport oxygen is of course to use a system
of blood vessels. So let us see how oxygen and blood flow through blood vessels.
Consider a cylindrical vessel segment of length L. At the vessel wall at r = R, the
velocity of the fluid has to be zero (the ‘no slip condition’). There will thus be a
velocity profile v(r), which we want to compute.

In order to do that, let us consider the forces on a cylindrical shell between radius
r and r + dr, as indicated in the figure. This shell experiences three forces. One is
the force due to the pressure drop in the vessel. Along the length L, this drop will
be taken to be ∆P, and the resulting force d f1 points (in the figure) upwards,

d f1 = 2πr∆Pdr . (3.29)

Then there are two frictional forces. One is a force d f2 pulling downwards, exerted
by the shell of slower moving fluid at larger radius. The other is a force d f3 pulling
upwards, exerted by the shell of faster moving fluid at smaller radius. From the
viscosity formula we have

d f2 = −η2πL(r + dr)
dv(r + dr)

dr
, d f3 = η2πLr

dv(r)
dr

. (3.30)

If we assume that there is no acceleration of the fluid, these three forces have to add
up to zero. The velocity derivative in d f2 can be expressed as

Laminar flow in a cylindrical pipe. The
pressure drop along the segment of
length L is ∆P.

dv(r + dr)
dr

=
dv(r)

dr
+ dr × d2v(r)

dr2 + . . . . (3.31)

The force balance condition then reads

r∆P
Lη

+
dv
dr

+ r
d2v
dr2 = 0 . (3.32)

We can solve this differential equation for v(r), and the general solution reads

v(r) = A + B log r − r2∆P
4Lη

. (3.33)

If we want the solution to be regular at r = 0, we have to set B = 0. Moreover, if we
want v(R) = 0 then the constant A is fixed. The result is

v(r) =
(R2 − r2)∆P

4Lη
. (3.34)
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The velocity profile for laminar flow inside a cylindrical vessel is thus quadratic in
the radius.

From the velocity profile we can compute the total amount of fluid Q that flows
through the pipe per unit time. This is obtained by integrating the velocity profile
over the cross-section of the vessel,

Q =
∫ R

0
2πrv(r)dr =

πR4

8Lη
∆P . (3.35)

This is the so-called Hagen-Poiseuille relation. It is a bit like Ohm’s law, in the
sense that the rate of fluid flow (‘current’) Q is equal to the driving force (‘potential
drop’) divided by a resistance. This resistance Z for fluid flow is

Z =
8ηL
πR4 . (3.36)

Such Ohm-like relations are, in the case of fluid flow, also known as Darcy’s law.
For biological purposes, the important consequence of the Hagen-Poiseuille re-

lation is that the rate of fluid flow grows very rapidly with the radius R. In terms of
the area, the rate is proportional to the square of the cross-sectional area. Therefore,
doubling the cross-sectional area of a single vessel is much more efficient than sim-
ply having two vessels of the same area. Said in a different way, we need to increase
the radius of the vessel by only a little bit in order to get a substantial increase in
fluid flow rate.(end of lecture 13)

3.3.2 Bacterial flagella
When moving around in a low Reynolds-number world, bacteria have to take spe-
cial measures to ensure that they actually move at all. With laminar flow, swimming
is quite different from what it is when there is turbulent flow. In the present sec-
tion, we will use the formulas for viscosity forces to analyse swimming motion for
bacteria.

Naively, one might expect that a bacterium can move by using small ‘paddles’,
as indicated in the schematic drawing on the left. During the “power” stroke, the
paddles are moved quickly, pushing the bacterium forward. To restore the paddles
to their original position, this is then followed by a “recovery” stroke of the paddles
at much smaller velocity. In the high Reynolds-number world, this works, but does
it work for low Reynolds numbers too?

Schematic picture of the two-stage
swimming process for a bacterium
with paddles. As computed in the text,
this mechanism fails at low Reynolds
numbers (laminar flow).

The important ingredient in this setup is clearly the viscous friction coefficient ζ0
which determines the force acting on the bacterium, and the viscous friction force ζ1
acting on the paddles. We can relate the forces on the bacterium or paddle to their
velocities by using the defining relation (3.13).

The velocity of the paddles in the first (forward) stroke, relative to the fluid, is
v − u downwards, so there is a viscous force ζ1(v − u) pointing upwards. Similarly,
the velocity of the bacterium itself is u upwards, so there is a force ζ0u pointing
downwards. If there is no acceleration, these two forces balance, which means

(v − u)ζ1 = uζ0 → u =
ζ1

ζ0 + ζ1
. (3.37)

If this movement happens for a time ∆t, the bacterium moves forward by a distance
∆x = u∆t. On the second (return) stroke, the paddles move upwards with velocity
v′ − u′, so there is a force (v′ − u′)ζ1 downward on the paddle. The bacterium
moves downwards with velocity u′ so there is an upwards force u′ζ0. Now the force
balance reads

(v′ − u′)ζ1 = u′ζ0 → u′ =
ζ1

ζ0 + ζ1
v′ . (3.38)
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The bacterium now moves a distance ∆x′ = −∆t′u′. The time intervals have to be
chosen such that the paddles return to their original position after the two strokes,
which means

v′∆t′ = v∆t . (3.39)

Combining the lot, we find that

∆x′ = −v∆t
v′

u′ = −u∆t
u′ u′ = −∆x . (3.40)

This shows that, no matter how you choose v and v′, the return stroke always exactly
cancels the effect of the forward stroke. Paddling does not work for a bacterium.

What we need is some motion that is periodic but not reciprocal (meaning that
there are not two parts of the motion which exactly cancel each other, like in the ex-
ample above). One way to do that is to have a rotor type of propulsion mechanism.
Biology does not often make use of rotary devices (think about how you would get
e.g. blood from the fixed to the rotating part of a body to understand why biology
does not like rotating motion). However, bacteria do seem to use this mechanism,
in the form of flagella.

A bacterial flagellum is a helical structure, connected to the main part of the
bacterium by a microscopic rotating construction (this ‘engine’ is only about 45 nm
wide). Naively, since all parts of the helix simply move around in circles, i.e. with a

A segment of a bacterial flagella; the
axis of the helix is horizontal. Even
though the velocity of the segment is
pointing in the plane of rotation, the
viscous force has a component along
the axis of the helix.

velocity which is orthogonal to the helix axis, one would perhaps expect that viscous
forces can never push in the direction of the axis. However, that naive reasoning
is incorrect. The subtlety lies in the fact that the viscous friction coefficient for a
non-spherical object depends on the direction in which the object moves. If we
consider the cylindrical segment, the viscous friction coefficient for movement in the
orthogonal direction (with velocity v⊥ is larger than the coefficient for movement in
the parallel direction (with velocity v||). Therefore, there is a net force pushing the
helix in the direction of the axis.

There are other propulsion mechanisms in use by bacteria, for more information
see Nelson’s book. They all rely on the fact that the motion is not reciprocal. (end of lecture 14)
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