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1
Overview and guide to the literature

1.1. Introductory remarks

Quantum Field Theory (QFT henceforth) was born out of the struggle to combine
special relativity with quantum mechanics. Doing this consistently has led to an
understanding of five deep facts about Nature:

1. The existence of different, yet totally indistinguishable, copies of elementary
particles.

2. The relation of the statistics of particles (behaviour under exchange) to their
spin.

3. The existence of anti-particles.

4. The ubiquity of particle creation & destruction.

5. The association of forces with particle exchange.

It is the goal of these lectures to explain these points, along with the required mathe-
matics. Moreover, we will discuss some aspects of string theory, not only because it
is an arena in which one can explain quantum field theory in simple terms, but also
because it is, by many, considered to be an important step beyond quantum field
theory (how this all fits together will become clear as we go along).

The crucial aspect of QFT is that it describes the quantum mechanics of an ar-
bitrary number of relativistic particles. Quantum mechanics itself already suggests,
by virtue of the uncertainty relation ∆E ∆t ≥ h̄, that particles can be created out
of the vacuum, and hence that a theory based on a fixed number of particles is not
going to be consistent. An inconsistency also shows up if you try to generalise the
propagation amplitude for a particle to go from point x⃗ to y⃗,

U(t) = ⟨⃗y| e−iĤt |⃗x⟩ . (1.1)

This amplitude is non-zero for all positions and times, indicating that particles can
propagate with any speed. If you generalise this naively to the relativistic formula,
Ĥ =

√
p̂2 + m2, you still encounter problems with causality. Only the introduction

of anti-particles, one of the predictions of QFT, resolves the issue.
QFT is a hard topic. First of all, there are many new concepts to learn. Several

of them look highly confusing at first sight. In particular, the fact that we are forced
to work with an infinite number of degrees of freedom makes life conceptually and
technically difficult. Another reason why QFT is hard to learn is that there are var-
ious mathematical ways to describe the same thing, each with their own technical
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1.2 Recommended literature

complications and interpretational issues. Lack of time prevents us from discussing
each of the available formalisms (the operator formalism, the Schrödinger formal-
ism and the path integral formalism) in equal detail. If you get confused, the book
by Hatfield [1] is a good guide, as it does many computations in all three formalisms,
so you can compare them.

These notes are essentially a collection of bits from various books which we con-
sidered well-written. For more details, all sections contain references to the original
material. We have tried to return, in every chapter, to the “complex scalar four-point
function” as the main example on which to explain the theory. With the limited
time available, and the lack of a discussion of fermions, there was unfortunately not
much room to discuss other physical processes.

1.2. Recommended literature

You are strongly encouraged to read some other literature apart from these notes, if
only to put things in perspective and give you a better feeling for why things are
done the way in which we present them. Short texts with overviews of the field or
particular sub-topics include:

• R. P. Feynman, “QED: The strange theory of light and matter”, Princeton, 1985.
A masterpiece to whet your appetite; no formulas.

• F. Wilczek, “Quantum field theory”, Rev. Mod. Phys. 71 (1999) S85–S95.
A short overview of the general principles of quantum field theory and their
consequences.

Books purely about quantum field theory, with varying levels of particle physics
content:

• M. Srednicki, “Quantum field theory”, Cambridge, 2007.
A very modern text, with emphasis on a logical structure rather than a histori-
cal exposition (as in many other books). A pre-publication draft version (very
similar to the printed book) can be obtained for free from
http://www.physics.ucsb.edu/~mark/qft.html.

• B. F. Hatfield, “Quantum field theory of point particles and strings”, Addison-
Wesley (Frontiers in Physics), 1992.
Nice pedagogical text, often with an original way of explaining things. Also
contains an introduction to string theory in quite some detail. Does not have
too many particle-physics examples.

• L. H. Ryder, “Quantum Field Theory”, Cambridge, 1985.
A big book which takes a lot of time to develop the material (e.g. contains a
large amount of material on classical field theory), but as a result contains a lot
of worked out calculations.

• M. Peskin and D. Schroeder, “An introduction to quantum field theory”, Perseus,
1995.
By many considered to be one of the most readable and most complete books
on quantum field theory: it is rigorous and comprehensive, both for the math-
ematics as well as the physics.

• A. Zee, “Quantum field theory in a nutshell”, 2003.
A good pedagogical book to get an overview of the field, explains many con-
cepts in simple terms. A bit thin on actual computations.
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1.2 Recommended literature

• S. Weinberg, “The Quantum theory of fields. Vol. 1: Foundations”, 1995; S. Wein-
berg, “The quantum theory of fields. Vol. 2: Modern applications”, 1995; S. Wein-
berg, “The quantum theory of fields. Vol. 3: Supersymmetry”, 1995.
A massive three-volume text with many topics not found elsewhere. The level
of detail and explanation changes a lot throughout the book, which perhaps
makes it harder to read as a first introduction (but some parts are extremely
well written).

• K. Huang, “Quarks, leptons and gauge fields”, 1982.
A book with main emphasis on particle physics, relatively compact and to the
point.

• M. Veltman, “Diagrammatica”, Cambridge, 1994.
A recommended, compact and highly original book, written from the particle
physics perspective.

• C. Itzykson and J. B. Zuber, “Quantum field theory”, McGraw-Hill, 1980.
A thorough reference book with many real-world examples, but not so good
as a first introduction to the field.

• R. J. Rivers, “Path integral methods in quantum field theory”, Cambridge,
1987.
Only uses path integrals.

• N. Bogoljubov and D. V. Shirkov, “Quantum fields”, Benjamin/Cummings,
1983.
Classic masterpiece, Russian accessibility. Famous for its appendix with ex-
plicit expressions of propagators in coordinate space (which few other books
care to list).

Quantum field theory methods are strongly related to those used in statistical field
theory, and some books discuss these in one go:

• G. Parisi, “Statistical field theory”, Addison-Wesley, 1988.
A useful and compact book for those who want to understand the connection
between methods used in quantum field theory and statistical mechanics (per-
haps as an alternative to Zinn-Justin’s book, which is much more elaborate).

• J. Zinn-Justin, “Quantum field theory and critical phenomena”, Int. Ser. Monogr.
Phys. 113 (2002) 1–1054.
A massive 1000+ page book with everything you always wanted to know (and
more) about both quantum field theory and statistical field theory.

In the second half of the course we will discuss some string theory. Good books for
this topic are

• D. Lüst and S. Theisen, “Lectures on string theory”, Springer, 1989.
Goes much further than these notes, but the first few chapters will be useful.
The book is unfortunately out of print, but the authors have given permission
to use a scanned version; ask one of the lecturers for a link.

• M. B. Green, J. H. Schwarz, and E. Witten, “Superstring theory”, Cambridge
University Press, 1987.
Two-volume bible of the field (for the present course the first volume is more
than sufficient).
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• J. Polchinski, “String theory”, Cambridge University Press, 1998.
A more recent two-volume book. Covers several modern topics in string the-
ory which are not discussed in Green/Schwarz/Witten (e.g. D-branes).

• B. Zwiebach, “A first course in string theory”, 2004.
New pedagogical text book which also contains a discussion of many of the
field theory concepts necessary to understand string theory. Get the 2nd edi-
tion.

1.3. Software

There is a lot of software for quantum field theory freely available. Some of the
packages most useful in the context of these lectures are

• GRC. This is a Feynman diagram generator for arbitrary Lagrangians. Avail-
able from
http://minami-home.kek.jp/.

• Feyncalc. A large Mathematica package for various computations related to
Feynman diagrams, including generating diagrams and computing one-loop
integrals. http://www.feyncalc.org/.

1.4. Conventions

• The metric signature throughout is “mostly plus”, i.e. gµν = (−,+,+, . . . ,+)
in any dimension (many field theory books use “mostly minus” convention,
so beware). A massive particle thus has pµ pµ = −E2 + | p⃗|2 = −m2.

• Greek indices µ, νρ, . . . run over both space-like and time-like directions.

• Roman indices r, s, t, u, . . . run only over the space-like directions.

• Operators are denoted with a hat accent: α̂n is the operator corresponding to
the classical variable αn.

• Light-cone coordinates are defined by X± = 1√
2
(X0 ± X1) so that the metric

in the X± directions is
(

0 −1
−1 0

)
.

• Lorentzian and Euclidean time are related by tL = −i τE.
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2
Classical field theory reminder

2.1. Relativistic invariance

Special relativity says that physical formulas are the same in all inertial frames.
Those are frames related by a Poincaré transformation, i.e. transformations which
act on the space-time coordinates as1

xµ → Λµ
νxµ + aµ , µ = 0, . . . 3 . (2.1)

Here aµ is a constant vector and Λµν is such that it leaves the Minkowski metric of
flat space-time unchanged (invariant). The flat metric is

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


µν

. (2.2)

and the invariance condition is simply

ηµνΛµ
ρΛν

σ = ηρσ . (2.3)

The transformations generated by Λµ
ν are called the Lorentz group, while the full

group including translations aµ is the Poincaré group.
Let us have a closer look at the explicit form of the matrices Λµ

ν. For small
(infinitesimal) transformations, we can write them as

Λµ
ν = δµ

ν + Λ̃µ
ν , (2.4)

where we are assuming that all components of Λ̃µ
ν are small and higher order ex-

pressions in these components can be ignored. Plugging this into (2.3) we find
that the Λ̃µν (with two lower indices) are anti-symmetric, Λ̃µν = −Λ̃νµ. Such
matrices have six independent components. We can thus write these matrices as
Λ̃µ

ν = ωρσ(Jρσ)µ
ν, where the six independent components in ωρσ are the trans-

formation parameters and (Jρσ)µ
ν are the constant components of the matrices that

1We will use a notation in which the 0-th component of a position vector xµ denotes the moment
in time and the 2-nd, 3-rd and 4-th components denote the position in space, i.e. xµ = (t, x⃗)µ. Latin
indices only denote space components, xi = (x⃗)i . Contravariant (upper) indices can be made covariant
(lower) by acting with the metric, xµ = ηµνxν = (−t, x⃗)µ. Note that derivatives have covariant indices,

∂
∂xµ =

(
∂

∂x0 , ∂
∂xi

)
.

9



2.1 Relativistic invariance

generate the transformation,

(J12)µν =

 0 0 0 0
0 0 1 0
0 −1 0 0

0 0 0 0


µν

, (J13)µν =

 0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


µν

, (J23)µν =

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


µν

, (2.5)

for rotations in the (1, 2), (1, 3) and (2, 3) planes respectively (or if you wish, around
the z, y and x axes). The other three correspond to relativistic boosts in the three
spatial directions,

(J01)µν =

 0 1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0


µν

, (J02)µν =

 0 0 1 0
0 0 0 0
−1 0 0 0

0 0 0 0


µν

, (J03)µν =

 0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


µν

. (2.6)

Furthermore ω12 = θz, ω13 = θy and ω23 = θx are the rotation parameters and
ω01 = γx, ω02 = γy and ω03 = γz are the boost parameters. A somewhat more
convenient way to express these generators is

(Jµν)ρσ = δµ
ρδν

σ − δν
ρδµ

σ , (2.7)

where the indices inside the brackets label the generators, while the indices out-

If we rotate points by a transforma-
tion Λµ

ν , the value of the transformed
scalar field at the new point is the same
as the value of the original field at the
old point.

side the brackets label the components of the corresponding matrix. If you instead
consider the matrices with one upper and one lower index (as they appear in the
transformation (2.1)) you find that the rotation generators are anti-symmetric while
the boost generators are symmetric matrices. By exponentiating these generators of
infinitesimal transformations, the corresponding finite transformations can be ob-
tained (see the exercises).

When we deal with classical fields, we also need to know how the transforma-
tions act on the fields. The simplest case is a scalar field, i.e. a function ϕ(xµ) which
associates a scalar value to each point in space-time. Let us think of transforma-
tions like (2.1) in the active way, i.e. moving physical points around in space-time
but keeping the coordinate system fixed (the alternative is to consider them as pas-
sive transformations, in which the coordinate system changes but all the physical
objects are kept at their original place). In that case, the value of the scalar field at
the transformed point is equal to the value of the scalar field at the original point,

ϕ′(x′µ) = ϕ(xµ) . (2.8)

This is the simplest way in which a field can transform. When we discuss symme-

If we rotate points by a transforma-
tion Λµ

ν , the components of the trans-
formed vector field are rotated ver-
sions of the components of the original
vector field at the old point.

tries later on, it is often more useful to write this transformation behaviour in the
form

ϕ(xµ) → ϕ((Λ−1)µ
νxν) , (2.9)

i.e. as a replacement rule. This simply says that the value of the scalar field at a
given point after the transformation is obtained by looking at where that point was
before the transformation.

For a vector field, things are a bit more complicated. By rotating all points around
the origin, the vector directions also change. We thus have the transformation

v′µ(x′ν) = Λµ
ρvρ(xν) . (2.10)

For tensors, there will be a factor of the Λ matrix for every upper (covariant) index
and a factor of (Λ−1)T for every lower (covariant) index. Again, this can also be
expressed as a replacement rule,

vρ(xµ) → Λρ
σvσ((Λ−1)µ

νxν) . (2.11)
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2.2 Lagrangian and Hamiltonian methods

We can also write down explicit forms for the infinitesimal generators of the
Poincaré transformations on fields. For translations of scalar fields, we have the
four generators (one for every value of µ)

Pµ =
∂

∂xµ . (2.12)

If we introduce an infinitesimal parameter ϵν the action of the infinitesimal transla-
tion generator is

ϕ(xν) → ϕ(xν) + ϵρ∂ρϕ(xν) . (2.13)

We could also have written this as ϕ′(xν + ϵν) = ϕ(xν). Similarly, we can write
down differential operators that generate rotations,

Jµν = xµ
∂

∂xν
− xν

∂

∂xµ . (2.14)

By making use of these explicit representations, it is possible to compute the algebra
of the generators. One finds The Poincaré algebra generates

translations and rotations in
Minkowski space-time.[Pµ, Pν] = 0 ,

[Pµ, Jνρ] = ηµνPρ − ηµρPν ,

[Jµν, Jρσ] = ηνρ Jµσ − ηµρ Jνσ − ηνσ Jµρ + ηµσ Jνρ .

(2.15)

This algebra is called the Poincaré algebra. The subalgebra generated by the Jµν is
the Lorentz algebra. The commutator on the last line can of course also be verified
directly at the level of the matrix representation (2.7).

Finally, there are also some discrete symmetries which leave the Minkowski met-
ric invariant, i.e. symmetries which are not obtained by exponentiating generators.
These are parity, which flips the sign of all space-like coordinates, and time reversal,
which flips the sign of time. In nature, not all interactions are invariant under these
reflections. (end of lecture 1)

▶ See also: B. F. Schutz, “A first course in general relativity”, Cambridge, 1985 chap-
ter 1, 2 & 3 contain many examples and exercises in case you need to refresh your
memory about special relativity.

2.2. Lagrangian and Hamiltonian methods

A convenient way to formulate classical field theories is to make use of the La-
grangian formalism. This formalism will play an important role especially in the
path integral formulation of quantum field theory. The Hamiltonian formalism is
important for the operator formalism of interacting field theories. Let us therefore
briefly recall some of the basic concepts.

In the Lagrangian formalism, the basic object is a scalar quantity called the action,
which is a functional of the fields ϕ in the model, as well as their space and time
derivatives. The action is the time-integral of a Lagrangian, or a space-time integral
of a Lagrangian density

S =
∫

dt L(t) =
∫

d4x L
(
ϕ(x), ∂µϕ(x)

)
. (2.16)

The principle of least action states that classically, the fields evolve from one config-
uration at t = t1 to another configuration at t = t2 according to a “path” ϕ(t, x⃗) for

11



2.2 Lagrangian and Hamiltonian methods

which the action is an extremum. That is, small fluctuations around this path (the
first variational derivative) have to vanish. This condition reads

0 = δS =
∫

d4x
[

δL(x)
δϕ(y)

δϕ(y)
]

(2.17)

All fields are assumed to fall off to zero sufficiently fast in the limit xµ → ±∞ so that
boundary terms which occur in the process of partial integration can be ignored.2

In addition, the variation δϕ(y) is of course zero at the initial and final time slice.Classical equation of motion for a
scalar field Let us do a simple example, namely that of a real scalar field with a Lagrangian

density given by L(x) = − 1
2 ∂µϕ∂µϕ(x)− 1

2 m2ϕ2(x). The variation of the action be-
comes3

δS =
∫

d4x
[
−∂δ4(x − y)

∂xµ

∂ϕ(x)
∂xν

ηµν − m2ϕ(x)δ4(x − y)
]

δϕ(y)

=
∫

d4x
[
∂µ∂µϕ(x)− m2ϕ(x)

]
δ4(x − y)δϕ(y)

=
[
∂µ∂µϕ(y)− m2ϕ(y)

]
δϕ(y) .

(2.19)

Since this has to hold for any small variation δϕ(y), the equation of motion is given
by the factor in square brackets. In (quantum) field theory, we often say that the
fields are on shell when they satisfy the equations of motion, and off shell when they
do not.On-shell versus off-shell.

The connection to the Hamiltonian formalism is made through the definition
of the conjugate momenta to the fields. This is done in complete analogy with the
definition of momenta for single-particle systems, where p = ∂L/∂q̇, using the no-
tation q̇ = ∂tq. We now have

π(t, x⃗) :=
∂L(t, x⃗)
∂ϕ̇(t, x⃗)

. (2.20)

The Hamiltonian is then obtained as the Legendre transform of the Lagrangian,

H(t) =
∫

d3x [π(t, x⃗)ϕ̇(t, x⃗)−L(t, x⃗)] . (2.21)

Note that the Hamiltonian is an integral over a space-like, three-dimensional slice of
space-time, in contrast to the action which is an integral over all of space-time. Also
remember that time derivatives of fields should always be eliminated in favour of
momenta.

Again, let us illustrate the above on the real scalar field example. For the mo-
mentum density we find

π(t, x⃗) = ∂tϕ(t, x⃗) . (2.22)

The Hamiltonian is thus

H =
∫

d3x
1
2

[
π2 + (∂iϕ)

2 + m2ϕ2
]

. (2.23)

2There certainly do exist systems for which this is not true (general relativity for instance) and more
care has to be taken, but we will not encounter them in these notes.

3Remember that for variational derivatives we have

δϕ(x)
δϕ(y)

= δ4(x − y) , and thus
δ
(
∂µϕ(x)

)
δϕ(y)

=
∂

∂xµ δ4(x − y) . (2.18)

Inside a space-time integral, partial derivatives on Dirac delta functions can always be integrated by
parts.
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2.3 Noether’s theorem

There are thus three contributions to the energy: kinetic energy because of the field
changing in time, “shear” potential energy because of the gradient of the field, and
potential energy simply because of the presence of the field.

All of the manipulations in this section can of course be extended to fields which
carry extra space-time or internal indices, and we will see examples of those cases
in the exercises.

2.3. Noether’s theorem

Noether’s theorem, roughly speaking, says that for any continuous transformation
which leaves the action invariant up to a surface term, there exists a conserved cur-
rent. That is, for any such transformation, we can find a vector field J µ(x) which
satisfies

∂µJ µ = 0 . (2.24)

The space integral of the zeroth component of this current is then a conserved charge, A charge is conserved when its
time derivative ∂0Q vanishes; this
holds when the current satisfies the
conservation equation ∂µJ µ = 0.

Q =
∫

d3x J 0, because

∂0Q =
∫

d3x ∂0J 0 = −
∫

d3x ∂iJ i , (2.25)

which is a total derivative and hence vanishing if the fields fall of at infinity fast
enough.

Let us derive the form of this current. What is needed is only the infinitesimal
form of the field transformation, which we will write as

ϕ(x) → ϕ(x) + ϵ∆ϕ(x) . (2.26)

Here ∆ϕ(x) is a fixed expression of the field ϕ(x) (it can be equal to the field or some
more complicated function of it, or alternatively it can be a constant; the details
depend on the symmetry at hand). We call such transformations global, since they
are parameterised by a space-time independent parameter ϵ.4 If this transformation
leaves the action invariant, i.e. if

δS = ϵ
∫

d4x
δS

δϕ(x)
∆ϕ(x) = 0 , (off shell) (2.27)

then this transformation is a global symmetry . Note that this is only a non-trivial
statement if it holds independent of the equations of motion: when the fields do
satisfy the equations of motion, (2.27) is of course always zero.

If we would temporarily make ϵ dependent on x, then the same transformation
would generically not leave the action invariant. However, we know that in this
case the action has to transform as

δS =
∫

d4x J µ(x)
∂ϵ(x)
∂xµ , (off shell) (2.28)

otherwise it would not vanish when ϵ is a constant. Again, if the fields satisfy the
equations of motion, we always have δS = 0, since even a transformation with ϵ =
ϵ(x) non-constant is a generic field variation. So on-shell, we have (using a partial
integration)

0 = δS = −
∫

d4x ∂µJ µ(x) ϵ(x) . (on shell) (2.29)

4A global symmetry may certainly change the field in a different way at every space-time point xµ

(as the transformation (2.26) in fact does); what counts is whether or not there is a finite number of free
parameters in the transformation rule.
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2.3 Noether’s theorem

(any boundary terms which arise during partial integration will vanish because we
put the fields on shell; recall that the derivatation of the equations of motion requires
that the boundary terms vanish). Because (2.29) has to be true for any ϵ(x), the
integrand rather than the integral has to vanish, and we have found a conserved
current J µ.

The procedure described above can be used in general. However, it often hap-
pens that not only the action is invariant, but also the Lagrangian density itself (in
other words, that there are no boundary terms in the variation of the action). In this
case we can give a somewhat more explicit expression for the current J . Let us first
write the generic variation as

δS =
∫

d4x
[

∂L
∂ϕ(x)

ϵ∆ϕ(x) +
∂L

∂(∂µϕ(x))
∂µ (ϵ∆ϕ(x))

]
. (2.30)

Invariance of the Lagrangian itself, for constant ϵ, requires that

0 =
∂L

∂ϕ(x)
∆ϕ(x) +

∂L
∂(∂µϕ(x))

∂µ (∆ϕ(x)) , (2.31)

which are the equations of motion. On-shell only the term in which ∂µ hits ϵ sur-
vives, and comparing with (2.28) thus gives us the conserved current

J µ =
∂L

∂(∂µϕ)
∆ϕ . (2.32)

It is of course not necessary to use this formula; just following the general logic
described in the previous paragraph is equally good.

Let us illustrate this again at the level of an example. Consider the action of a
complex scalar field,

S =
∫

d4x
[
− ∂µϕ∗∂µϕ − m2ϕ∗ϕ

]
. (2.33)

This action is unchanged under complex rotations

ϕ(x) → eiαϕ(x) , ϕ∗(x) → e−iαϕ∗(x) . (2.34)

For infinitesimal α = ϵ these take the form

ϕ(x) → ϕ(x) + iϵϕ(x) , ϕ∗(x) → ϕ∗(x)− iϵϕ∗(x) , (2.35)

i.e. ∆ϕ = iϕ and ∆ϕ∗ = −iϕ∗. Independent of the equations of motion, the varia-
tion δS/δα always vanishes provided α is a constant. Now temporarily make α =
α(x) to obtain the variation

δS =
∫

d4x (∂µα)
[
i(∂µϕ)ϕ∗ − iϕ(∂µϕ∗)

]
. (2.36)

The expression in brackets is the conserved Noether current associated to the sym-
metry of the action (2.34).(end of lecture 2)

▶ Summary: Global symmetries of the action (i.e. field transformations which are
parameterised by a space-time independent parameter and which leave the action
invariant even when the fields do not satisfy the equations of motion) lead to con-
served currents. These currents can be found by using a local parameter, rewriting
the variation in the form (2.28) and putting the fields on shell.

▶ See also: S. Weinberg, “The Quantum theory of fields. Vol. 1: Foundations”, 1995
section 7.3.
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3
Free quantum fields

3.1. Multi-particle non-relativistic quantum mechanics

In order to introduce the language in which we will describe relativistic quantum
field theory, let us start from a well-known point: the Schrödinger equation of a fixed
number n of non-relativistic particles. When they interact with each other through
a pair-wise interaction potential V, it reads

ih̄
∂

∂t
ψ(t, x⃗1, . . . , x⃗n) =

[
−

n

∑
j=1

h̄2

2m
∇2

j +
n

∑
j=1

n

∑
k=j+1

V(x⃗j − x⃗k)

]
ψ(t, x⃗1, . . . , x⃗n) . (3.1)

In order to generalise this equation, it is useful to write it in a more abstract form,
using operators acting on the vectors in Hilbert space. That is, we want to write this
in the form

ih̄
∂

∂t
|ψ, t⟩ = Ĥ|ψ, t⟩ , (3.2)

where Ĥ is the Hamiltonian operator and |ψ, t⟩ a vector in Hilbert space. In order
to do so, we introduce a set of operators â(x⃗) and â†(x⃗), i.e. one operator for ev-
ery point in space. Right now they come out of the blue, but their usefulness will
become clear shortly. We take these operators to satisfy the commutation relations

[â(x⃗), â(x⃗′)] = 0 ,

[â†(x⃗), â†(x⃗′)] = 0 ,

[â(x⃗), â†(x⃗′)] = δ3(x⃗ − x⃗′) .

(3.3)

Observe that these are much like the commutation relations of a continuous set of
independent harmonic oscillators, labelled by a continuous parameter x⃗ (see also
the next section). In terms of these operators, the ingredients of (3.2) can be written
as

Ĥ =
∫

d3x â†(x⃗)

[
− h̄2

2m
∇2

]
â(x⃗) +

∫
d3xd3y V(x⃗ − y⃗) â†(x⃗)â† (⃗y)â(⃗y)â(x⃗) . (3.4)

and
|ψ, t⟩ =

∫
d3x1 · · ·d3xn ψ(t, x⃗1, . . . , x⃗n) â†(x⃗1) . . . â†(x⃗n)|0⟩ . (3.5)

Here we have introduced a special state |0⟩, which we will call the vacuum. We
declare it to have the property that

â(x⃗) |0⟩ = 0 . (3.6)
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3.2 Harmonic oscillators and canonical quantisation

One can now verify that the equation (3.2) holds if and only if the wave function
ψ(x⃗1, . . . , x⃗n) satisfies (3.1).

The physical interpretation of the rewriting procedure we just did is simple. We
interpret the state |0⟩ as the state which contains no particles, â†(x⃗1)|0⟩ as a state
which contains a single particle at position x⃗1, the state â†(x⃗1)â†(x⃗2)|0⟩ as one which
contains two particles, and so on. Note that important fact that all of the information
about the number of particles n has been moved into the state |ψ, t⟩. The Hamilto-
nian (3.4) no longer refers to n at all. This is what will re-appear also in quantum
field theory.

Let us now set V = 0, i.e. consider free particles. We then perform a Fourier
transformation to momentum space, transforming the operators as

â( p⃗) =
∫ d3x

(2π)3/2 e−i p⃗·⃗x â(x⃗) . (3.7)

The Hamiltonian operator then takes the simple form

Ĥ =
∫

d3 p
h̄2

2m
p⃗2 â†( p⃗) â( p⃗) . (3.8)

This form suggests a simple generalisation to the relativistic case: the expression
p⃗2/2m is nothing else but the single-particle energy of a particle with momentum p⃗.
If we replace this with the relativistic expression for the energy, we get

Ĥ =
∫

d3 p
√

p⃗2 + m2 â†( p⃗) â( p⃗) . (3.9)

The goal is now to understand this from a wider perspective, and in particular un-
derstand why this is a Lorentz covariant expression. Note that the Hamiltonian
expression (3.9) is reminiscent of the Hamiltonian of a classical field theory, as the â
operators depend on three-space or three-momentum.

▶ Summary: It is possible to rewrite the quantum mechanics of multiple particles
in such a way that all the dependence on the number of particles sits in the state
vector |ψ, t⟩. This requires introducing a “field” of ladder operators.

▶ See also: The argument presented here can also be found in e.g. M. Srednicki,
“Quantum field theory”, Cambridge, 2007.

3.2. Harmonic oscillators and canonical quantisation

What we will do now is to follow a more bottom-up procedure to construct a rel-
ativistic multi-particle Hamiltonian, which starts from a classical field theory and
ends up with (3.9). In order to do this, we first need to remind ourselves of the
procedure of canonical quantisation and of ladder operators.

So let us go back to a non-relativistic harmonic oscillator, and recall its quantum
mechanics. The action reads

S =
1
2

∫
dt
(

q̇(t)2 − ω2q(t)2
)

. (3.10)

For the canonical momentum and Hamiltonian one finds

p(t) = q̇(t) , H =
1
2

(
p(t)2 + ω2q(t)2

)
. (3.11)
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3.2 Harmonic oscillators and canonical quantisation

When we quantise this system, we replace the classical variables q(t) and p(t) with
operators q̂(t) and p̂(t), satisfying the equal-time commutation relations1[

q̂(t), p̂(t′)
]∣∣∣

t=t′
= ih̄ . (3.12)

An analogous relation in fact also already exists in classical physics, in the form
of the Poisson bracket. The Poisson bracket between two functions of q and p is
defined as {

f , g
}

Poisson =
∂ f
∂q

∂g
∂p

− ∂ f
∂p

∂g
∂q

. (3.13)

For f = q and g = p we then get {
q, p

}
Poisson = 1 . (3.14)

Dirac hence postulated that a way to go from a classical theory to its quantised ver-
sion is to replace all Poisson brackets by (ih̄)−1 times commutators.2 This procedure
is now known under the name of canonical quantisation, in contrast to e.g. path inte-
gral quantisation which will appear in later chapters.

A second ingredient of harmonic oscillators which we will encounter is that of
ladder operators. Let us recall how those work. Starting from the action (3.10), the
Hamiltonian (3.11) and the equal-time commutation relations (3.12) one introduces
new operators â and â† according to

q̂(t) =

√
h̄

2ω

(
âe−iωt + â†eiωt

)
, p̂(t) = (−i)

√
h̄ω

2

(
âe−iωt − â†eiωt

)
. (3.15)

These operators satisfy the classical equations of motion

˙̂q = p̂ , ˙̂p = −ω2q̂ , (3.16)

or if you want ¨̂q = −ω2q̂, which is the Lagrangian equation of motion for (3.10). The
inverse formulas read

â =
(√ ω

2h̄
q̂(t) +

i√
2ωh̄

p̂(t)
)

eiωt , â† =
(√ ω

2h̄
q̂(t)− i√

2ωh̄
p̂(t)

)
e−iωt . (3.17)

The equal-time commutation relation (3.12) now requires us to fix

[â, â†] = 1 . (3.18)

We have essentially traded the time-dependent Heisenberg operators q̂(t) and p̂(t)
for the time-independent Schrödinger operators â and â†. The Hamiltonian becomes

Ĥ = h̄ω
(

â† â +
1
2

)
. (3.19)

Furthermore, one finds the commutation relations[
Ĥ, â†] = ωh̄â† ,

[
Ĥ, â

]
= −ωh̄â . (3.20)

These relations can then be used to verify that the eigenstates of the Hamiltonian
are given by

|n⟩ = (â†)n|0⟩ , with â|0⟩ = 0 . (3.21)
These Schrödinger eigenstates, built from the Schrödinger ladder operators, have
energy eigenvalue (n + 1

2 )h̄ω, are time-dependent and their time evolution is given
by |n, t⟩ = exp(−iĤt)|n⟩.

1In this section we are making a slow transition from the Heisenberg picture, in which operators are
time dependent and states are not, to the Schrödinger picture, in which the roles are reversed. There are
various other ways to write the things discussed here; see e.g. [1] or [6] for more on this.

2This caricature ‘explanation’ does not do any justice to the beautiful theory of Dirac brackets and
constrained systems which is often necessary in order to arrive at a consistent quantised model. For lack
of time, we will not discuss any of these issues here.
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3.3 Relativistic quantum fields

3.3. Relativistic quantum fields

After this short reminder of the harmonic oscillator, let us now return to our main
goal, namely to derive (3.9) from a systematic quantisation procedure. We will fol-
low a logic which is essentially canonical quantisation as discussed in the previous
section. That is, given e.g. a classical theory for a scalar field ϕ(t, x⃗), we will com-
pute its conjugate momentum π(t, x⃗) as explained in section 2.2, promote the fields
to operators, expand them in a set of solutions to the classical equations of motion
as in section 3.2, and then impose the equal-time commutation relations[

ϕ̂(t, x⃗), π̂(t′, x⃗′)
]∣∣∣

t=t′
= ih̄ δ(3)(x⃗ − x⃗′) . (3.22)

As with quantum mechanics, there is a large number of ways to motivate this, but
in the end it is just Dirac’s prescription for the transition from classical to quantum,
so we will not dwell on this any further. Again, we will set h̄ = 1 from now.

We will start, as an example, with the quantisation of a theory for a complex
scalar field ϕ. This is also known as a complex Klein-Gordon field. We have seen the
action for this system before, it is

S =
∫

d4x
[
− ∂µϕ∗∂µϕ − m2ϕ∗ϕ

]
. (3.23)

What we will do first is to write the field ϕ in terms of a full set of modes which
satisfy the equations of motion. The equation of motion is

∂µ∂µϕ − m2ϕ = 0 . (3.24)

One particular solution is given by a plane wave,

exp
(
i⃗k · x⃗ ± iωkt

)
with ωk =

√⃗
k2 + m2 . (3.25)

(This is the definition of ωk; it will always denote the positive root of ω2 − k⃗2 = m2).
A generic solution to the equations of motion is then given by summing an arbitrary
number of these plane wave solutions with arbitrary coefficients,

ϕ(t, x⃗) =
∫ d3k

(2π)3
1√
2ωk

[
a(⃗k)ei⃗k·⃗x−iωkt + b̃∗ (⃗k)ei⃗k·⃗x+iωkt

]
. (3.26)

The names of the coefficients are of course arbitrary; the important fact is that this
field satisfies the classical equations of motion for any values of the coefficients a(⃗k)
and b̃(⃗k). The expansion above has, unfortunately, a slightly inconvenient form to
continue, because the exponential in the second term does not look like a Lorentz
covariant inner product. But we can define b(⃗k) = −b̃(−⃗k) and write instead

ϕ(t, x⃗) =
∫ d3k

(2π)3
1√
2ωk

[
a(⃗k)ei⃗k·⃗x−iωkt + b∗ (⃗k)e−i⃗k·⃗x+iωkt

]
,

ϕ∗(t, x⃗) =
∫ d3k

(2π)3
1√
2ωk

[
b(⃗k)ei⃗k·⃗x−iωkt + a∗ (⃗k)e−i⃗k·⃗x+iωkt

]
.

(3.27)

This is the analog of the decomposition of q̂(t) of the harmonic oscillator.
Let us now continue with our quantisation procedure. From the definition of the

canonical momentum,

π(t, x⃗) =
∂L

∂ϕ̇(t, x⃗)
= ϕ̇∗(t, x⃗) , (3.28)
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3.3 Relativistic quantum fields

we can find the expansion of the momentum density in terms of a(⃗k) and b(⃗k). It
reads

π(t, x⃗) =
∫ d3k

(2π)3 (−i)
√

ωk
2

[
b(⃗k)ei⃗k·⃗x−iωkt − a∗ (⃗k)e−i⃗k·⃗x+iωkt

]
,

π∗(t, x⃗) =
∫ d3k

(2π)3 (−i)
√

ωk
2

[
a(⃗k)ei⃗k·⃗x−iωkt − b∗ (⃗k)e−i⃗k·⃗x+iωkt

]
.

(3.29)

These expansions are the analogs of the decomposition of p̂(t) of the harmonic os-
cillator.

We are now ready to promote the classical field and its momentum density to
quantum operators. We implement this at the level of the decompositions given
above by promoting the coefficients a(⃗k) and b(⃗k) to operators. The expansions are
thus as above, but with all ϕ, π, a, a∗, b and b∗ equipped with hats (and complex
conjugation replaced by hermitean conjugation). For the inverse relations one finds

â(⃗k) =
∫

d3x
(√

ωk
2

ϕ̂(t, x⃗) +
i√
2ωk

π̂†(t, x⃗)
)

e−i⃗k·⃗x+iωkt ,

b̂(⃗k) =
∫

d3x
(√

ωk
2

ϕ̂†(t, x⃗) +
i√
2ωk

π̂(t, x⃗)
)

e−i⃗k·⃗x+iωkt .
(3.30)

These, and their hermitean conjugates, are similar again to the harmonic oscillator
relations (3.17).

As we mentioned above, the idea is now to impose (3.22). Clearly, that condition
will only hold if the new operators â(⃗k) and b̂(⃗k) satisfy certain commutation rela-
tions as well. This is a bit of a messy computation that you should do a couple of
times to get the hang of it (see the exercises). The result is that one needs[

â(⃗k), â†(k⃗′)
]
= (2π)3h̄δ3 (⃗k − k⃗′) ,[

b̂(⃗k), b̂†(k⃗′)
]
= (2π)3h̄δ3 (⃗k − k⃗′) ,

(3.31)

while all other commutators that you can write down should vanish. Comparing
these with (3.18), we see that what the field theory quantisation has produced for us
is essentially an infinite number of harmonic oscillator raising/lowering operators,
one for each value of the spacelike components of the momentum k⃗. In fact, the
complex scalar field has in fact given us two such sets, â, â† and b̂, b̂†.

Let us now finally compute the Hamiltonian of the system in terms of these new
raising/lowering operators. A somewhat tedious computation gives

Ĥ =
∫ d3k

(2π)3 ωk

[
â† (⃗k)â(⃗k) + b̂† (⃗k)b̂(⃗k) + const.

]
. (3.32)

The constant is a formally infinite number, which arises from the non-zero com-
mutators of the ladder operators. One now observes that (3.32) is the same as two
copies of the relativistic multi-particle Hamiltonian (3.9) which we postulated be-
fore. There is one set of particles associated to â and one to b̂. (end of lecture 3)

▶ Summary: The Hamiltonian of free relativistic multi-particle quantum mechan-
ics (3.9) can be obtained by the quantisation of a scalar field.
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3.5 Propagators and causality

3.4. Interpretation of field quantisation: anti-particles

In order to give a physical interpretation of the complex scalar field quantisation
we have just carried out, it is useful to remember that this system has a conserved
charge. We discussed this charge in section 2.3, and found that it is given by

Q =
∫

d3x J 0 , with J 0 = (∂0ϕ)ϕ∗ − ϕ(∂0ϕ∗) . (3.33)

Let us see what this expression looks like after quantisation. Using the quantised
versions of the expansions (3.27) we find

Q̂ =
∫ d3k

(2π)3

[
â† (⃗k)â(⃗k)− b̂† (⃗k)b̂(⃗k) + const.

]
. (3.34)

Notice the subtle minus sign difference with respect to the Hamiltonian. The con-
stant is again related to commutators, and one usually defines it away by taking Q̂
to be normal ordered (we will return to this issue in the next chapter).

Consider now a state obtained by acting with one â† (⃗k) or b̂† (⃗k) operator on the
vacuum |0⟩. For these states we find3

Ĥ
(

â† (⃗k)|0⟩
)
= ωk â† (⃗k)|0⟩ , Q̂

(
â† (⃗k)|0⟩

)
= +â† (⃗k)|0⟩ ,

Ĥ
(

b̂† (⃗k)|0⟩
)
= ωk b̂† (⃗k)|0⟩ , Q̂

(
b̂† (⃗k)|0⟩

)
= −b̂† (⃗k)|0⟩ .

(3.35)

These two states thus have the same energy, but opposite charge. There are thus two
types of particles contained in the field ϕ̂. We will say that the state â† (⃗k)|0⟩ contains
“one particle” and the state b̂† (⃗k)|0⟩ contains “one anti-particle”.4 Note once more
that the masses (or equivalently, the energies at given three-momentum) of particles
and anti-particles are the same.

With this information, let us return to the operator-valued field ϕ̂ itself. Note
from (3.27) that ϕ contains one term which destroys particles and one term which
creates anti-particles. Both terms thus lower the charge of a state by one unit. Note
that, if we had interpreted the field (3.27) as a wave function, then it would have
contained both positive and negative energy contributions, which would quickly
lead to trouble.

Let us also comment on real scalar fields. If we impose that the field ϕ is real
(i.e. that ϕ = ϕ∗ classically or ϕ̂ = ϕ̂† after quantisation) we would get a relation
between the a and b coefficients. From (3.27) we immediately see that this relation
is a(⃗k) = b(⃗k). For a real field a particle is thus identified with its anti-particle (and
indeed, consistent with the fact that a real scalar does not have a phase rotation
symmetry, the charge Q̂ is then identically zero).

▶ See also: A clear exposition of the meaning of anti-particles can be found in B. F.
Hatfield, “Quantum field theory of point particles and strings”, Addison-Wesley
(Frontiers in Physics), 1992 around page 51.

3.5. Propagators and causality

Having discussed the interpretation of the two sets of creation and annihilation op-
erators in terms of particles and anti-particles, let us now look at their propagation.

3The fact that there are no zero-point energies here is that we have ignored the infinite constant in
the Hamiltonian.

4Whether we call the a species particles or anti-particles is totally irrelevant; what matters is that both
species are present and have the same properties except for their charge.
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3.5 Propagators and causality

We will look at the process in which a unit positive charge is transported from posi-
tion x = (t, x⃗) to x′ = (t′, x⃗′).

This can be done in two ways. Either one starts with +1 charge particle at x and
propagates it to x′. Or one starts with a −1 charge anti-particle at x′ and transports
it to x. However, we have to be careful, since x and x′ refer to four-dimensional
coordinates. Since we cannot destroy a particle before it is created, the first process
only makes sense when t′ > t, while the second one can only happen when t > t′.

Now let us write this down in formulas. The states containing a particle of
charge +1 at x or an antiparticle of charge −1 at x′ are5

|particle at x⟩ = ϕ̂†(x)|0⟩ ,

|anti-particle at x′⟩ = ϕ̂(x′)|0⟩ ,
(3.36)

which can be seen by simply using (3.27). The propagation of a positive charge
from x to x′ is thus given by the sum of two terms,

G(x′, x) = θ(t′ − t) ⟨0| ϕ̂(x′)ϕ̂†(x) |0⟩ + θ(t − t′) ⟨0| ϕ̂†(x)ϕ̂(x′) |0⟩ . (3.37)

The first term corresponds to the propagation of the particle from x to x′, while the
second one corresponds to the propagation of the anti-particle from x′ to x. The
Heaviside step functions implement the condition that you cannot destroy before
you create.

The expression above can be written in a more compact form by using the so-
called time-ordering symbol. It is defined by

T
(

ϕ̂(x′)ϕ̂†(x)
)
= θ(t′ − t)ϕ̂(x′)ϕ̂†(x) + θ(t − t′)ϕ̂†(x)ϕ̂(x′) . (3.38)

The time-ordering operator thus orders the fields on which it acts with respect to
their time, with the earliest ones being put furthest to the right. We can then write

G(x′, x) = ⟨0| T
(

ϕ̂(x′)ϕ̂†(x)
)
|0⟩ . (3.39)

This is the form in which one usually finds it in the literature.
Having set on a notation, let us now compute this function G(x′, x). To do that,

one has to insert the operator expansions (3.27) into (3.37) or (3.39) and use the cre-
ation/annihilation operator commutation relations (3.31) as well as the normalisa-
tion condition ⟨0|0⟩ = 1. A bit of algebra yields

G(x′, x) =
∫ d3k

(2π)3
h̄

2ωk

[
θ(t′ − t)e−iωk(t′−t)+i⃗k(x⃗′−x⃗) + θ(t − t′)eiωk(t′−t)+i⃗k(x⃗′−x⃗)µ

]
.

(3.40)
In order to eliminate the Heaviside step functions from this expression, we will use
the following integral representation.

θ(t) = lim
ϵ↓0

∫ dω

2πi
eiωt

ω − iϵ
. (3.41)

Because ϵ > 0, the pole has been moved above the real ω axis. The integral can
be performed by noting that the exponent is suppressing for t > 0, Im ω > 0 and
for t < 0, Im ω < 0. In the first case we pick up the pole, while in the second case
we miss it.

Representation of the Heaviside step
function (3.41). Top figure: contour
when t > 0; bottom figure: contour
when t < 0.

5These notations can be confusing, since they suggest that a vector in Hilbert space corresponds to
a state of the system at one particular time only. This is not true. The state ϕ†(x)|0⟩ describes the entire
time-evolution (history) of a particle. This history is labelled by the particle being at position x⃗ at the
time t. If you have difficulty understanding this, read page 38 of [12].
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3.5 Propagators and causality

With the help of (3.41) the propagator now becomes

G(x′, x) = lim
ϵ↓0

∫ d3k
(2π)3

∫ dω

2πi
h̄

2ωk

1
ω − iϵ

[
ei(ω−ωk)(t′−t)ei⃗k·(x⃗′−x⃗)

+ e−i(ω−ωk)(t′−t)e−i⃗k·(x⃗′−x⃗)
]

. (3.42)

(pay attention to the difference between ω and ωk). We can rewrite this in a simpler
form by introducing k0 = ωk − ω in the first term and k0 = ω − ωk in the second.
Also substitute k⃗ → −⃗k in the second term (in total this gives two sign flips for the
first and one flip for the second term because of the integration measures). We then
get

G(x′, x) = lim
ϵ↓0

(−ih̄)
∫ d4k

(2π)4
eikµ(x′−x)µ

2ωk

(
1

ωk − k0 − iϵ
+

1
ωk + k0 − iϵ

)
. (3.43)

Now make use of the fact that we take the limit of ϵ going to zero to ignore all terms
of order ϵ2. This finally gives

G(x′, x) = lim
ϵ↓0

(−ih̄)
∫ d4k

(2π)4
eikµ(x′−x)µ

kνkν + m2 − iϵ
≡ GF(x′ − x) . (3.44)

The object GF(x′ − x) is the Feynman propagator for the scalar field. The particular
way in which the ϵ occurs here is important, as it implements the boundary condi-
tion that particle annihilation cannot occur before particle creation.

Note that the Feynman propagator as given above is obviously a Fourier trans-
form of the propagator in momentum space,

GF(k) =
−ih̄

kµkµ + m2 − iϵ
. (3.45)

In this form it is easy to see that the propagator is indeed a Green’s function of the
equation of motion (3.24). Using a Fourier transform we easily find

(−∂µ∂µ + m2)GF(x′ − x) = −ih̄δ4(x′ − x) . (3.46)

In practise we will mostly use the momentum space representation, because the
integral in (3.44) leads to complicated Bessel functions in terms of x′ − x.(end of lecture 4)

However, there is one aspect of the coordinate space Feynman propagator which
is important: it does not vanish outside the light cone. What does this mean? Does
this not violate causality? The answer is that it does not. Literally, what the propaga-
tor measures is a correlation function for two fields at different points in space-time.
The non-vanishing correlation between fields at two space-like separated points is
in a sense similar to EPR correlations of entangled photons. While the correlation is
non-zero, it cannot be used to send information faster than light.

So how do we figure out whether causality is violated? What is necessary is
to establish whether space-like separated measurements can influence each other.
In order to turn this into a mathematical statement, note that it requires that two
operators commute when they are space-like separated. To be precise, we want[

ϕ(x), ϕ†(x′)
]
= 0 when (x − x′)µ(x − x′)µ > 0 , (3.47)
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3.5 Propagators and causality

i.e. when x and x′ are space-like separated. This expression can be computed easily,

[
ϕ(x), ϕ†(x′)

]
=
∫ d3k

(2π)3

∫ d3k′

(2π)3
1

2
√

ωkωk′[
â(⃗k)eikµxµ

+ b̂† (⃗k)e−ikµxµ
, b̂(⃗k′)eik′µx′µ + â† (⃗k′)e−ik′µx′µ

]
=
∫ d3k

(2π)3
h̄

2ωk

(
eikµ(x−y)µ − e−ikµ(x−y)µ

)
.

(3.48)

When the separation is space-like, we can use a Lorentz transformation to change
(x − y) to −(x − y), and hence the two terms cancel. For time-like separation there
is no continuous Lorentz transformation which flips the sign. Note that the two
terms come from the a and b particles respectively, hence causality relies crucially on
the presence of anti-particles!

▶ See also: The discussion here follows B. F. Hatfield, “Quantum field theory of
point particles and strings”, Addison-Wesley (Frontiers in Physics), 1992 and M. Pe-
skin and D. Schroeder, “An introduction to quantum field theory”, Perseus, 1995.
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4
Interacting quantum fields

4.1. Evolution operators and the perturbative expansion

In the previous chapter we have concerned ourselves with an analysis of free sys-
tems, that is, systems for which the action is quadratic in the fields. The key property
of such actions is that the associated Hamiltonian eigenstates can be found exactly.
This is especially manifest in section 3.3, where we saw that the operator field ϕ̂(t, x⃗)
is a solution to the classical equations of motion: the expansion (3.27) makes essen-
tial use of the plane wave solutions to the equation of motion (3.25).

For more general actions, with higher powers of the fields, it is no longer possible
to find a full set of solutions to the corresponding equations of motion. A simple
example which will come back over and over again is the action1

S =
∫

d4x
[
− 1

2
(∂µϕ)(∂µϕ)− 1

2
m2ϕ2 − λ

4!
ϕ4
]

. (4.1)

The equation of motion reads

∂µ∂µϕ − m2ϕ − λ

3!
ϕ3 = 0 . (4.2)

There is no known complete set of solutions to this equation, and hence we cannot
hope to treat this without some sort of approximation.

In order to make progress, we have to go back again to the Schrödinger picture,
in which operators are time-independent. We start by taking the Schrödinger oper-
ator ϕ̂(x⃗) on a given time-slice t = t0. It reads

ϕ̂t0(x⃗) =
∫ d3k

(2π)3
1√
2ωk

[
â(⃗k)ei⃗k·⃗x + â† (⃗k)e−i⃗k·⃗x

]
. (4.3)

We have labelled the field with a subscript t0 to indicate the time slice at which the
Schrödinger quantisation is performed; we can quantise at any fixed slice but once
we pick it we should not change it anymore. For the free system, the time evolution
of the operator field ϕ̂(x⃗), or in other words, the Heisenberg picture operator ϕ̂(t, x⃗),
is given by

ϕ̂0(t, x⃗) =
∫ d3k

(2π)3
1√
2ωk

[
â(⃗k)ei⃗k·⃗x−iωk(t−t0) + â† (⃗k)e−i⃗k·⃗x+iωk(t−t0)

]
, (4.4)

1We will in this chapter restrict ourselves to a real scalar field, so that particles and anti-particles are
identified and the expressions become a bit more compact.
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4.1 Evolution operators and the perturbative expansion

(a subscript zero has been attached to the field to emphasise that this expression is a
solution of (4.2) only when λ = 0). But there is a more systematic way to understand
this time evolution, namely by using the Hamiltonian operator. The expression (4.4)
is more generically expressed by using the relation between the two pictures,

ϕ̂0(t, x⃗) = e(i/h̄)Ĥ0 (t−t0) ϕ̂t0(x⃗) e−(i/h̄)Ĥ0 (t−t0) . (4.5)

This simply is the standard expression for the time evolution of operators known
from quantum mechanics. It relates the Schrödinger picture operator ϕ̂(x⃗) to the
Heisenberg picture operator ϕ̂(t, x⃗). Verifying that (4.4) indeed is the same as (4.5)
requires only the form of the free Hamiltonian,

Ĥ0 =
∫

d3x
[

1
2

π(x⃗)2 +
1
2

∂iϕ(x⃗)∂iϕ(x⃗) +
1
2

m2ϕ(x⃗)2
]
=
∫ d3k

(2π)3 ωk â† (⃗k)â(⃗k) ,

(4.6)
as well as the by now familiar commutation relation [â(⃗k), â† (⃗k′)] = (2π)3δ3 (⃗k − k⃗′).
The idea is now to use an expression similar to (4.5) in order to write down the time
dependence of the solutions to the equation (4.2), and hence obtain the Heisenberg
operators ϕ̂(t, x⃗) for the interacting theory.

For this general case, when λ ̸= 0, time evolution will be generated by a more
complicated Hamiltonian. For the system (4.1) we have

Ĥ = Ĥ0 + Ĥint = Ĥ0 +
λ

4!

∫
d3x ϕ̂(x⃗)4 . (4.7)

The time evolution, however, works in exactly the same way as for the free theory.
We thus have

ϕ̂(t, x⃗) = e(i/h̄)Ĥ(t−t0) ϕ̂t0(x⃗) e−(i/h̄)Ĥ(t−t0)

= e(i/h̄)Ĥ(t−t0) e−(i/h̄)Ĥ0 (t−t0) ϕ̂0(t, x⃗) e(i/h̄)Ĥ0 (t−t0) e−(i/h̄)Ĥ(t−t0) .
(4.8)

In the second step we have simply inserted the free field time evolution (4.5). The

The evolution operator is used to write
the interacting field ϕ̂(t, x⃗) purely in
terms of the free field ϕ̂0(t, x⃗); see
(4.10).

particular combination of the Hamiltonian expressions entering here is given a spe-
cial name,

Û(t, t0) = e(i/h̄)Ĥ0 (t−t0)e−(i/h̄)Ĥ (t−t0) , (4.9)

also called the evolution operator. When it acts on a state, it evolves it backward in
time from t to t0 with the free Hamiltonian, and then forward in time again with the
full Hamiltonian. Using this operator we have

ϕ̂(t, x⃗) = Û†(t, t0)ϕ̂0(t, x⃗)Û(t, t0) . (4.10)

When Ĥ0 = Ĥ, i.e. when λ = 0, the evolution is according to the equation of motion
of the free field, and (4.8) reduces to a triviality. Note that Û†(t, t0) = Û(t0, t).(end of lecture 5)

We can find a more convenient and explicit expression for U(t, t0) by noting that
this operator satisfies the equation

ih̄
∂

∂t
Û(t, t0) = e(i/h̄)Ĥ0 (t−t0)(Ĥ − Ĥ0)e−(i/h̄)Ĥ (t−t0)

= e(i/h̄)Ĥ0(t−t0) Ĥint e−(i/h̄)Ĥ(t−t0)

= e(i/h̄)Ĥ0(t−t0) Ĥint e−(i/h̄)Ĥ0(t−t0)e(i/h̄)Ĥ0(t−t0)e−(i/h̄)Ĥ(t−t0)

= ĤI(t) Û(t, t0) .

(4.11)
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4.2 Correlation functions and Wick’s theorem

To arrive at the third line we have simply inserted ‘one’. Here we have defined ĤI(t)
which is the interaction part of the Hamiltonian, Ĥint, evolved using the free Hamil-
tonian Ĥ0,

ĤI(t) = e(i/h̄)Ĥ0(t−t0) Ĥint e−(i/h̄)Ĥ0(t−t0) =
λ

4!

∫
d3x ϕ̂0(t, x⃗)4 . (4.12)

This shows that it should be possible to find an expression for Û(t, t0) purely in
terms of the time-dependent free fields ϕ̂0(t, x⃗).

The solution to this problem is given by Dyson’s formula (actually first figured
out by Dirac, but not written in this compact form),

Û(t, t0) = T exp
[
− i

h̄

∫ t

t0

dt′ HI(t′)
]

. (4.13)

Here T is the time-ordering operator already encountered in (3.38). We can verify
that (4.13) solves (4.11) quite easily, by remembering that we can write the operators
inside a time ordering operator in any order, since the time ordering operator will
put them in a specific order already. We thus have

ih̄
∂

∂t
T exp

[
− i

h̄

∫ t

t0

dt′ HI(t′)
]
= T

(
ĤI(t) exp

[
− i

h̄

∫ t

t0

dt′ HI(t′)
])

= ĤI(t)T
(

exp
[
− i

h̄

∫ t

t0

dt′ HI(t′)
])

, (4.14)

where the last step is valid because t is the largest time occurring in all operators
inside T, and we can thus pull out ĤI(t) to the left. Dyson’s expression for the
evolution operator thus satisfies (4.11).

So we have now expressed the time evolution of the full field, ϕ̂(t, x⃗), entirely in
terms of the free field ϕ̂0(t, x⃗), for which we know the time evolution. The next step
is to use this knowledge to compute correlation functions in the interacting theory.

▶ Summary: Systems with actions which are higher than quadratic in the fields
cannot be solved exactly, but need a perturbative treatment, with the Heisenberg
picture field ϕ̂0 of the unperturbed system as starting point. The crucial ingredient
is the evolution operator, in the form of Dyson’s formula (4.13).

▶ See also: This section follows section 4.2 of M. Peskin and D. Schroeder, “An
introduction to quantum field theory”, Perseus, 1995.

4.2. Correlation functions and Wick’s theorem

Now that we have expressed the time evolution of the field ϕ̂(t, x⃗) entirely in terms
of the field ϕ̂0(t, x⃗), we can go and compute correlation functions in the interacting
theory at λ ̸= 0. Let us start by computing the correlator of a time-ordered product
of fields, such as we have encountered in the computation of the Feynman propaga-
tor (3.39), but now with interactions. We thus want to compute

⟨0| T
(

ϕ̂(t, x⃗) ϕ̂(t, y⃗)
)
|0⟩ , (4.15)

and interpret this as the Feynman propagator in the presence of interactions. We
have to be a bit careful with what we mean with |0⟩. When there are no interactions,
we know that there is a zero-energy eigenstate of the free Hamiltonian Ĥ0, let us call
it |0⟩0, which represents a state without any particle excitations. We would like to
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4.2 Correlation functions and Wick’s theorem

use such an empty state as a starting point in (4.15) as well. However, an empty state
in general does not stay empty under time evolution when interactions are turned
on. What we will thus do is take a state which is empty in the far past, and evolve it
with the evolution operator to finite time,

|0⟩ := U(t0,−∞)|0⟩0 , (4.16)

which, to be precise, is the vacuum state of the free theory in the far past, evolved
with the interacting Hamiltonian to t0. A similar expression will be used for the
outgoing state. The inner product of these states is then

0⟨0|U(∞, t0)U(t0,−∞) |0⟩0 = 0⟨0|U(∞,−∞) |0⟩0 . (4.17)

Unsurprisingly, this is called the vacuum persistence amplitude. It make sense to nor-
malise this to one, or equivalently, divide all correlators by this amplitude.

We now just have to insert the expression for ϕ̂(t, x⃗) and re-organise terms a bit.
Using (4.10) to express the interacting fields in terms of the free fields we get

⟨0|T
(

ϕ̂(x)ϕ̂(y)
)
|0⟩

=
0⟨0|U(∞, t0) T

(
U(t0, x0)ϕ̂0(x)U(x0, t0) U(t0, y0)ϕ̂0(y)U(y0, t0)

)
U(t0,−∞)|0⟩0

0⟨0|U(∞,−∞) |0⟩0

=
0⟨0|T

(
U(∞,−∞)ϕ̂0(x)ϕ̂0(y)

)
|0⟩0

0⟨0|U(∞,−∞) |0⟩0
.

(4.18)

The last step was possible because the time-ordering operator takes care of splitting
the evolution operator up in factors and putting them at the right position in the cor-
relator. Using Dyson’s formula, the general expression for the time-ordered product
of fields in the interacting theory is thus

⟨0|T
(

ϕ̂(x1) · · · ϕ̂(xn)
)
|0⟩ =

0⟨0| T
(

ϕ̂0(x0) · · · ϕ̂0(xn) exp
[
− i

h̄

∫ ∞

−∞
dt ĤI(t)

])
|0⟩0

0⟨0|T
(

exp
[
− i

h̄

∫ ∞

−∞
dt ĤI(t)

])
|0⟩0

,

(4.19)
This expression only involves creation and annihilation operators of the free theory,
and can hence in principle be worked out with the knowledge we have from the
previous chapter.

Now we have to remember that Ĥint is proportional to the parameter λ, which
we assume to be small. By expanding the exponents in (4.19) in powers of λ and in-
serting the free field expansion, we will thus have to compute various time-ordered
expectation values of free field operators,

⟨0| T
(

ϕ̂0(x1)ϕ̂0(x2) · · · ϕ̂0(xn)
)
|0⟩ . (4.20)

We have done this for n = 2 by simply inserting the expansion of the field and using
the algebra of the creation and annihilation operators. For larger n such manipula-
tions can still be done, but they become very cumbersome. It is much more useful to
emply a clever trick, known as Wick’s theorem, which allows us to write down these
time-ordered products directly.(end of lecture 6)

Wick’s theorem provides a quick way to reduce time-ordered products of fields
in terms of normal-ordered products of fields and propagators. We have encoun-
tered normal ordering briefly in the previous chapter. More explicitly, the normal
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4.2 Correlation functions and Wick’s theorem

ordered product of two operators is denoted by : ÂB̂ : and defined in such a way
that all creation operators are moved to the left of all annihilation operators. That is,

: â( p⃗)â† (⃗k)â(⃗q) : = â† (⃗k)â( p⃗)â(⃗q) . (4.21)

This ensures that the vacuum expectation value of any normal ordered product van-
ishes,

⟨0| : ϕ̂0(x1) · · · ϕ̂0(xn) : |0⟩ = 0 . (4.22)

Time ordering and normal ordering differ at most by commutators of the fields,
which are ordinary functions. This difference is called the contraction of two fields,
and denoted with a square bracket under it. So we have

T
(

ϕ̂0(x)ϕ̂0(y)
)
= : ϕ̂0(x)ϕ̂0(y) : + ϕ̂0(x)ϕ̂0(y) , (4.23)

in which the second term is some function of x1 and x2. By sandwiching this expres-
sion between vacuum states of the free Hamiltonian, the first term on the right-hand
side vanishes and the term on the left-hand side becomes the free field Feynman
propagator. We thus have

ϕ̂0(x)ϕ̂0(y) = GF(x − y) . (4.24)

It is of course possible to derive this also by expanding the fields into creation and
annihilation parts explicitly. If we write

ϕ̂0(x) = ϕ̂an
0 (x) + ϕ̂cr

0 (x) , (4.25)

where the first term contains the annihilation operators, which annihilate |0⟩0, and
the second one the creation operators, which annihilate 0⟨0|. We then have

T
(

ϕ̂0(x)ϕ̂0(y)
)
= θ(x0 − y0)

(
: ϕ̂0(x)ϕ̂0(y) : +

[
ϕan

0 (x), ϕ̂cr
0 (y)

])
+ θ(y0 − x0)

(
: ϕ̂0(x)ϕ̂0(y) : +

[
ϕan

0 (y), ϕ̂cr
0 (x)

])
. (4.26)

The two commutator terms add up to be precisely the Feynman propagator (to see
this, use the expansion of the free field in terms of â and â† and compare with (3.40)).

The idea is now to relations similar to (4.23) also for products of more than two
fields. The generic expression is called Wick’s theorem and reads

T
(

ϕ̂0(x1) · · · ϕ̂0(xn)
)
= : ϕ̂0(x1) · · · ϕ̂0(xn) + all possible contractions : . (4.27)

In order to explain what this means, let us consider the case of four fields. Wick’s
theorem then implies

T
(

ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4)
)
= : ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4)

+ ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4) + ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4)

+ ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4) + ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4)

+ ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4) + ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4)

+ ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4) + ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4)

+ ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4) : ,

(4.28)
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where the entire right-hand side is inside the normal ordering symbols. In this nota-
tion, it is still understood that any contraction that involves non-neighbouring fields
yields a propagator,

: ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4) : = GF(x1 − x3) : ϕ̂0(x2)ϕ̂0(x4) : . (4.29)

The expression above is quite long (though was obtained with quite a bit less work
than doing the creation/annihilation operator algebra). However, it reduces dra-
matically if we evaluate its vacuum expectation value, since all the terms involving
normal ordered products will then disappear,

0⟨0| T
(

ϕ̂0(x1)ϕ̂0(x2)ϕ̂0(x3)ϕ̂0(x4)
)
|0⟩0

= GF(x1 − x2) GF(x3 − x4)+GF(x1 − x3) GF(x2 − x4)+GF(x1 − x4) GF(x2 − x3) .
(4.30)

We have thus reduced the four-point correlator to a sum of products of two-point
correlators.

Proving Wick’s theorem (4.27) is done by induction, i.e. by assuming that it holds
for m fields and then proving it for m + 1 fields, using the known case m = 2 as the
starting point. We will come back to this in the exercises.

4.3. Feynman diagrams

Now remember that we did all this because we want to be able to work out a pertur-
bative expression (valid for small λ) of (4.19). Let us consider a two-point correlator
evaluated to first order in λ. In order to compute that, we expand both the numera-
tor and denominator,

0⟨0| T
(

ϕ̂0(x)ϕ̂0(y) exp
[
− i

h̄

∫ ∞

−∞
dt ĤI(t)

])
|0⟩0 = N0 + λN1 +O(λ2) ,

(
0⟨0| T

(
exp

[
− i

h̄

∫ ∞

−∞
dt ĤI(t)

])
|0⟩0

)−1

=
(

D0 + λD1 +O(λ2)
)−1

=
1

D0
− λ

D1

D2
0
+O(λ2) .

(4.31)

The full correlator to order λ is then

⟨0| T
(

ϕ̂(x)ϕ̂(y)
)
|0⟩ = N0

D0
+ λ

(N1

D0
− N0D1

D2
0

)
+O(λ2) . (4.32)

We can use Wick’s theorem to compute all the Ni and D1 expansion coefficients. For
instance, we have

N1 = − i
h̄

λ

4! 0⟨0| T
(

ϕ̂0(x)ϕ̂0(y)
∫

d4z
[
ϕ̂0(z)

]4) |0⟩0

= − i
h̄

λ

4!

∫
d4z

(
all full contractions of ϕ̂0(x)ϕ̂0(y)

[
ϕ̂0(z)

]4) .

(4.33)

Computing such time-ordered products of a large number of free fields is essentially
an exercise in combinatorics. It is convenient to use a graphical notation for the
various contractions, suppressing the ϕ̂0 and other irrelevant parts of the notation.

The idea behind Feynman graphs is to write every field ϕ̂0(x) as a dot, and every
contraction GF(x − y) as a line connecting two dots. Let us do the expression (4.33)
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4.3 Feynman diagrams

as an example. There are two essentially different types of contractions. One type
involves contracting the ϕ̂0(x) and ϕ̂0(y) fields, and then contracting all the ϕ̂0(z)
among each other. We can do that in 3 ways, but they all give the same result. The
corresponding graph is drawn as

Nbubble
1 = 3 ×

(
− i

h̄
λ

4!

) ∫
d4z

[ ]
. (4.34)

We call this a bubble contribution because the graph factorises into two disconnected
pieces, one of which does not have any connections to the external points. The other
option is to contract both ϕ̂0(x) and ϕ̂0(y) with the ϕ̂0(z), and then contract the
remaining two ϕ̂0(z). This can be done in 12 ways, which are again all equivalent.
So the second type of term gives

Nconnected
1 = 12 ×

(
− i

h̄
λ

4!

) ∫
d4z

[ ]
. (4.35)

This is the connected contribution. The two expressions (4.34) and (4.35) added
together represent the first order term in the expansion of the numerator, N1 =
Nconnected

1 + Nbubble
1 . In the denominator, the term at order λ is given by the simple

graph

D1 = 3 ×
(
− i

h̄
λ

4!

) ∫
d4z

[ ]
. (4.36)

The D0 contribution is simply the norm of the vacuum, and equal to one. For the
full correlation function to first order in λ we now find, using (4.32),

⟨0| T
(

ϕ̂(x)ϕ̂(y)
)
|0⟩ = + 12 ×

(
− i

h̄
λ

4!

) ∫
d4z

[ ]
.

(4.37)
Notice how the contribution of Nbubble

1 has been cancelled by the denominator. This
is a general pattern: the expression in the denominator of (4.19) takes care of re-
moving any bubble graphs (which might occur in the numerator) from the total
expression. This is true at any order in λ.

The integrals corresponding to diagrams with loops are very often singular, and
require special care. For this reason, we will not deal with them in any detail until
chapter 7. However, there are some aspects which we can already discuss here. The
most tricky part, when constructing the graphs, is to figure out the right overall
factor (the 3 and 12 times 1/4! in the example above). For every vertex which comes
from a term in the interaction Hamiltonian, we have in principle a factor

− i
h̄

λ

4!

∫
d4z . (4.38)

But whenever we connect a line to the z dot, we can connect it to any of the four
fields, so there are 4! ways of constructing the graph. A similar story holds true
for the 1/n! from the Taylor series expansion. All the vertices are equivalent, so
when we draw the graphs we will get n! identical terms coming from re-ordering
the vertices. In practise, we should thus expect that each vertex will come with a
factor −(i/h̄)λ

∫
d4z.
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4.4 Scattering matrix

However, in (4.34) we see a total factor 1/8 and in (4.35) we see 1/2. These ad-
ditional factors are the so-called symmetry factors. They state in how many different
ways we can exchange lines or vertices and end up with exactly the same diagram.
For (4.34), we can flip each of the loops of the “figure eight” around the vertical axis,
and we can also flip the eight upside down. This gives 2 · 2 · 2 = 8 for the symmetry
factor. In (4.35) we have only the symmetry which mirrors the loop, so a factor of 2.
To obtain the correct expression for the correlator, we have to divide by these sym-
metry factors, and give each vertex the weight −iλ

∫
d4z, without the 4!, as stated

above.(end of lecture 7)

We have so far discussed correlators in position space, i.e. with fields depending
on space-time points. But we have already seen that the propagator in momentum
space (3.45) is much simpler than the one in coordinate space (3.44). To figure out
how to construct the Feynman diagrams in momentum space, consider once more
the coordinate space Feynman propagator (3.44), repeated here for convenience,

GF(x − y) = (−ih̄)
∫ d4k

(2π)4
eikµ(x−y)µ

kνkν + m2 − iϵ
(4.39)

This expression shows that each line in a Feynman diagram has a momentum vari-
able associated to it, which carries a direction. Moreover, a vertex, which involves an
integration over a space-time point (like the z in the example above), leads to a Dirac
delta function. For instance, the exponentials of the various Fourier transforms in
a ϕ̂4

0 interaction term lead to∫
d4z eip1xeip2xeip3xeip4x = (2π)4 δ(4)(p1 + p2 + p3 + p4) . (4.40)

With these rules we can write down the momentum-space two-point function in the
interacting theory. We will come back to this in the next section.

▶ Summary: The correlator of n time-ordered fields in the interacting theory is given
by the sum of all connected graphs with n external points. When computing the
individual graphs, one should use a −(i/h̄)λ

∫
d4z for each vertex, and divide by

the symmetry factor of the graph.

▶ See also: A more complete discussion of the way in which bubble graphs get
factored out can be found in [6] from (4.50) onwards. The simple way of comput-
ing symmetry factors discussed here was proven in G. Goldberg, “A rule for the
combinatoric factors of Feynman diagrams”, Phys. Rev. D32 (1985) 3331.

4.4. Scattering matrix

Having shown how to compute correlators of fields in terms of Feynman diagrams,
let us now go back to the problem of extracting physical information from such cor-
relators. We have already mentioned, when we discussed the Feynman propagator
for the free field in section 3.5, that a two-point function is related to the amplitude
for the propagation of a particle from one point to the other. We would now like to
make this a bit more explicit and also extend the logic to correlators of more than
two fields.

We know that the creation operators â† (⃗k) create on-shell particles with three-
momentum k⃗. What we would like to do is to prepare such free particle states, make
the particles scatter, and then express the result again in terms of free particle states.
Because we have just seen how to compute correlators of free fields ϕ̂0(x), let us
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4.4 Scattering matrix

use (3.30) to write the â(⃗k) operators in terms of the free field. It is useful to write
this as

â(⃗k) = i
∫

d3x
1√
2ωk

e−ikµxµ ↔
∂ 0 ϕ̂0(t, x⃗) . (4.41)

Here
↔
∂ 0 is defined for any two functions f and g as

f
↔
∂ 0 g = −(∂0 f )g + f (∂0g) , (4.42)

and we used ∂0ϕ̂0 = π̂0. We would now like to use a similar expression also for the
interacting field. That is, we want to define a new creation operator â†

I (⃗k) which is
the analogue of (4.41), but now using the interacting field ϕ̂(x) on the right-hand
side, instead of the free field ϕ̂0(x). We can then define a creation operator for a
particle in the far past and an annihilation operator for a particle in the far future as

â†
in (⃗k) = lim

t→−∞
(−i)

∫
d3x

1√
2ωk

eikµxµ ↔
∂ 0 ϕ̂(t, x⃗) ,

âout (⃗k) = lim
t→+∞

(+i)
∫

d3x
1√
2ωk

e−ikµxµ ↔
∂ 0 ϕ̂(t, x⃗) .

(4.43)

For a complex field such as in the previous chapter, there would of course also be
anti-particle operators. From the above definitions we find

â†
out (⃗k)− â†

in (⃗k) =
∫ ∞

−∞
dt ∂0 â† (⃗k)

= −i
∫

d4x
1√
2ωk

∂0

(
eikµxµ ↔

∂ 0 ϕ̂(x)
)

= −i
∫

d4x
1√
2ωk

eikµxµ
(

∂2
0 + ω2

)
ϕ̂(x)

= −i
∫

d4x
1√
2ωk

eikµxµ
(
− ∂µ∂µ + m2

)
ϕ̂(x) .

(4.44)

In a similar way we can derive

âout (⃗k)− âin (⃗k) = i
∫

d4x
1√
2ωk

e−ikµxµ
(
− ∂µ∂µ + m2

)
ϕ̂(x) . (4.45)

Without interacctions, i.e. when the field ϕ̂(x) equals ϕ̂0(x), the integrand equals the
equation of motion and the right-hand side is zero.2

We now want to use the expression (4.45) above to compute the probability that
a state of two incoming particles in the far past, with momenta k⃗1 and k⃗2, evolves to
a state with two particles in the far future, with momenta k⃗3 and k⃗4. This probability
is given by

⟨0| T
(

âout(k⃗3)âout(k⃗4) â†
in(k⃗1)â†

in(k⃗2)
)
|0⟩ , (4.46)

(the time ordering operator does not really do anything here because the operators
are already in the right order). Now we can use (4.45) to change the in-operators to
out-operators and vice-versa, plus integral terms. When an in-operator is changed
to an out-operator, it is moved to the left by the time ordering operator, and then hits
the vacuum state, so that the result vanishes. What is left is just the integral terms,
which read The LSZ reduction formula relates

time-ordered correlators to
transition amplitudes for states
with fixed external momenta.

2In deriving this formula we are cheating a bit with boundary terms when doing partial integrations.
As usual, these arguments can be made more precise by properly smearing operators with wave packets
(see e.g. [4]) and the result is that we can indeed just ignore the boundary terms.
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4.4 Scattering matrix

⟨0| T
(

âout(k⃗3)âout(k⃗4) â†
in(k⃗1)â†

in(k⃗2)
)
|0⟩

= i4
∫

d4x1 · · ·d4x4eik1·x1+ik2·x2 e−ik3·x3−ik4·x4
(
− ∂2

1 + m2
)
· · ·
(
− ∂2

4 + m2
)

× ⟨0| T
(

ϕ̂(x3)ϕ̂(x4)ϕ̂(x1)ϕ̂(x2)
)
|0⟩ × 1√

2ωk1 · · ·
√

2ωk4

. (4.47)

This expression, which relates a transition amplitude for particles of fixed momenta
to a correlator of fields, is the Lehmann-Symanzik-Zimmermann reduction formula, or
LSZ formula for short. The appearance of free field equation of motion operators
(the −∂2 + m2 factors) leads to what is called amputation of the external legs of a
Feynman diagram; what that means will become clear in a minute.(end of lecture 8)

Instead of using the action (4.1) for the ϕ4 model, let us use a slightly different
one with a ϕ3 interaction, which will make the computations simpler. So we will use

S =
∫

d4x
[
− 1

2
(∂µϕ)(∂µϕ)− 1

2
m2ϕ2 − g

3!
ϕ3
]

. (4.48)

In particular, because we have a three-point interaction instead of a four-point one,
we will have a larger number of diagrams without loops at low order in λ (we will
not discuss loop diagrams in detail until chapter 7). The four-point correlator has a
trivial contribution at λ0, which just expresses non-interacting particles, so we will
move on to λ2. The four-point correlator at this order is expressed using Feynman
graphs as

⟨0| T
(

ϕ̂(x3)ϕ̂(x4)ϕ̂(x1)ϕ̂(x2)
)
|0⟩ =

(4.49)
(these three graphs are called the s, t and u-channel graphs respectively; we will
come back to that shortly). The mathematical expression associated to it is obtained
by multiplying the appropriate Feynman propagators together, following the logic
of the previous section. This gives

=

(
ig
h̄

)2 ∫
dz1dz2 GF(z1 − z2)

[
GF(x1 − z2)GF(x2 − z2)GF(x3 − z1)GF(x4 − z1)

+GF(x1 − z2)GF(x3 − z2)GF(x2 − z1)GF(x4 − z1)

+GF(x1 − z2)GF(x4 − z2)GF(x2 − z1)GF(x3 − z1)
]

.
(4.50)

We now have to insert this into the LSZ formula (4.47). This simplifies things a lot,
because whenever a “−∂2 +m2” operators hits a propagator with the corresponding
coordinate, it produces a Dirac delta because of (3.46). For instance,

(−∂2
1 + m2)GF(x1 − z1) = −ih̄δ(4)(x1 − z1) . (4.51)

All the propagators in the square brackets of (4.50) get removed this way (note: the
only thing that remains of each propagator is the h̄, by virtue of the right-hand side
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4.4 Scattering matrix

of (4.51)). After doing the integral over the xi, we are then left with 3

⟨0| T
(

âout(k⃗3)âout(k⃗4) â†
in(k⃗1)â†

in(k⃗2)
)
|0⟩

=
(ig/h̄)2 h̄4√

2ωk1 · · ·
√

2ωk4

∫
dz1dz2GF(z1 − z2)

[
eiz1(k1+k2)eiz2(−k3−k4)

+eiz1(k1−k3)eiz2(k2−k4)

+eiz1(k1−k4)eiz2(k2−k3)
]

.

(4.52)

The final integrals over the vertex operator positions can be done by using the mo-
mentum space representation (3.44) of the Feynman propagator. All z1, z2 depen-
dence will then sit in exponentials, and we can integrate these variables out to pro-
duce

=
(ig/h̄)2h̄4√

2ωk1 · · ·
√

2ωk4

∫ d4k
(2π)4

(2π)8h̄
k2 + m2 − iϵ

[
δ(4)(k − k1 − k2) δ(4)(k + k3 + k4)

+δ(4)(k − k1 + k3) δ(4)(k − k2 + k4)

+δ(4)(k − k1 + k4) δ(4)(k − k2 + k3)
]

=
(ig)2h̄3 (2π)4δ(4)(k3 + k4 − k1 − k2)√

2ωk1 · · ·
√

2ωk4

×
[

1
(k1 + k2)2 + m2 +

1
(k1 − k3)2 + m2 +

1
(k1 − k4)2 + m2

]
.

(4.53)
This is our final expression for the transition amplitude. It contains an overall mo-
mentum conserving delta function, multiplied by three terms which express the
different ways in which the particles can interact. It is usually expressed using the
so-called Mandelstam variables, Mandelstam variables are useful

for the description of 4-particle
processes, as they are Lorentz
scalars adapted to the three possible
momentum exchange channels.

s = −(k1 + k2)
2 , t = −(k1 − k3)

2 , u = −(k1 − k4)
2 . (4.54)

and for obvious reasons the three terms in (4.53) are then called the s, t, and u-
channel respectively. The manipulations described above can be summarised by a
new set of Feynman rules, formulated directly in momentum space. These rules are
given in table 4.1.

Finally, you may wonder about the way in which all of these transition ampli-
tudes depend on Planck’s constant h̄. We have so far just carried them along, but in
fact there is an important relation between the order in h̄ and the number of loops. To
see this, note that every propagator carries a factor of h̄, and every vertex carries a
factor h̄−1. Thus, a diagram with E external lines, I internal lines and v vertices has
a power

h̄E+I−v . (4.55)

On the other hand, if there are v vertices in the diagram, then there must be at
least v − 1 internal lines to glue them together, otherwise the diagram would be

3If you instead consider a 1 → 3 or 3 → 1 process, the only difference in the expression is an overall
sign and a different distribution of signs for the momenta. In general, ingoing particles lead to eikx factors
with positive exponent, while outgoing ones have a negative exponent (cf. the difference between (4.44)
and (4.45)).
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4.5 Cross sections and decay rates

1. Associate with each external particle of momentum k⃗ a factor h̄/
√

2ωk.

2. Associate with each propagator a factor
−ih̄

pµ pµ + m2 − iϵ
.

3. Associate with each three-point vertex a factor (−i/h̄)g.

4. Impose momentum conservation at each vertex.

5. Amputate the external legs (remove the propagators to the external points).

6. Integrate over every undetermined loop momentum
∫ d4 p

(2π)4 .

7. Divide by the symmetry factor.

Table 4.1: Feynman rules in momentum space for a theory with a three-point inter-
action term −(g/3!)ϕ3 in the action. The result is a transition amplitude for a m → n
process, or equivalently ⟨0|âout(kout

1 ) · · · âout(kout
n )â†

in(k
in
1 ) · · · â†

in(k
in
m )|0⟩.

disconnected. Any additional internal line will create a loop. So we have L = I −
(v − 1) and thus the diagram has a power

h̄E−1+L . (4.56)

Thus, if we keep the structure of the diagram fixed (the number of external lines),
then the power of h̄ corresponds to the number of loops.(end of lecture 9)

▶ Summary: The LSZ formula expresses amplitudes between in and out states of
particles with given momenta in terms of ‘amputated’ correlators of fields in posi-
tion space.

▶ See also: The discussion of the four-point function has been adapted from M. Sred-
nicki, “Quantum field theory”, Cambridge, 2007 chapters 5 and 10.

4.5. Cross sections and decay rates

Having obtained an expression for the scattering amplitude of two particles, what
remains to do in order to make contact with an actual experiment is to express this
amplitude in measurable quantities. So what does an experimentalist measure in a
particle collision experiment? The basic quantities accessible to experiment are cross
sections and decay rates. The former typically have to do with processes in which
more than one particle sits in the initial state, so that we can scatter them. The
latter deal with what happens when a single particle decays into two or more other
particles.

A

Setup of the 2 → 2 scattering process
and the definition of the angle θ. The
angle ϕ around the beam axis is sup-
pressed here.

Let us first discuss cross sections, relevant for e.g. the 2 → 2 process which we
discussed in the previous section. In an experiment, we will have one beam of par-
ticles of momentum k1 colliding with a beam of particles of momentum k2. We will
be interested in computing the transition rate to an outgoing state, with one bunch
of particles of momentum k3 and one of momentum k4. The setup is depicted in
figure 4.5.

We start from the amplitude for the transition of an in-state with two parti-
cles (with momentum k1 and k2) to an out-state of two particles (with momenta k3
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4.5 Cross sections and decay rates

and k4). We computed it in the previous section, and will from now on denote it
by ⟨34|12⟩,

⟨34|12⟩ = ⟨0| T
(

âout(k⃗3)âout(k⃗4) â†
in(k⃗1)â†

in(k⃗2)
)
|0⟩

= ˜⟨34|12⟩ × (2π)4δ4(k1 + k2 − k3 − k4)
4

∏
i=1

1√
2ωi

. (4.57)

On the second line we have introduced ˜⟨34|12⟩ by splitting off the overall momen-
tum conserving Dirac delta function, as well as some normalisation factors, which
are always present in any amplitude. The transition probability is given, as usual in
quantum mechanics, by the square of the norm, divided by the appropriate state
normalisations. We are interested in the rate, so we also divide by the total time
interval, and get4

transition rate =
transition probability

total time
=

∣∣⟨34|12⟩
∣∣2

⟨12|12⟩⟨34|34⟩
1
T

. (4.58)

Both the numerator and denominator are singular. In the numerator we will get the
square of the delta function,∣∣∣(2π)4δ4(k1 + k2 − k3 − k4)

∣∣∣2 = (2π)4δ4(0)× (2π)4δ4(k1 + k2 − k3 − k4) . (4.59)

This can be rewritten, however, by noticing that the first factor is simply the four-
volume of space-time (i.e. V × T where V is the volume of space and T the total
length of the time interval, both of which of course go to infinity).5 The norms of the
states in the denominator are also singular. Single-particle states have norm V and
for the two-particle states we have

⟨12|12⟩ = ⟨34|34⟩ = V2 , (4.61)

by a similar argument. The transition rate is thus

transition rate = (2π)4δ(4)(k1 + k2 − k3 − k4)×
∣∣∣ ˜⟨34|12⟩

∣∣∣2 × V−3
4

∏
i=1

1
2ωi

. (4.62)

First ingredient: the transition rate.
Now there are two more things to do. Firstly, in a real experiment we can never

measure particles with exactly fixed momenta. What we should do is collect all
particles in some small range of three-momenta. In a square box of size V = L3,
three-momenta are quantised as k⃗ = (2π n)/L. In the limit of large volume a sum
over momenta becomes

∑
n

→ V
(2π)3

∫
d3k . (4.63)

We should thus multiply our rate by a factor of this type for each outgoing particle. Second ingredient: integrating
over a region of outgoing
momenta.

Secondly, we need to normalise our probability by dividing by the incoming flux.

4All manipulations here are rather singular if we consider an infinitely extended space-time, so we
will temporarily put things in a space-time box of finite three-volume V and time extent T, and take the
limit V → ∞, T → ∞ at the end.

5This is easiest to see by noting that the Dirac delta is given by the integral expression

(2π)4δ(4)(p) =
∫

d4x e−ipµ xµ
. (4.60)

Evaluating this at pµ = 0 then relates δ(0) to the volume of space-time.
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4.5 Cross sections and decay rates

In the rest frame of particle two, the incoming flux is simply the number of particles
of momentum k⃗1, per unit area of the beam, per unit time.

incoming flux =
# of incoming particles

A T
=

# of incoming particles × |⃗v1|
V

, (4.64)

where we multiplied and divided by |⃗v1| to arrive at the last expression. So the
flux of one particle is |⃗v1|/V. More generally, when the target is not at rest, we
would have to use the relative velocity of the two incoming particles, and the flux
is |v⃗1 − v⃗2|/V. In terms of momenta, this is

incoming flux =

∣∣∣∣ p⃗1

ω1
− p⃗2

ω2

∣∣∣∣ 1
V

. (4.65)

Third ingredient: normalise with
respect to the ingoing flux. Putting all these things together we define the differential cross section as

dσ12→34 =
transition rate

unit incoming flux
× momentum intervals

=
∣∣∣ ˜⟨34|12⟩

∣∣∣2 1
4ω1ω2 |⃗v1 − v⃗2|

d3k3

(2π)32ω3

d3k4

(2π)32ω4
× (2π)4δ(4)(k1 + k2 − k3 − k4)︸ ︷︷ ︸

dΠ2

,

(4.66)

(where we indicated the phase space factor for the two outgoing particles with dΠ2).
This formula is easily generalised to more than two particles in the outgoing state:
simply add additional momentum integration measure factors, and add the final
state momenta to the overall delta function. The total cross section is obtained by
integrating the expression above over the outgoing momenta.

For the 2 → 2 process we are looking at here, we can still simplify the expression
a bit. First, let us go to the centre of mass of the ingoing system, that is, choose a
frame in which k⃗1 = −⃗k2. The centre-of-mass energy is ωcm = ω1 + ω2. In this
system the phase space measure for the outgoing particles can be written as

dΠ2 =
1

4(2π)2ω3ω4
δ(ωcm − ω3 − ω4)δ

(3) (⃗k3 + k⃗4)d3k3d3k4

=
1

4(2π)2ω3ω4
δ(ωcm − ω3 − ω4) |⃗k3|2 d|⃗k3|dΩcm .

(4.67)

In the first step we separated the energy conserving and momentum conserving
delta functions. In the next step, we integrated out k⃗4 and introduced spherical
coordinates for k⃗3. The differential solid angle is dΩcm = sin θdθdϕ, where the θ
angle is indicated in figure 4.5 and ϕ is the angle around the beam axis. We can now
still integrate out the norm |⃗k3| and get rid of the last remaining delta function.6 This
produces for the two-particle phase space the expression

dΠ2 =
|⃗k3|

4(2π)2
√

s
dΩcm , (4.69)

6This makes use of

δ
(

f (x)
)
=

δ(x)
| f ′(x)| and

∂

∂|⃗k3|
(
ω3 + ω4 − ωcm

)
=

|⃗k3|
ω3

+
|⃗k3|
ω4

=
|⃗k3|ωcm

ω3ω4
. (4.68)
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where we have used
√

s = ωcm. If we now insert this back into (4.66) and integrate
over ϕ to get a factor of 2π, we end up with the following compact expression for
the differential cross section,

dσ

dθ
=

2π

4ω1ω2 |⃗v1 − v⃗2|
|⃗k3|

(2π)24ωcm

∣∣∣ ˜⟨34|12⟩
∣∣∣2 =

1
32πω2

cm

∣∣∣ ˜⟨34|12⟩
∣∣∣2 , (4.70)

where the last equality holds because the four masses of the particles are equal. We 0.5 1.0 1.5 2.0 2.5 3.0

0.001

0.002

0.003

0.004

Differential cross section dσ/dθ for the
2 → 2 process for g = m = 1 and
two values of ω: the top curve has
ω = 2.1 (which is near the lower bound
ω2 = 4m2) and the bottom curve has
ω = 8 (the latter scaled by a factor
15 to make it more visible). For small
energies (non-relativistic) the distribu-
tion is isotropic, while for large ener-
gies (relativistic) there are peaks in the
forward and backward direction.

will analyse the behaviour of this cross section in terms of the angle θ further in the
exercises; a plot is given on the right.

(end of lecture 10)

▶ Summary: The differential scattering cross section of a 2 → 2 process is given
by (4.66).

▶ See also: There is an infinite number of ways to explain cross sections and decay
rates; the text here is based on chapter 11 of [4], page 150-154 of [1] and page 104-106
of [6].
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5
Path integrals

5.1. Quantum mechanics à la Feynman

The goal of the present chapter is to develop an alternative language for computa-
tions in quantum mechanics and quantum field theory, originally developed mainly
by Feynman and Schwinger. Their way of computing amplitudes in quantum theo-
ries does not make use of operators or Hilbert spaces. Instead, it is entirely based on
one of the most important principles in quantum mechanics, that of superposition.

The superposition principle tells us that, if there is more than one way in which
a process can occur, the total amplitude that it will occur is simply the sum of the
amplitudes for each of the contributions. This is a very general statement, true for
any quantum system. For the time being, let us illustrate it at the level of a single free
particle. If there is more than one way for it to propagate from an initial point Xi
to a final point X f , then the total amplitude is a sum over all paths. Feynman’s
assumption (which can be motivated more rigorously) is that the contributions from
each of these paths differ only by a phase,

propagation amplitude = normalisation × ∑
all paths X(τ)

ei·(phase[X(τ)]) . (5.1)

We have parameterised the path by some parameter τ which will have to be speci-
fied later. Of course, the number of paths is typically infinite, so the sum is generi-
cally an integral over a (very large) space of paths, and making sense of the ‘sum’ is
often a challenging task. The so-called path integral formalism of quantum mechanics
states that we can find an expression for the phase purely in terms of the classical
paths, and then compute the amplitude as a weighted sum over classical objects, in-
stead of dealing with operators and state vectors in Hilbert space (as we have done
until now).

The propagation amplitude G(X f , Xi)
is determined by a sum over all pos-
sible paths (dashed). In the classical
limit h̄ → 0, only a single path con-
tributes (solid).

We can figure out what the phase should be by considering the classical limit
h̄ → 0. In the classical limit, only one path should contribute. Since the exponent is
oscillatory, the dominant path will be the one for which the phase is stationary (the
stationary phase appoximation). This condition reads

classical path:
δ

δX(τ)

(
phase[X(τ)]

)
= 0 . (5.2)

On the other hand, we already know a similar expression for the classical path,
namely (2.17). That is, the classical path is described by the classical equation of
motion, and the latter is given by

classical path:
δ

δX(τ)

(
S[X(τ)]

)
= 0 , (5.3)
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5.2 Path integrals and propagators

where S[X(τ)] is the action, as a functional of the classical path. Moreover, the larger
the action, the more dramatic the phase cancellations will be for non-stationary
phases. It thus makes sense to identify the phase with the classical action divided
by Planck’s constant h̄,

phase[X(τ)] =
1
h̄

S[X(τ)] . (5.4)

When h̄ → 0 the only paths which will then contribute to the integral will be the
classical ones (the stationary phase approximation becomes exact).1

We will now first show how make the expression (5.1) precise, and how to ex-
plicitly perform the sum over paths for the simple free particle system (section 5.2).
We will then generalise the path integral formalism to more complicated quantum
theories (section 5.3), in particular to the quantum field theories we have seen in the
previous chapters.

5.2. Path integrals and propagators

The simplest process for which we can try to compute the amplitude using Feyn-
man’s “sum over paths” is that of the propagation of a single particle. We have
already computed the amplitude for the propagation of a particle from a space-time
point Xµ

i to a space-time point Xµ
f using canonical quantisation. The result is given

by (3.44) and its Fourier transform is (3.45), which we repeat here for convenience,

GF(k) =
−ih̄

kµkµ + m2 − iϵ
. (5.7)

We would like to derive this expression by computing the sum of amplitudes for
each and every path that the particle can take between Xµ

i and Xν
f , and then Fourier

transforming it.
We will label the paths by some parameter τ, which takes the value τi at the start

point X f
i of the path, and the value τf at the end point X f of the path. For a given

value of τ inbetween, the position of the particle is given by Xµ(τ). According to
the path integral prescription, the amplitude for this process to take place is given
by the formal expression

GF(X f (τf ), Xi(τi)) =
∫

paths
DX exp

[
i

2h̄

∫ τf

τi

dτ
(
ẊµẊµ − m2)] . (5.8)

What we mean by the integral over paths will be made precise below. The expres-
sion in the exponent is simply i times the classical action for a relativistic massive
particle.2 The length of the world-line in parameter space, T := τf − τi, is not a

1More generally, the stationary phase approximation is an approximation for integrals of the form∫ ∞

−∞
f (x)eig(x)dx , (5.5)

where f (x) is a slowly varying function of x. In the region where g(x) is rapidly varying, the oscillatory
contributions will cancel out because the prefactor f (x) is almost constant. Therefore, the contributions
to this integral will come from those regions where g(x) is slowly varying as well. The dominant contri-
bution will be in the region where

dg(x)/dx ≈ 0 . (5.6)

Expanding around such points gives the stationary phase approximation.
2Strictly speaking we should worry about the fact that this expression for the action is not invariant

under reparameterisation of the world-line parameter τ. Instead of dealing with those issues here, we
will postpone them to chapter 6 where we can put them into a wider context.
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5.2 Path integrals and propagators

physical quantity, so we will also integrate over it. This gives

GF(X f , Xi) =
∫ ∞

0
dT

∫ X(τi+T)=X f

X(τi)=Xi

DX exp
[

i
2h̄

∫ T

0
dτ
(
ẊµẊµ − m2 + iϵ

)]
. (5.9)

We have added a small imaginary piece to the mass-square, i.e. we have replaced
m2 → m2 − iϵ. This will be necessary later to make the T integral converge, and we
will see that it is related to the iϵ which appears in the Feynman propagator (5.7). In
addition, in order to compare with (5.7), we will in the end want to Fourier trans-
form on the initial and final position variables.

In order to do the path integral, we will cut up the range of τ into N small equal-
sized segments δ, such that T = Nδ. In the end we will take N → ∞ to obtain the
continuum limit.3 The integration over the paths now becomes an (N − 1)-fold in-
tegration over the positions Xµ

n := Xµ(τ = nδ), for n = 1 . . . (N − 1). The endpoints
are Xµ

i = Xµ
0 and Xµ

f = Xµ
N . This is once more illustrated in the figure; note that the

first segment is labelled with n = 1 and starts at Xµ
0 . The discretised approximation

to the path integral (5.9) reads

GF
(
X f , Xi

)
=
∫ ∞

0
dT C(N, δ)

∫
d4X1 · · ·d4XN−1

× exp

[
iδ
2h̄

N

∑
n=1

(
Ẋµ

n Ẋn µ − m2 + iϵ
)]

. (5.10)

The normalisation constant C(N, δ) is part of the definition of the path integral mea-

The nth segment of the path, which
starts at Xµ

n−1 and ends at Xµ
n .

sure, and will be fixed at the very end. The quadratic term in Xµ
n in the expression

above is a bit problematic: if we approximate the derivative by a finite difference
according to

Ẋµ
n =

1
δ

(
Xµ

n − Xµ
n−1

)
. (5.11)

we will get a bunch of cross terms involving the position variables for different
values of τ. So let us use a small trick to get rid of these quadratic terms. We do it
by inserting N copies of unity in the form of Gaussian integrals,(

−δ

2πh̄

)2(N−1) N−1

∏
m=1

[∫
d4αm exp

(
− iδ

2h̄
α2

m

)]
= 1 . (5.12)

The symbols α
µ
m are four-vectors.4 We can make the quadratic terms Xµ

n Xµm disap-
pear by shifting these new variables according to α

µ
n → α

µ
n − Ẋµ

n (which leaves the
integration measure invariant); this shift changes the exponent of (5.10) as

iδ
2h̄

N

∑
n=1

(
− α2

n + Ẋµ
n Ẋn µ − m2

)
→ iδ

2h̄

N

∑
n=1

(
2α

µ
nẊn µ − (α2

n + m2)
)

. (5.13)

All the Xµ
n -dependence now sits in the first term inside the sum above. If we insert

the discretised derivative (5.11), these terms become

i
h̄

N

∑
n=1

α
µ
n(Xµ

n − Xµ
n−1) =

i
h̄

(
α

µ
N XN µ − α

µ
1 X0 µ

)
−

N−1

∑
n=1

i
h̄
(
α

µ
n+1 − α

µ
n
)
Xn µ . (5.14)

3This limit is the hard bit in all path integral problems; one should worry about whether the limit is
convergent, and one should worry about whether the result depends on how you have discretised the
problem in the first place. For most path integrals we encounter later, these are unsolved problems.

4We are slightly cheating here because the argument of the exponent is imaginary rather than real;
this can be repaired without changing the end result so we will ignore this issue here.
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5.2 Path integrals and propagators

The last term contains all the integration variables. Making use of∫
d4Xn exp

[
− i

h̄
(αn+1 − αn) · Xn

]
= (2πh̄)4 δ4(αn+1 − αn) (5.15)

allows us to integrate them all out and also get rid of all integrations over the α
µ
n vari-

ables, because they all get set equal to each other by the Dirac delta function above.
This simplifies the remaining terms in (5.14) as well, and what we are left with is
(we will ignore overall constants as they can be adjusted by changing C(N, δ))

GF(X f , Xi) ∝
∫ ∞

0
dT

∫ d4α

(2π)4 exp
[
− i

2h̄
T(α2 + m2 − iϵ) +

i
h̄

α · (X f − Xi)
]

. (5.16)

We can now once more shift the integration variable αµ → αµ + (X f − Xi)
µ/T so as

to turn this into a Gaussian integral. After doing that integral we are left with

GF(X f , Xi) ∝
∫ ∞

0
dT
(

2πh̄
T

)2
exp

[
− im2 + ϵ

2h̄
T +

i
2h̄T

(X f − Xi)
2
]

. (5.17)

This is as simple as it is going to get in position space. In order to make contact
with (5.7) we still need to do a Fourier transform to momentum space,

GF(Pf , Pi) =
∫ ∞

−∞
dX f dXi exp

( i
h̄

PiXi +
i
h̄

Pf X f

)
GF(X f , Xi) . (5.18)

Of course we expect that the initial and final momenta are not independent, and
indeed we will see a Dirac delta function appear in a minute. We thus finally get,
for our path integral version of the momentum space propagator,

GF(Pf , Pi)

∝
∫ ∞

0

dT
T2

∫ ∞

−∞
dX f dXi exp

(
i
h̄

PiXi +
i
h̄

Pf X f +
i

2h̄ T
(X f − Xi)

2 − im2 + ϵ

2h̄
T
)

=
∫ ∞

0

dT
T2

∫ ∞

−∞
dX f dXi exp

( i
2h̄ T

(X f − Xi + Pf T)2 − i
2h̄

(Pf )
2 T

+
i
h̄
(Pi + Pf )Xi −

im2 + ϵ

2h̄
T
)

,

(5.19)

where on the second line we have split off a Gaussian part. The integral over X f

results in a (2h̄)2T2 factor, so that the T−2 which is already present gets cancelled.
The Xi integral then produces a momentum-conservation delta function, and the
final result is

G(Pf , Pi) ∝ −1
2

δ(Pf + Pi)
∫ ∞

0
dT exp

(
− i

2h̄
(Pf )

2T − im2

2h̄
T − 1

2h̄
ϵT
)

= δ(Pf + Pi)
−ih̄

(Pf )2 + m2 − iϵ
.

(5.20)

This is, indeed, the Feynman propagator for a scalar field in momentum space. With
an appropriate choice of the path integral measure (i.e. C(N, δ)), the proportionality
becomes an equality.

We thus see that the quantum mechanical properties of a single relativistic par-
ticle are encoded in an infinite-dimensional sum over classical paths, weighted ap-
propriately by i times the value that the classical takes on each path. No operators
or Hilbert spaces are required.
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5.3 Path integrals in field theory

A disadvantage of this method is of course that we have no control over in-
teractions. In order to compute a 1 → 2 process, for instance, we would have to
artificially glue together three particle paths, and the classical action of the relativis-
tic particle does not say anything about the strength of that coupling (string theory
solves this problem in an elegant way). For the remainder of the present chapter, we
will instead focus on a path integral treatment of the field theories we have seen in
previous chapters. It should be noted though that there is one range of applications
for which the formalism presented here is very useful: the computation of quan-
tum effects of particles in background fields. We will see an example of this in the
exercises. (end of lecture 11)

▶ Summary: The Feynman sum-over-paths for the relativistic particle leads to the
Klein-Gordon propagator (this path integral form is also known as the Schwinger,
or proper-time, or world-line representation of the propagator).

▶ See also: Polchinski volume I, chapter 5 and 7. R. P. Feynman, “Mathematical
formulation of the quantum theory of electromagnetic interaction”, Phys. Rev. 80
(1950) 440–457. J. S. Schwinger, “On gauge invariance and vacuum polarization”,
Phys. Rev. 82 (1951) 664–679.

5.3. Path integrals in field theory

Having seen how path integrals can be used for single particles, we will now gen-
eralise the path integral idea to field theories. The basic idea is the same as in the
previous section: in order to determine the quantum amplitude for one field config-
uration to change into another one, we have to sum over all possible intermediate
field configurations.

There are some small changes in the details of this generalisation. First of all,
we are dealing with a somewhat different type of boundary conditions. In the case
of a particle we were interested in dealing with a path for which Xµ(τi) and Xµ(τf )
were fixed. In the case of a field theory, we will be interested in “paths” for which the
field ϕ(t, x⃗) approaches zero at spacelike and timelike infinity. In the path integral,
we implement this using a simple trick. Consider for simplicity the free field theory
of a real scalar. The claim is that we have the following correspondence between the
vacuum-to-vacuum amplitude and a path integral expression,

⟨0|0⟩ ↔
∫
Dϕ exp

(
i
h̄

S[ϕ]− ϵ

h̄

∫
d4x ϕ(x)2

)
. (5.21)

We will of course again have to make precise what we mean with the integral over
field configurations on the right hand side, and how we can compute it. For the
time being, just observe that the additional term in the exponent (with ϵ a small
positive constant, as before) has the consequence that the integrand is exponentially
suppressed with a factor exp(−

∫
d4x ϕ2). If the field does not approach zero at

infinity, this factor will lead to a large suppression. This addition to the integrand
thus implements the boundary conditions on the field ϕ(x), and the path integral
can be taken over all field configurations.

A second new ingredient concerns the type of computations we want to do. In
field theory, we are mainly interested in correlation functions, as we have seen in
section 4.2. In the path integral formulation, correlation functions are computed by
simply inserting fields into the path integral. For a two-point correlation function,
we have the correspondence

⟨0| T
(
ϕ̂(x1)ϕ̂(x2)

)
|0⟩ ↔

∫
Dϕ ϕ(x1)ϕ(x2) exp

(
i
h̄

S[ϕ]− ϵ

h̄

∫
d4x ϕ(x)2

)
. (5.22)
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5.3 Path integrals in field theory

Note that the fields which are inserted in the integrand are just classical objects; the
quantum effects are taken care of by the integration over all possible field configura-
tions ϕ(x). Again, take this as a definition for now; we will make a closer connection
between the two sides later.

We will deal with correlation functions such as (5.22) in the next section, and
first focus on the vacuum-to-vacuum amplitude (5.21). A useful generalisation of
that amplitude is the “vacuum-to-vacuum amplitude in the presence of a source”.
It is defined as

Z[J] =
∫
Dϕ exp

(
i
h̄

S[ϕ] +
∫

d4x J(x)ϕ(x)
)

, (5.23)

so that Z[J = 0] = ⟨0|0⟩. What we have done here is to simply add an interac-
tion term to the action, which contributes whenever the external source field J(x) is
non-zero. The reason for doing this is that we can use Z[J] to generate correlation
functions, simply by taking functional derivatives with respect to the source. For
instance,

⟨0| T
(
ϕ̂(x1)ϕ̂(x2)

)
|0⟩ = 1

Z[J]

(
δ

δJ(x1)

)(
δ

δJ(x2)

)
Z[J]

∣∣∣∣
J=0

. (5.24)

We will do that in section 5.4. For the time being, let us focus on Z[J] itself.
In the free theory, Z[J] is extremely simple, as we can do the path integral over ϕ

explicitly. For a real scalar field this goes as follows. We start from

Z0[J] =
∫
Dϕ exp

(
i
h̄

∫
d4x

[1
2

ϕ
(
□− m2 + iϵ

)
ϕ +

h̄
i

Jϕ
])

. (5.25)

By completing the square, we can absorb the Jϕ term into the quadratic term. This
requires the shift

ϕ(x) = ϕ̃(x) +
∫

d4y GF(x − y)J(y) , (5.26)

where GF(x − y) is the Feynman propagator which satisfies (see (3.46))

(
□− m2 + iϵ

)
GF(x − y) =

h̄
i

δ(4)(x − y) . (5.27)

What is left of Z0[J] is then

Z0[J] =
∫
Dϕ̃ exp

{
i
h̄

∫
d4x

[1
2

ϕ̃(□− m2 + iϵ
)
ϕ̃
]
+

1
2

∫
d4x

∫
d4y J(x)GF(x − y)J(y)

}
.

(5.28)
The slightly awkward double integral looks somewhat nicer when written in mo-
mentum space. We can now do the Gaussian path integral over ϕ̃, which is nothing
else but Z0[J = 0]. We thus finally get

Z0[J] = Z0[J = 0]× exp
{

1
2

∫
d4x

∫
d4y J(x)GF(x − y)J(y)

}
. (5.29)

You can check that this is compatible with (5.24) and (3.39).
For interacting theories the story is of course more complicated, and generically

it is not possible to do the path integral explicitly. We hence resort, as in the previous
chapter, to a perturbative analysis valid for small values of the coupling constant
which sets the interaction strength. Let us therefore write the action as

S[ϕ, J] = S0[ϕ] + λSI [ϕ] +
h̄
i

∫
d4x J(x)ϕ(x) , (5.30)
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5.3 Path integrals in field theory

where S0[ϕ] is the part of the action quadratic in the fields, and SI [ϕ] is the rest. We
have assumed that a small coupling constant λ can be extracted from this latter part.
This enables us to expand the exponential in powers of λ, as

Z[J] =
∫
Dϕ exp

(
i
h̄

S0[ϕ] +
∫

d4x J(x)ϕ(x)
)

exp
(

iλ
h̄

SI [ϕ]

)
=
∫
Dϕ exp

(
i
h̄

S0[ϕ] +
∫

d4x J(x)ϕ(x)
)

×
(

1 +
iλ
h̄

∫
d4y1 LI [ϕ(y1)] +

1
2

(
iλ
h̄

)2 ∫
d4y1 LI [ϕ(y1)]

∫
d4y2 LI [ϕ(y2)] + . . .

)
.

(5.31)

The insertions of the interacting Lagrangian are nothing more than insertions of (in-
tegrated) polynomials of the field. We can rewrite those insertions using the same
trick as used in (5.24) to write correlation functions: simply take a functional deriva-
tive with respect to the source. So we can also write

Z[J] =
(

1 +
iλ
h̄

∫
d4y1 LI

[
δ

δJ(y1)

]
+

1
2

(
iλ
h̄

)2 ∫
d4y1 LI

[
δ

δJ(y1)

] ∫
d4y2 LI

[
δ

δJ(y2)

]
+ . . .

)
×
∫
Dϕ exp

(
i
h̄

S0[ϕ] +
∫

d4x J(x)ϕ(x)
)

. (5.32)

The only ϕ-dependence now sits in the last factor, and we can thus do the path
integral over ϕ just as in the computation of Z0[J]. We obtain

Z[J] = Z0[J = 0]×
(

1 +
iλ
h̄

∫
d4y1 LI

[
δ

δJ(y1)

]
+

1
2

(
iλ
h̄

)2 ∫
d4y1 LI

[
δ

δJ(y1)

] ∫
d4y2 LI

[
δ

δJ(y2)

]
+ . . .

)

× exp
(

1
2

∫
d4 x1d4x2 J(x1)GF(x1 − x2)J(x2)

)
. (5.33)

The expression above is quite complicated, but fortunately we can find a conve-
nient graphical notation for the various manipulations which are contained in it. Let
us see how this works by considering the order λn term in this expansion, and as-
suming that the interaction looks like LI(x) = −ϕp(x)/p!, i.e. there is only one type
of interaction vertex. This term in the expansion of the partition function contains n
integrals over y1, . . . , yn,

1
n!

(
iλ
h̄

)n


∫

d4y1

∫
d4y2 · · ·

∫
d4yn︸ ︷︷ ︸

n integrals

δp

δJ(y1)p
δp

δJ(y2)p · · · δp

δJ(yn)p


× exp

(
1
2

∫
d4x1 d4x2 J(x1)GF(x1 − x2)J(x2)

)
. (5.34)

The variational derivatives bring down the exponent, and remove a
∫

d4xi J(xi) from
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it, so that we get an expression of the form(∫
d4y1

∫
d4y2 · · ·

∫
d4yn

δp

δJ(y1)p
δp

δJ(y2)p · · · δp

δJ(yn)p

)
exp (. . .)

↓(∫
d4y1

∫
d4y2 · · ·

∫
d4yn

δp−1

δJ(y1)p−1
δp

δJ(y2)p · · · δp

δJ(yn)p

) ∫
d4x1 J(x1)GF(x1 − y1) exp (. . .) .

(5.35)
If we take a further derivative, we can either act again on the exponential, or act on
the J that was brought down earlier. The latter action corresponds to(∫

d4y1

∫
d4y2 · · ·

∫
d4y3

δp−1

δJ(y1)p−1
δp

δJ(y2)p · · · δp

δJ(yn)p

) ∫
d4 x1 J(x1)GF(x1 − y1) exp (. . .)

↓(∫
d4y1

∫
d4y2 · · ·

∫
d4y3

δp−1

δJ(y1)p−1
δp−1

δJ(y2)p−1 · · · δp

δJ(yn)p

)
GF(y2 − y1) exp (. . .) .

(5.36)
Playing a bit with these procedures quickly leads to the following set of graphical
rules. We represent every integration over an yi variable by a dot (these integration
variables are dummies, so we do not have to label the dots). An integration which
also contains a source (like the

∫
d4x1 J(x1) above) is represented by a cross, and

Feynman propagators are as usual connecting dots and crosses. At each differentia-
tion step we pick a dot and

1. either add a cross to the diagram, and connect it with the dot,

2. or pick a cross, and replace it by the dot.

For each dot, this has to be done p times (p, remember, being the order of the inter-
action term).

As an example, let us consider the order λ term for a model with a ϕ4 interaction.
The first three steps of the procedure above are depicted below:

After one more step, we arrive at the final set of diagrams representing Z[J],

Z[J] = Z0[J = 0]

×
[

1 − iλ
4! h̄

( )
+O(λ2)

]
exp(. . .) . (5.37)
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The overall numerical factors simply indicate in how many ways the associated
graph can be built using the rules given above. Note that there is always still an
exponential factor which depends on the source J. This will be important when
we compute correlation functions. Also note once more that all dots and crosses
correspond to integrals, which is why the ‘external points’ are not labelled.

Instead of doing all diagrams in one shot, as we did above, you can also obtain
the symmetry factors for each diagram separately, by looking carefully at how it
can be constructed. For example, the figure eight diagram above can be made by
starting with a vertex with 4 lines sticking out, numbered 1 to 4. Then you can have
the following pairings to make the figure eight:

({1, 2}, {3, 4}) or ({1, 3}, {2, 4}) or ({1, 4}, {2, 3}).

This explains the factor ‘3’. Similarly, to get the second graph, you can make the
following pairings,

({1, J}, {2, J}, {3, 4}) or ({1, J}, {3, J}, {2, 4}) or ({1, J}, {4, J}, {2, 3}) or
({2, J}, {3, J}, {1, 4}) or ({2, J}, {4, J}, {1, 3}) or ({3, J}, {4, J}, {1, 2}),

where the pairing with a J means connecting the line to a cross (and these crosses,
as explained above, represent identical integrated J’s factors). Hence a factor of 6. (end of lecture 12)

▶ Summary: In a free theory the generating functional Z0[J] can be computed ex-
plicitly and is given by (5.29). Interacting theories can be treated in perturbation
theory. The key trick is to replace insertions of the field by variational derivatives
with respect to the source, as in (5.32). The ϕ path integral then becomes a Gaussian
integral.

5.4. Feynman diagrams again

Having computed the generating functional Z[J] in perturbation theory, we now
want to extend our toolbox and compute correlation functions. This is now fairly
simple, because we just have to work out expressions of the form (5.24), and use the
expressions for Z[J] worked out using the logic in the previous section.

Let us consider the two-point correlator (5.24) as our first example. When we
take a variational derivative with respect to J(x1), it can act on two different places.
Either it acts on the ‘crosses’ in (5.37), removing the integral and the J factor from
them. Or it acts on the exponential which multiplies the whole expression, bringing
down a factor

∫
d4z GF(x1 − z)J(z). So we have a procedure which is quite similar

to the one in the previous section. After we have taken both variational derivatives,
we should set all remaining sources to zero; this means discarding any diagrams
which still have crosses, and setting the exponential factor equal to one.

In a diagrammatic form, what we obtain to order λ is(
δ

δJ(x1)

)(
δ

δJ(x2)

)
Z[J]

∣∣∣∣
J=0

= − iλ
4! h̄

( )
. (5.38)

The labelled dots are un-integrated endpoints of propagators (in contrast to the un-
labelled ones, which are integrated endpoints). Observe that this is precisely what
we would have obtained from a construction of Feynman diagrams according to the
rules in the previous chapter.5 In particular, the symmetry factors work out precisely

5With the small difference that we have here spelled out the coupling constant λ/h̄ explicitly, instead
of absorbing it in the normalisation of the vertices. Similarly, we have kept all combinatorial factors,
including the 1/4! of the vertex, explicit.
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5.5 Behaviour of the series expansion

as required. For e.g. the first diagram, the total factor we found above is 3/4! = 1/8.
If we would try to compute that number using the logic of section 4.3, we would
observe that the graph has a symmetry factor 2 × 2 × 2 = 8, in agreement with the
path integral computation.(end of lecture 13)

5.5. Behaviour of the series expansion

We have so far assumed that the perturbation series in quantum field theory is well
behaved, with a finite radius of convergence. Unfortunately, it is not.

The path integral provides us with a nice framework to discuss the behaviour
of the perturbation series. This is because many aspects of the path integral are
visible already in zero space-time dimensions, in which case it reduces to an ordi-
nary integral. We can then study the behaviour of the integral as a function of the
perturbation parameter λ.

So let us consider a 0-dimensional quantum field theory, in which there just a
single point and ϕ is simply a number, not a field. The generating functional for the
ϕ4 model is given by the integralPath integrals in zero-dimensional

quantum field theory are ordinary
integrals, over one single degree of
freedom.

Zλ[J] =
∫ ∞

−∞
e−ϕ2−λϕ4−Jϕ dϕ . (5.39)

It is tricky to find a solution for arbitrary J, so we will just look at an even simpler
system, where J = 0. In that case, the integral above can be expressed in terms of a
Bessel function,

Zλ[J = 0] =
1

2
√

λ
e

1
8λ K 1

4

(
1

8λ

)
. (5.40)

Here Kn(y) is the modified Bessel function of the second kind. This step is impossi-
ble to do in full-fledged quantum field theory, but in this simple case we thus have
access to a complete analytic answer for arbitrary value of the coupling constant λ.
For λ = 0 the answer is of course Zλ=0[J = 0] =

√
π.

Now let us see what we would obtain if we would expand Zλ[J = 0] in a pertur-
bation series as we did in the previous sections. We would write

Zλ[J = 0] =
∫ ∞

−∞
e−ϕ2

∞

∑
k=0

(−λϕ4)k

k!
dϕ (5.41)

and then exchange the order of summation and integration. We can do all these
integrals using a standard trick,∫ ∞

−∞
ϕ4ke−ϕ2

dϕ =
∫ ∞

−∞

∂2k

∂a2k e−ax2

∣∣∣∣∣
a=1

=
∂2k

∂a2k

√
π

a

∣∣∣∣∣
a=1

. (5.42)

We can figure out what this order-2k derivative yields by writing out the first few
factors explicitly,

∂2k

∂a2k

√
π

a

∣∣∣∣∣
a=1

=

(
1
2

3
2

)(
5
2

7
2

)
· · ·︸ ︷︷ ︸

2k fractions

=

(
1
2

2
2

3
2

)
4
4

(
5
2

6
6

7
2

)
8
8
· · ·︸ ︷︷ ︸

4k fractions

=
(4k)!
22k

1
2

1
4

1
6
· · ·︸ ︷︷ ︸

2k fractions

=
(4k)!
22k

1
22k(2k)!

.

(5.43)
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5.5 Behaviour of the series expansion

Sticking this back into the expression (5.41) we get our perturbative expansion of
the generating functional at J = 0, to all orders in perturbation theory,

Zλ[J = 0] =
∞

∑
k=0

√
π(−λ)k (4k)!

24k(2k)!k!
. (5.44)

While this is a nice explicit result, it is also easy to show that this series is in fact
divergent. Simply use Stirling’s formula k! ≈

√
2πk(k/e)k to find that the terms in The perturbation series in

quantum field theory is an
asymptotic series; it diverges when
taken to all orders, but gives good
approximations if the number of
terms is not taken too large (as it
turns out N ∼ 1/λ).

the sum above behave, for large k, as

(4k)!
24k(2k)!k!

≈ 4k
√

πk

(
k
e

)k
≈ 1√

2π
4kk! . (5.45)

That clearly leads to a divergent series. However, let us do what a quantum field
theory physicist would do, and look at the first few terms in the expansion.
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ZΛ =0.02 @ J = 0D

Dots represent the value Zλ[J = 0] at the arbitrary value λ = 0.02 when expanded
to order N in perturbation theory. The horizontal line is the exact value obtained
from (5.40). Clearly visible is the fact that for small N the sum first converges to the
exact value, but then diverges again for larger values of N.

In figure 5.5 we have plotted the value Zλ=0.02[J = 0], evaluated directly from the
exact result (5.40) and evaluated by summing the k = 0 . . . N terms in the sum (5.44).
You see the typical behaviour of a Feynman diagram expansion: the first few terms
tend to make the answer converge, but then at some point the terms grow in size
again and make the answer diverge. 0.05 0.10 0.15 0.20 0.25 0.30

Λ

1.60

1.65

1.70

1.75

ZΛ @ J = 0D

Comparison of the exact Zλ [J = 0]
of (5.40) (red curve in the middle) with
successive orders in perturbation the-
ory. The latter all grow unbounded for
sufficiently large values of λ.

▶ See also: The material in this section is based on [].
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6
Strings

In the previous chapter we have seen that the propagator of quantum scalar field
can also be obtained by considering the path integral of a single relativistic particle.
String theory is an attempt to generalise this idea, by replacing point particles by
small one-dimensional objects, strings. The vibration modes of these strings corre-
spond, as we will see, to various types of elementary particles. The strings can be
open or closed. In both cases, the string ‘sweeps out’ a two-dimensional world-sheet
as it evolves in time. See figure 6.

Although string theory has its share of problems in connecting to the real world,
there are a few undisputed ‘good’ aspects to it. One is that string theory inevitably
leads to a unification of the gravitational force with the electromagnetic, weak and
strong forces. The other one is that strings can evolve consistently in geometri-
cal backgrounds that are singular, and hence seem to be much better behaved in
e.g. black hole space-times. We will discuss these two aspects, or at least the ori-
gins of them, in some detail in this chapter (several important recent results, such as
the computation of black hole entropy and the correspondence between strings and
gauge fields, will be skipped as they go far beyond the scope of the current text).

t

t

s

s

t

The world-line of a particle, parame-
terised by τ, becomes the world-sheet
of a closed string (top) or an open
string (bottom), parameterised by τ
and σ.

6.1. Relativistic particles again

Before we can discuss strings, we need to take one step back and have a closer
look again at the relativistic particle, and in particular the reparameterisation invariant
ways of describing them.

There are various ways in which one can write down an appropriate action for
this particle (we have seen one such form in the previous chapter; we will see here
how it fits into the bigger picture). The most natural action is actually simply the
proper length of the world-line between the start and end points. If we parameterise
the world-line by a parameter τ, and denote the position of the particle in space-time
at a given value of this parameter with Xµ(τ), the action is given by

SNambu-Goto = −m
∫ τ=τf

τ=τi

dτ

√
−∂Xµ(τ)

∂τ

∂Xµ(τ)

∂τ
. (6.1)

Importantly, this action is invariant under reparameterisation of the world-line,
i.e. under transformations τ → f (τ).

The disadvantage of (6.1) is that the massless limit m → 0 is ill-defined. In
addition, the presence of the square root makes calculations rather messy. In order
to circumvent this problem, a standard trick is to introduce an additional degree of

53



6.2 Reparameterisation invariant strings

freedom, the so-called einbein. The action of this extended system is given by

SPolyakov =
1
2

∫
dτ

[
1

e(τ)
∂Xµ(τ)

∂τ

∂Xµ(τ)

∂τ
− e(τ)m2

]
. (6.2)

When e(τ) = 1, this reduces to the action which we have been using in the previous
chapter. The equation of motion for e(τ) is algebraic (there are no derivatives on e(τ)
anywhere); one finds

− 1
e(τ)2

∂Xµ(τ)

∂τ

∂Xµ(τ)

∂τ
− m2 = 0 (mass-shell constraint). (6.3)

This is a constraint. Its interpretation becomes manifest when expressed in terms of
the momentum conjugate to Xµ(τ),

Pµ(τ) =
δS

δẊµ(τ)
=

1
e(τ)

Ẋµ(τ) , → Pµ(τ)Pµ(τ) = −m2 . (6.4)

This is simply the mass-shell condition for the particle. By taking (6.3), solving
for e(τ) and substituting it back into the action, we recover (6.1). However, it is
more useful to use reparameterisation invariance to fix e(τ) to a specific function
and thereby remove it from the action altogether (which is, again, what we have
implicitly done in the previous chapter).

The action (6.2) is still invariant under world-line reparameterisations. The charge
associated to constant translations in τ is the world-sheet Hamiltonian. It is obtained
in the usual way as the Noether charge associated to the symmetry

τ → τ + c (world-line translations). (6.5)

The Noether charge which we obtain in this way turns out to be exactly equal to the
left-hand side of (6.3). This is a general result: systems which are reparameterisation
invariant have a vanishing Hamiltonian.

Apart from the symmetry associated to translations on the world-line (global
reparameterisations), there are also symmetries associated to translations in space-
time. These give rise to more useful charges. The symmetry is

Xµ(τ) → Xµ(τ) + ξµ (target-space translations). (6.6)

The charge associated to this symmetry is simply Pµ as written in (6.4). This is the
conserved target-space energy-momentum which squares to −m2, and the zero-th
component is the (non-vanishing) energy.

▶ Summary: Because the way we parameterise the world-line of a particle does not
contain any physics, the action of a relativistic particle should be reparameterisation
invariant. There are two ways to write down such an action, (6.1) and (6.2). The
Noether charge associated to world-line translations is the world-line Hamiltonian,
which vanishes by virtue of the constraint. The Noether charge associated to space-
time translations is the space-time four-momentum, which does not vanish.

6.2. Reparameterisation invariant strings

Let us now turn to strings. For point particles, we used the proper length of the
world-line as the action. Therefore, it is only natural to expect that the dynamics of
a string is determined by the proper area of its world-surface,

S = T
∫ τf

τi

dτ
∫ σR

σL

dσ
√
−det ∂αXµ∂βXµ . (6.7)
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6.2 Reparameterisation invariant strings

This requires some explanation. The Xµ(τ, σ) objects are vector-valued fields, which
map a given point (τ, σ) on the two-dimensional world-sheet to a point Xµ(τ, σ) in
space-time. The determinant is, more explicitly, given by

det ∂αXµ∂βXµ = det

(
∂τXµ∂τXµ ∂τXµ∂σXµ

∂σXµ∂τXµ ∂σXµ∂σXµ

)
. (6.8)

The parameter T denotes the string tension.1 It is also often expressed using α′, the
string slope, using the relation

α′ :=
1

2πT
. (6.9)

As we already announced, strings can be open, in which case the two boundary
points σ = σL and σ = σR are distinct, or closed, when σL = σR.

Although one can get quite far with the quantisation of the string by using the
Nambu-Goto form (6.7) (see e.g. the book [21]), it at some point becomes impractical.
Therefore, we again introduce an auxiliary field on the world-volume to turn the
action into one of polynomial form,

S = −T
2

∫ τf

τi

dτ
∫ σR

σL

dσ
√
−hhαβ ∂αXµ∂βXµ . (6.10)

The field hαβ is the analogue of the einbein e(τ); it is called the world-sheet metric. It
is a two-dimensional metric which lives on the world-sheet, and its only role is to
make sure that the action is invariant under reparameterisations. When we do such
a reparameterisation, both the derivatives and the world-sheet metric transform, in
such a way that the action remains unchanged.

The equations of motion for the world-volume scalar fields Xµ and the world-
volume metric hαβ are

δS
δXµ =

√
−hhαβnα∂βXµ

∣∣∣∣σ=σR

σ=σL

+ ∂α

(√
−hhαβ∂βXµ

)
= 0 , eq. of motion ,

Tαβ = − 1
T

1√
−h

δS
δhαβ

=
1
2

∂αXµ∂βXµ − 1
4

hαβhγδ∂γXµ∂δXµ = 0 , constraints ,

(6.11)
where nα is the normal to the boundary. Recall that in general relativity, the vari-
ation of the matter action with respect to the metric yields the energy momentum
tensor. The same thing happens here: vanishing of the equation of motion for hαβ is
the same as the statement that the energy-momentum tensor of the world-volume
theory should vanish. Note that the equation of motion contains both a bulk and a
boundary term. The latter of course vanishes for closed strings, but it is non-trivial
for open strings.

Apart from diffeomorphisms, which transform the fields Xµ as if they are scalars
on the world-volume, there is one further symmetry of (6.10) which is extremely
important: the action is invariant under local rescalings

hαβ(τ, σ) → f (τ, σ) hαβ(τ, σ) . (6.12)

Such transformations are also known as Weyl transformations. Together the transfor-
mations act on the metric as

hαβ → hαβ +∇αξβ +∇βξα + Λ hαβ , (6.13)

1Because the string tension is an overall factor in front of the action, it will appear inside the path
integral multiplying i/h̄ in the Feynman weight exp[(i/h̄)S]. We can thus always absorb h̄ in T, and will
set h̄ = 1 in the remainder of this chapter.
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6.2 Reparameterisation invariant strings

where ∇ is the covariant derivative associated to hαβ.
Reparameterisation invariance allows us to choose a coordinate system such that

the metric is, at any point, proportional to the two-dimensional Minkowski metric,

hαβ
reparameterisation−→ eφ(τ,σ) ηαβ (conformal gauge) . (6.14)

Weyl transformations allow us to go one step further, and change the pre-factor to
be one at all points on the world-sheet,

hαβ

reparameterisation
& rescaling−→ ηαβ (flat gauge) . (6.15)

In two dimensions, the metric is therefore completely non-dynamical.2

In the conformal gauge the equation of motion and constraint become rather
simple,(

∂2

∂τ2 − ∂2

∂σ2

)
Xµ = 0 , (Ẋµ)2 + (X′µ)2 = 0 , ẊµX′

µ = 0 . (6.16)

(we will discuss the boundary terms in a moment). The equation of motion is a
simple wave equation, with a general solution given by arbitrary functions of τ + σ
and τ − σ,

Xµ(τ, σ) = Xµ
L(τ + σ) + Xµ

R(τ − σ) . (6.17)

The functions XL and XR have to be chosen as to satisfy the constraints (the 2nd and
3rd equation in (6.16)). We will see examples of various classical solutions in the next
section. For future reference, let us introduce world-sheet light-cone coordinates
σ± = τ ± σ, and write (6.16) as

∂+∂−Xµ = 0 , (∂+Xµ)2 = 0 , (∂−Xµ)2 = 0 . (6.18)

In this coordinate system the world-sheet metric takes an off-diagonal form,

hαβ =

(
0 1
1 0

)
. (6.19)

Even if we fix the metric to be (6.15) or (6.19), there are still combined reparam-
eterisations and Weyl rescalings which leave the metric invariant. Any coordinate
transformation which is such that it makes the metric scale by a factor only can be
undone by a Weyl transformation. Because an infinitesimal coordinate transforma-
tion transforms the metric ηαβ according to

ηαβ → ηαβ +∇αξβ +∇βξα , (6.20)

the equation which determines the left-over coordinate freedom reads

∇αξβ +∇βξα = Ληαβ . (6.21)

Writing this in world-sheet light-cone coordinates, it implies that we can have a
coordinate transformation of the form

σ+ → σ̃+(σ+) , σ− → σ̃−(σ−) . (6.22)

2Contrast this to the situation in general relativity, where the Einstein-Hilbert term
∫√−gR is what

gives dynamics to the metric; this term does not appear in the string action.
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6.3 The classical theory, its solutions and charges

In terms of the τ and σ coordinates, this reads

τ̃ =
1
2
(
σ̃+(τ + σ) + σ̃−(τ − σ)

)
,

σ̃ =
1
2
(
σ̃+(τ + σ)− σ̃−(τ − σ)

)
.

(6.23)

The first line simply states that τ̃ is a solution of the free wave equation(
∂2

∂τ2 − ∂2

∂σ2

)
τ̃ = 0 . (6.24)

Since τ̃ can be chosen to be anything as long as it satisfies the wave equation, and
since this is also exactly the equation of motion for any of the string coordinates, we
can set τ equal to e.g. X+ = 1√

2
(X0 + X1). This choice

τ ∼ X+ (6.25)

is called the light-cone gauge. Another choice is given by

τ ∼ X0 . (6.26)

This is the static gauge. The proportionality constant will, in both cases, be chosen
later. (end of lecture 14)

▶ Summary: The equations of motion of the string reduce, in the conformal gauge,
to a wave equation for the embedding coordinates Xµ. In addition there are two
constraints. Using residual gauge invariance, we can still fix τ to be equal to any
of the target space coordinates. Light-cone gauge (τ = X+/p+) and static gauge
(τ = X0/κ) are the two most common choices.

6.3. The classical theory, its solutions and charges

We will soon start quantising the fluctuations of the relativistic string around the
point-like configuration (where all points of the string sit at the same location in
space). However, there are many interesting aspects of the classical theory as well.
So let us first take a look at some of the solutions to the equations of motion (6.11)
of the bosonic string.

We will always gauge fix the world-sheet diffeomorphism freedom i.e. choose a
coordinate system, so that hαβ is fixed. Our convention will be that the range of the
space-like coordinate σ is restricted to

closed string : 0 ≤ σ ≤ 2π ,

open string : 0 ≤ σ ≤ π .
(6.27)

(there are various historical reasons for choosing these ranges to be unequal for
closed and open strings). In addition, we have to impose Xµ(τ, σ + 2π) = Xµ(τ, σ)
for the closed string to make the endpoints meet. You could choose any other range
but it would not matter for the physical results.

One typical solution of the open string is the “folded string” solution, given by

X0 = L τ ,

X1 = L cos σ cos τ ,

X2 = L cos σ sin τ ,

(6.28)
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with all other coordinates vanishing. One can verify that this solution makes the
boundary term in (6.11) vanish, and one can also verify that this solution satisfies
not only the equation of motion but also the constraints.

A simple solution of the closed string equations of motion is the pulsating string,

X0 = R τ ,

X1 = R cos σ cos τ ,

X2 = R sin σ cos τ .

(6.29)

Again, this solution satisfies both the equations of motion and the constraints.
For open strings, we can make the boundary term in (6.11) vanish by setting

∂σXµ = 0 at the endpoints. Such a boundary condition is called a Neumann bound-
ary condition.3 However, we can also simply impose that δXµ vanishes at the end-
point of the open string. This in particular requires that there is no change of Xµ

under time evolution, ∂τXµ = 0. This type of boundary condition is called a Dirich-
let boundary condition. Both of these are important for open strings.

Instead of exploring the space of solutions on the basis of isolated examples, let
us now turn to a more systematic expansion of the Xµ in modes. For closed strings,
we will write Xµ = Xµ

R(τ − σ) + Xµ
L(τ + σ). For open strings, the coordinates which

satisfy Neumann boundary conditions will be labelled Xµ
N , while the ones satisfy-

ing Dirichlet boundary conditions will be denoted Xµ
D. We then find the following

generic expansions:

closed string :


Xµ

R =
1
2

xµ +
1

4πT
(τ − σ) pµ +

i√
4πT

∑
n ̸=0

1
n

α
µ
ne−in(τ−σ) ,

Xµ
L =

1
2

xµ +
1

4πT
(τ + σ) pµ +

i√
4πT

∑
n ̸=0

1
n

α̃
µ
ne−in(τ+σ) .

(6.30a)

open string :


Xµ

N = xµ +
1

πT
pµ τ +

i√
πT

∑
n ̸=0

1
n

α
µ
ne−inτ cos(nσ) ,

Xµ
D = xµ +

i√
πT

∑
n ̸=0

1
n

α
µ
ne−inτ sin(nσ) .

(6.30b)

Here xµ, pµ and all the α
µ
n and α̃

µ
n are constant vectors. The normalisation of these

constants is of course arbitrary. The sums run over both positive and negative in-
tegers n. Because the Xµ have to be real, we have the following conditions on the
oscillator coefficients,

(αn)
† = α−n , (α̃n)

† = α̃−n . (6.31)

The variables xµ and pµ are the centre-of-mass position and momentum respec-
tively: averaging Xµ and Pµ over the string yields

Xµ(τ = 0) =
1

2π

∫
dσ Xµ(τ = 0, σ) = xµ ,

Pµ(τ) = T
∫

dσẊµ = pµ .
(6.32)

3The solution for the folded closed string (6.28) can be interpreted as a solution for an open string
if you let σ ∈ [0π⟩. The solution then has Neumann boundary conditions, and is called the “rigid rod”
solution for the open string.
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6.3 The classical theory, its solutions and charges

where the integration regions should be chosen appropriately for the open and
closed string.

It is also useful to express the constraints in terms of the oscillators. To this extent,
one customarily defines generators Lm and L̃m, which are simply Fourier modes of
the stress tensor components. To be precise,

closed string :


Lm := 2T

∫ 2π

0
dσ e−imσT−− =

1
2

∞

∑
n=−∞

α
µ
m−nαν

nηµν ,

L̃m := 2T
∫ 2π

0
dσ e+imσT++ =

1
2

∞

∑
n=−∞

α̃
µ
m−nα̃ν

nηµν ,
(6.33a)

open string : Lm := 2T
∫ π

0
dσ
(

eimσT++ + e−imσT−−
)
=

1
2

∞

∑
n=−∞

α
µ
m−nαν

nηµν .

(6.33b)

Here we have introduced the notation α
µ
0 = α̃

µ
0 = 1/

√
4πTpµ for the closed string

and α
µ
0 = 1/

√
πTpµ for the open string in order to make the notation more uniform.

For the directions in which the open string has Dirichlet boundary conditions, the α
µ
0

are zero, as there is no pµ for these directions in the expansion (6.30).
The constraints, in particular L0, can be used to determine the mass-squared

of a string. With mass-square we mean the square of the centre-of-mass momen-
tum, pµ pµ. From (6.33) we see that the linear combination of constraints L0 + L̃0 = 0
relates the mass-square to the oscillators, The mass of a string state is

determined in terms of the
oscillatory modes, by virtue of the
reparameterisation constraint.M2 = −pµ pµ =

2
α′

(
∑
n≥1

α
µ
−nαν

nηµν + ∑
n≥1

α̃
µ
−nα̃ν

nηµν

)
=:

2
α′
(

N + Ñ
)

, (6.34)

(you can express this in various other ways by combining it with L0 − L̃0 = 0). This
is new compared to the point particle: the mass is determined by the oscillations of
the string. If the string does not oscillate, i.e. if N = N̄ = 0, then it behaves as a
massless particle.

We can also find the angular momentum in terms of the oscillators,

Jµν = T
∫ 2π

0
dσ (XµẊν − XνẊµ)

= xµ pν − xν pµ − i
∞

∑
n=1

1
n

[
(α

µ
−nαν

n − αν
−nα

µ
n) + (α̃

µ
−nα̃ν

n − α̃ν
−nα̃

µ
n)
]

.

(6.35)
Let us now look at the Poisson brackets of the string. The starting point is as

always the canonical bracket

{Xµ(σ), Pν(σ
′)}PB = δ

µ
ν δ(σ − σ′) . (6.36)

The momentum density Pµ(σ) is obtained as

Pµ(σ) =
δS

δẊµ(σ)
=

1
2πα′

Ẋµ(σ) . (6.37)

If we insert the oscillator expansion of the field (6.30) into (6.37), and then write
out (6.36), we find the following Poisson brackets between the various oscillators of
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6.3 The classical theory, its solutions and charges

the closed string:
{α

µ
m, αν

n}PB = −i m δm+nηµν ,

{α̃
µ
m, α̃ν

n}PB = −i m δm+nηµν ,

{α
µ
m, α̃ν

n}PB = 0 ,

{xµ, pν}PB = δ
µ
ν .

(6.38)

This shows once more that the left-moving sector and the right-moving sector are in-
dependent, and it also shows that the centre-of-mass position xµ and momentum pµ

are canonically conjugate. These Poisson brackets will be the starting point of the
quantisation of the string in the next section.(end of lecture 15)

Using the Poisson brackets just derived, we can find the Poisson algebra gener-
ated by the modes of the constraint, Lm and L̃m. One finds

{Lm, Ln}PB = −i (m − n) Lm+n ,

{L̃m, L̃n}PB = −i (m − n) L̃m+n ,

{Lm, L̃n}PB = 0 .

(6.39)

This algebra is called the classical Virasoro algebra (or more appropriately, the Witt
algebra). We will see that the quantum constraints satisfy a similar algebra, though
with important quantum corrections.

In the light-cone gauge X+ ∼ τ = 1
2 (σ

+ + σ−), it is possible to solve for one of
the oscillators in terms of all the others. The proportionality constant between X+

and τ can be related to the centre-of-mass momentum pµ using the second line
of (6.32), giving

closed string : X+ = α′ p+ τ ,

open string : X+ = 2α′ p+ τ .
(6.40)

In particular, in the light-cone gauge we have set α+n = α̃+n = 0 for n > 0 and
also x+ = 0. Using these relations, we find that in the light-cone gauge the con-
straints (6.18) become

closed string : ∂±X− =
1

α′p+
(∂±Xi)2 ,

open string : ∂±X− =
1

2α′p+
(∂±Xi)2 .

(6.41)

This allows us to solve for the α−n and α̃−n oscillators in terms of the other ones,

closed string :


α−n =

1√
2α′p+

(
∞

∑
m=−∞

αi
n−mαi

m

)

α̃−n =
1√

2α′p+

(
∞

∑
m=−∞

α̃i
n−mα̃i

m

)

open string : α−n =
1

2
√

2α′p+

(
∞

∑
m=−∞

αi
n−mαi

m

)
.

(6.42)

In general gauges we can of course also solve the constraint, but eliminating one
oscillator in terms of the others will then involve square roots and make life much
more complicated.
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6.4 Quantum strings

▶ Summary: The world-sheet theory of the string is a theory of two-dimensional free
scalars, which can solved completely by expanding the Xµ in modes. The Fourier
modes of the stress tensor generate the Virasoro algebra. In the light-cone gauge, we
can solve for the α−n modes in terms of a quadratic expression in the αi

n.

6.4. Quantum strings

In order to quantise the fluctuations of the string around its point-like configuration,
we should go to a world-sheet gauge for which all residual gauge freedom has been
exhausted. But in order to actually write down the spectrum, it is best to do this in a
way in which the constraints can be solved in a simple way. We have seen that this
is the case in the light-cone gauge (see eq. (6.42)). The disadvantage of the light-cone
gauge is that target-space Poincaré symmetry is no longer manifest.

However, let us first discuss some general issues concerning quantisation. As
usual, we quantise by promoting all dynamical variables to operators and by pro-
moting Poisson brackets to commutators (as we discussed in section 3.2). From (6.38)
we thus obtain

[α̂
µ
m, α̂ν

n] = m δm+nηµν ,

[ ˆ̃αµ
m, ˆ̃αν

n] = m δm+nηµν ,

[α̂
µ
m, ˆ̃αν

n] = 0 ,

[x̂µ, p̂ν] = iδµ
ν .

(6.43)

From these expressions one can see that αm and α†
m satisfy, when rescaled by a factor

of 1/
√

m the commutator relation for harmonic oscillator “creation” and “annihila-
tion” operators. We will soon use them to create the spectrum by laddering from
the ground state.

First, however, let us make a few statements about objects which are composite
operators of the oscillators, such as the Virasoro generators Lm. These need more
care, as the products of operators needs to be regulated. As usual, we will use nor-
mal ordering. However, we will allow for a normal-ordering constant. The starting
point is the expression for the Virasoro generators,

L̂m =
1
2

(
∞

∑
n=−∞

: α̂
µ
m−nα̂ν

n : ηµν

)
− a δm 0 , (6.44)

and a similar one for ˆ̃Lm. The operators L̂m and ˆ̃Lm are called Virasoro generators
and the quantum algebra which they generate is the Virasoro algebra. Already at
this state we see an important consequence of the normal ordering constant: the
constraint (L̂0 +

ˆ̃L0)|phys⟩ = 0 now implies that a physical state will satisfy The physical mass M of a string
quantum state sees the effect of the
ordering ambiguity a in the
Virasoro generators.M2 = −pµ pµ =

2
α′

(
N̂ + ˆ̃N − 2 a

)
, (6.45)

where we have used the number operator N̂ which we have already seen in the
classical theory in (6.34),

N̂ := ∑
n≥1

α̂
µ
−n α̂ν

n ηµν , (6.46)

(ditto for the ˆ̃N operator). If we are forced to a positive normal-ordering constant a,
this may thus introduce negative mass-squared states into the spectrum. And in-
deed, we will see soon that the quantum theory is only consistent (what this means
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6.5 Physical states and Lorentz covariance

will become clear shortly) for the choice a = 1. Thus, the quantised bosonic string
will exhibit a somewhat non-physical spectrum.

One immediate further question that one can raise now is whether the composite
operators L̂m still satisfy the commutation relations which we would expect from the
Poisson brackets of the classical theory. For the Virasoro generators we find, after a
somewhat tedious computation that

[L̂m, L̂n] = (m − n)Lm+n +
d

12
m(m2 − 1)δm+n . (6.47)

The term proportional to δm+n was not present in the classical Poisson algebra (6.39).
It is called an anomalous term. We will return to the quantum Virasoro algebra in one
of the exercises.

6.5. Physical states and Lorentz covariance

After these general remarks, which hold true regardless of the way in which we
fix the residual gauge freedom (6.22), let us now focus on the light-cone gauge, in
which τ is fixed as in (6.40). We have already seen that at the classical level, the α−n
oscillators can be expressed in terms of the transverse oscillators, and this is no
different in the quantum theory, except for the appearance of the normal ordering
constant:

closed string :


α̂−n =

1√
2α′p+

(
∞

∑
m=−∞

: α̂i
n−mα̂i

m : −2 a δn0

)

ˆ̃α−n =
1√

2α′p+

(
∞

∑
m=−∞

: ˆ̃αi
n−m ˆ̃αi

m : −2 a δn0

)

open string : α̂−n =
1

2
√

2α′p+

(
∞

∑
m=−∞

: α̂i
n−mα̂i

m : −2 a δn0

)
.

(6.48)

We do not have to worry about these expressions too much, since the mass opera-
tor follows immediately from the covariant expression (6.45) by using the fact that
α+n = 0 for n ̸= 0,

closed string :M2 =
2
α′

(
N̂lc +

ˆ̃Nlc − 2 a
)

,

open string :M2 =
1
α′
(

N̂lc − a
)

.

(6.49)

with the number operators N̂lc and ˆ̃Nlc now only counting transverse oscillations.
For open strings, this relation between mass and oscillator number takes care of
L̂0|phys⟩ = 0 while for closed strings it takes care of L̂0 +

ˆ̃L0|phys⟩ = 0. For closed
strings, we still have to take care of the other linear combination, L̂0 − ˆ̃L0|phys⟩ = 0.
This constraint means that the excitation level has to be the same in the left-moving
sector as in the right-moving sector; it is called the level-matching constraint.The level-matching constraint

imposes that the excitation level
has to be the same in the left- and
right-moving sectors of the closed
string.

Let us now look more closely at the space of physical states. Since we have solved
for the constraints, any state constructed by acting with the creation operators α̂i

−n
(for n ≥ 1) on the vacuum will be physical. Let us first discuss the open string
spectrum. Because we quantise around the no-oscillation state of the string, the
ground state is simply labelled by the transverse momentum, i.e. we denote it |pi⟩,
and its mass is given by

m2|pi⟩ = − a
α′
|pi⟩ . (6.50)
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6.5 Physical states and Lorentz covariance

The first excited state is obtained by acting with α̂
j
−1 on |pi⟩. Its mass is

m2α̂
j
−1|p

i⟩ = (1 − a)αj
−1|p

i⟩ . (6.51)

Let us try to understand what this state means in terms of a particle. It carries one
transverse index, so it transforms as a vector under the transverse rotation group
SO(d − 2). This is how a massless vector particle would transform if the theory is
Lorentz invariant. Therefore, Lorentz invariance requires a = 1. While this gives us
a nice massless vector particle (i.e. a gauge field), it also implies that the state |pi⟩
actually has negative mass-squared: it is a tachyon. All other states which we can
make, by using α̂i

−n oscillators with n > 1 or by acting multiple times, have a mass-
square which is larger than zero. There is an infinite tower of them.

The story for the closed string is very similar. We now have two types of oscil-
lators, corresponding to the left-moving and the right-moving modes. The lowest-
mass state now has

m2|pi⟩ = −4a
α′
|pi⟩ . (6.52)

For the first excited state, we have to make sure that the level-matching constraint
is satisfied. This implies that the first excited state is α̂

j
−1

ˆ̃αk
−1|pi⟩, with

m2α̂
j
−1

ˆ̃αk
−1|pi⟩ = 4

(1 − a)
α′

α̂
j
−1

ˆ̃αk
−1|pi⟩ . (6.53)

It is useful to decompose this state with respect to irreducible representations of SO(d−
2),

α̂
j
−1

ˆ̃αk
−1 = α̂

[j
−1

ˆ̃αk]
−1︸ ︷︷ ︸

anti-symmetric

+
(

α̂
(j
−1

ˆ̃αk)
−1 −

1
d − 2

δjkα̂l
−1

ˆ̃αl
−1

)
︸ ︷︷ ︸

traceless symmetric

+
1

d − 2
δjkα̂l

−1
ˆ̃αl
−1︸ ︷︷ ︸

trace

. (6.54)

The anti-symmetric, symmetric traceless and trace pieces transform as irreducible
representations of SO(d − 2). If we set a = 1 these pieces correspond to a massless
anti-symmetric tensor gauge field, a graviton and a scalar field respectively. (end of lecture 16)

Having constructed the spectrum, and having interpreted the lowest-mass states
in terms of fields which transform covariantly under the full Lorentz symmetry
SO(d − 1, 1), we have found that we need to set the normal ordering constant a = 1.
We would really have to show that the theory is covariant under the full Lorentz
group. This requires a lot more work. However, there is a short argument that gives
us the normal ordering constant a by direct computation. It arises from

1
2

D−2

∑
i=1

∞

∑
n=−∞

αi
−nαi

n =
1
2

D−2

∑
i=1

∞

∑
n=−∞

: αi
−nαi

n : +
D − 2

2

∞

∑
n=1

n . (6.55)

This second sum is divergent and needs to be regularised. We do this using so-called
zeta-function regularisation, which uses the definition of the zeta function

ζ(s) :=
∞

∑
n=1

n−s . (6.56)

This sum converges for Re(s) > 1, and has a unique analytic continuation to s = −1,
where it takes the value ζ(−1) = −1

12 . We thus find that

a =
D − 2

24
. (6.57)
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6.6 No-ghost theorem

This gives us the first sign that Lorentz covariance requires the bosonic string (both
open and closed) to live in 26 dimensions.

▶ Summary: The spectrum of the open bosonic string contains a m2 < 0 scalar
tachyon, a massless vector, and a tower of massive particles. The spectrum of the
closed bosonic string has a scalar tachyon, and at the massless level a spin-two par-
ticle, a spin-one particle in the form of an anti-symmetric tensor and a scalar. Only
in d = 26 and with normal ordering constant a = 1 do we find Poincaré invariance
at the quantum level.

▶ See also: D. Lüst and S. Theisen, “Lectures on string theory”, Springer, 1989, chap-
ter 3, in particular also the appendix.

6.6. No-ghost theorem

A cleaner way to derive the condition on the dimension of space-time can be ob-
tained by going back to the covariant formulation. In contrast to the formulation in
the light-cone gauge, where we solve for the constraints before quantising, we now
have to impose the Virasoro constraints as quantum operator equations, i.e.

L̂m|phys⟩ = 0 . (6.58)

Interestingly, it turns out that for generic values of the dimension d, it is possible to
find physical states which have negative norm. By requiring that these go away, we
can then find a condition on the dimension.4.

To see how this works, consider the following open string state,

|χ⟩ =
[
α̂−1 · α̂−1 + A α̂0 · α̂−2 + B (α̂0 · α̂−1)

2
]
|k⟩ ,

where |k⟩ is a physical eigenstate of the momentum operator,

p̂µ|k⟩ = kµ|k⟩ .

With A and B still arbitrary, we can already obtain the mass-square eigenvalue of
this state from the L̂0 constraint, and find that m2 = (2 − a)/α′ = 1/α′.

The other constraints can only be satisfied if we tune A and B appropriately. By
imposing

L̂1|χ⟩ = 0 and L̂2|χ⟩ = 0 ,

we can find expressions for the coefficients A and B in terms of the dimension of
spacetime d. Using the intermediate results

L1α
µ
−1α

µ
−1|k⟩ = 2 α

µ
−1α

µ
0 |k⟩ .

L1α
µ
0 α

µ
−2|k⟩ = 2 α

µ
0 α

µ
−1|k⟩

L1α
µ
0 αν

0α
µ
−1αν

−1|k⟩ = 2 α
µ
0 α

µ
0 αν

0αν
−1|k⟩ .

(6.59)

one finds that the constraints hold provided

A =
d − 1

5
, B =

d + 4
10

. (6.60)

The constraints therefore fix the form of the state if we know the value of d.

4More formally, one can show that for these values of d physical states are the sum of a positive norm
state (a so-called DDF state) and a null physical state.
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6.7 T-duality

If we now compute the norm of |χ⟩ we find

⟨χ|χ⟩ = 2d + 2A2 p2 + 2B2 p4 + 4Bp2 . (6.61)

With p2 = −2 and the values for A and B above, this becomes

⟨χ|χ⟩ = −2
25

(26 − 27d + d2) . (6.62)

For d = 26 this vanishes, while it is negative for d > 26. This shows that, at least for
the state |χ⟩ analysed here, the dimension of space-time has to be at most d = 26. A
more careful analysis along these lines fixes this number completely.

6.7. T-duality

We have seen that the action of the string is based on a two-dimensional field theory
for fields Xµ(τ, σ). These map a point (τ, σ) on the string world-sheet to a point in
space-time. Interestingly, such field theories have unexpected properties whenever
the Xµ take values on a compact manifold (instead of on Rn, as we have assumed so
far). Physically, the simplest case of such a situation is when a closed string moves
on a manifold of which one direction is a circle.

Let us focus on the action for the coordinate X1 which we will take to be compact.
Its contribution to the action is, as usual,

S[X1] = T
∫

dτ
∫ 2π

0
dσ

[
1
2
(∂τX1)2 − 1

2
(∂σX1)2

]
. (6.63)

The expansion of X1(τ, σ) in modes will be similar to that in (6.30a). We will ignore
the oscillation modes in the circle direction. However, we need to take into account
that it is possible for the string to ‘wind’ an arbitrary number of times around the
circle. Winding is expressed as a term in the expansion of X1 which is linear in σ.
The non-oscillatory part of the mode expansion thus reads

X1(τ, σ) =
1

2πT

(
p1 τ + w1 σ

)
. (6.64)

In terms of left and right movers, X1 = X1
R + X1

L, this reads

X1
R(τ, σ) =

1
4πT

(τ − σ)(p1 + w1) ,

X1
L(τ, σ) =

1
4πT

(τ + σ)(p1 − w1) .

(6.65)

Now of course we cannot just take arbitrary values for p1 and w1. For p1, which
is the centre-of-mass momentum of the string along the circle, we can use our knowl-
edge of the spectrum of a particle in a box. In the quantum theory the momentum
eigenvalues have to be quantised in order for the wave function to be single-valued.
Specifically, with p̂ = (1/i)∂x and a wave function ψ ∝ exp(inx/R), the spectrum
of the momentum operator is

p1 =
n
R

, n ∈ Z . (6.66)

A similar condition holds true for the spectrum of w1. The fact that the string can
wind around the circle is expressed as the equivalence condition

X1(τ, σ + 2π) = X1(τ, σ) + 2πmR , (6.67)
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6.7 T-duality

where m indicates the number of windings. Comparing this with (6.64) shows that

w1 = 2πT mR , m ∈ Z . (6.68)

Note that the winding energy quantum grows with the radius, while the momentum
quantum decreases with the radius.

Let us now consider the mass-squared operator M2. For an observer in the
non-compact part of the space-time, the effective mass-squared is given by M2 =

−p0 p0 − ∑25
i=2 pi pi, that is, without the momentum along the circle. Remember that

in section 6.3 we used the constraint L0 + L̃0 = 0 to express M2 in terms of the os-
cillators (see equation (6.34)). In order to generalise that discussion to the present
situation, we just need to know the contributions to L0 and L̃0 which come from X1.
Using (6.11) for the stress tensor, and inserting this in (6.33a), we find that the con-
straint L0 + L̃0 = 0 now reads

L0 + L̄0 =
1

4πT

(
p0 p0 +

25

∑
i=2

p1 p1

)
+

1
8πT

(
p1 − w1

)2
+

1
8πT

(
p1 + w1

)2
+ N + Ñ .

(6.69)
From here we thus conclude that the mass-squared for the 25-dimensional observer
is given by

M2 = (p1)2 + (w1)2 +
2
α′
(N + Ñ) =

( n
R

)2
+ (2πT mR)2 +

2
α′
(N + Ñ) . (6.70)

This expression has an important property: it is invariant under the transformation

R → 1
2πT R

, n ↔ m . (6.71)

This transformation, also called T-duality, inverts the radius of the circle. Momen-
tum modes along the circle get mapped to winding modes around the circle. Phys-
ically, this invariance means that if we look at the energy spectrum of string states,
there is no way to say whether the target space is a circle of radius R or a circle of
radius 1/2πTR.
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7
Loops and scales

Before we can discuss Feynman diagrams with loops – the main topic of the present
chapter – we need to take a step back and think once more about the meaning of the
scattering amplitudes which we have been computing in chapter 4. Consider for
instance the four-particle amplitude (4.53). By itself, it is not very helpful for an ex-
perimentalist. The reason is that it contains a free parameter g, and the theory does
not predict its value. So if we want to use this expression to say something about
the four-particle amplitude for arbitrary momenta, we will first have to determine g,
for instance by doing a single experiment at some fixed values of the momenta. The
same is actually true for m. The mass is physically extracted from the behaviour of
the two-point correlator (more on that below). This physical mass is not a priori the
same thing as the parameter m.

When we consider diagrams with loops, this distinction between physically mea-
surable quantities on the one hand and parameters in the Lagrangian on the other hand
becomes even more important and subtle. The process of ‘tuning’ of the param-
eters such that the physically measurable quantities take the right value is called
renormalisation.

7.1. Regularisation

We have seen how to compute tree-level diagrams in chapter 4. In these diagrams,
all the momenta on the internal lines are fixed by the momentum-conserving Dirac
delta functions associated to the vertices. For diagrams with loops, there are not
enough such constraints, and we are left with additional momentum integrals. The
integration momenta are associated to the particles which “go around in the loops”.
Unfortunately, these integrals are generically divergent, so before we can compute
them, we need to make sense of these divergences.

Consider as an example the loop diagram which occurs in the computation of
the 1 → 1 process in a scalar theory (we have encountered this diagram in position
space in (4.37)). In momentum space, this graph gives a correction to the propagator,
given by

=
1
2

δ4(k1 + k2)

(
− i

h̄
λ

) ∫ d4 p
(2π)4

−ih̄
p2 + m2 − iϵ

. (7.1)

Since the numerator of the integrand only depends on the norm p2, we can use
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7.2 Renormalisation

spherical coordinates, integrate out the angular piece, and write the integral as

vol(S3)
∫ ∞

0

dp
(2π)4 p3 −ih̄

p2 + m2 − iϵ
. (7.2)

For large values of the norm p, this integral behaves as
∫

dp p, which is quadratically
divergent. But “infinity” is obviously not the right answer.

However, nobody expects theories of particle physics to be valid up to arbitrary
energy scales. What is much more reasonable is that at some very high energy or
mass scale (some very large value of p2), new interactions and new particles start
playing a role. The only requirement on a physically relevant theory is that, as long
as we stay away from this high energy scale (i.e. as long as the momenta of the
scattering particles are much smaller than this scale), the physics is not influenced
by these new particles and interactions.

So what we should really do is to cut off the loop integral at some large but
finite value of p (let us call it Λ), and then impose that the results which we get
do not depend on Λ.1 The process of cutting off the integral is called regularisation
(it obviously makes the integral finite, regular). The process of imposing that the
physical results are independent of Λ is called renormalisation (for reasons which
will become clear soon).

With momentum cut-off regularisation, the integral becomes

vol(S3)
∫ Λ

0

dp
(2π)4 p3 −ih̄

p2 + m2 − iϵ
=

−ih̄
2

vol(S3)

(
Λ2 + m2 log

[ m2

Λ2 + m2

])
.

(7.3)
This expression is finite for any finite value of Λ, and it clearly shows the quadratic
divergence if we would take Λ → ∞. Apart from the quadratic term there is also a
piece containing a logarithm of the cut-off scale.

Regularisation can of course be done in many other ways. The procedure out-
lined above – cutting off the momentum integrals at the upper end – is one of them.
Another often used procedure is to change the dimension in which we evaluate the
integral, from d = 4 to d = 4 + ϵ for some small value of ϵ. The latter is called
dimensional regularisation, and we will encounter it in one of the exercises (it is not
as useful to build an intuitive understanding of regularisation and renormalisation,
hence we will focus on cut-off regularisation here). A third and often-used method
is lattice regularisation, in which space-time is descretised to a lattice of points. This
method is useful for doing computer simulations, but less practical for analytic ap-
proaches.

As it stands, the expression for the two-point function is now Λ dependent. But
that is only superficially so, since we have not yet determined how the parameter λ
should be chosen. This is where renormalisation enters.

▶ See also: For a lucid exposition of the physics behind “regularisation” and “renor-
malisation”, see chapter III of A. Zee, “Quantum field theory in a nutshell”, 2003.

7.2. Renormalisation

Now that we know how to make our integrals finite, let us look at the renormalisa-
tion procedure. Instead of discussing the formal theory, let us get straight down to

1There is a subtletly related to the fact that for light-like momenta pµ, we always have a vanishing
norm pµ pµ = 0, even when the energy of the massless particle can be arbitrarily large. We will avoid this
problem by evaluating all integrals using a rotation of the p0 integration into the complex plane, so that
we are effectively dealing with a Euclidean theory.
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7.2 Renormalisation

business and focus on a simple example: the renormalisation of the real scalar field
theory with ϕ4 interaction to one-loop order.

Let us first compute the two- and four-point amplitude which we will use to
determine our physical mass and coupling constant. For the two-point function to
one-loop order we have

Γ(2)(k1, k2) =

= k2
1 + m2 +

1
2

(
− i

h̄
λ

) ∫ d4 p
(2π)4

−ih̄
p2 + m2 − iϵ

.

(7.4)

(If you compare this with the Feynman rules in table 4.1 you will notice that we have
not written the normalisation factors 1/

√
2ω nor the overall momentum conserving

delta function; these are the same for both graphs and we will ignore them here for
simplicity as only the relative factors will be important). We have evaluated this
integral in the previous section, so let us go straight on to the next set of graphs.

For the four-particle scattering amplitude Γ(4) we have, again to one loop order,

Γ(4)(ki) =

=

(
− i

h̄
λ

)
+ V(k1 + k3) + V(k1 + k2) + V(k1 + k4) ,

(7.5)
where the integral V(q) is given by

V(q) =
1
2

(
− i

h̄
λ

)2 ∫ d4 p
(2π)4

−ih̄
p2 + m2 − iϵ

−ih̄
(q + p)2 + m2 − iϵ

. (7.6)

Evaluating this integral is a bit messy. The high-energy behaviour, however, does
not depend on the mass m as long as it is small enough. So let us use the approx-
imation m ≪ Λ and also m ≪ ki so that we can effectively set m ≈ 0. The next
step is then to rewrite the four-dimensional momentum integral over p in a form in
which we can reduce it to a scalar integral. This is done using the ‘Feynman param-
eter trick’, which is a method to combine the product of denominators into one. The
general expression is given in (7.20). For our integral it leads to the conversion

∫ d4 p
(2π)4

1
p2 − iϵ

1
(q + p)2 − iϵ

=
∫ 1

0
dx1dx2

∫ d4 p
(2π)4 δ(1 − x1 − x2)

1[
x1(p2 − iϵ) + x2((p + q)2 − iϵ)

]2
=
∫ 1

0
dx
∫ d4 p

(2π)4
1[

p2 + 2x p · q + x q2 − iϵ
]2

=
∫ 1

0
dx
∫ d4l

(2π)4
1[

l2 + x(1 − x)q2 − iϵ
]2 .

(7.7)
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The step from the second to the third line can be made because the Dirac delta sets
x1 = 1 − x2. In the last step we have introduced a new integration variable l =
p + xq. This results in the loop momentum only occurring quadratically, so that we
can reduce the integral to a trivial spherical volume integral times an integral over
the norm of l, which can be done (see section 7.5). Only the x integral is then left,
which is also doable.

The upshot of the analysis is that

Γ(2)(ki) = k2
1 + m2 − ih̄π2λΛ2 +O(h̄2) ,

Γ(4)(ki) =

(
−i
h̄

λ

)
+ iCλ2

[
log
(

Λ2

s

)
+ log

(
Λ2

t

)
+ log

(
Λ2

u

)]
+O(h̄) ,

(7.8)

where we have re-introduced the Mandelstam variables. The coefficient C is a pos-
itive number (the value of which is not important here). The suppressed terms are
not only higher order in h̄, but also higher-order in λ.

Now what do these expressions in (7.8) mean? On the left-hand sides, we have
a physically measurable quantity. On the right-hand side, we have functions of the
a priori undetermined numbers m and λ, as well as the cut-off scale Λ. If an ex-
perimentalist would ask you to compute the probability for a certain complicated
scattering process to take place, the only thing which makes sense is to express that
answer in terms of the two quantities which sit on the left-hand side of the expres-
sions. Motivated by the lowest order terms, we are led to define a physical mass
and physical coupling by

m2
phys = Γ(2)(k = 0) , λphys = ih̄Γ(4)(ki = k(0)i ) . (7.9)

These reduce to m2
phys = m2 and λphys = λ at lowest order in h̄, but then receive

corrections. In the case of the coupling constant, these corrections depend on the
momenta, so we need to evaluate the four-point amplitude at a particular value k(0)i
for these momenta to define what we mean with “physical coupling”. Any value is
as good as any other; one usually chooses s = t = u = µ2.

Of course, we want mphys and λphys to be independent of the cut-off Λ: this is
our requirement that extremely high-energy effects in loops should not influence
low-energy scattering amplitudes. Doing this requires careful tuning of m and λ
as Λ is changed. Instead of doing that, let us simply try to express all amplitudes
directly in terms of mphys and λphys. For the physical coupling we have

λphys(µ) = λ − 3h̄Cλ2 log
(

Λ2

µ2

)
+O(λ3) . (7.10)

This coupling measures the strength of the interaction at one particular momentum
scale µ. To this order in λ we can invert this to get

λ = λphys(µ) + 3h̄Cλphys(µ)
2 log

(
Λ2

µ2

)
+O

(
λphys(µ)

3) . (7.11)

If we now plug this back into the amplitude Γ(4) (for arbitrary momenta, not just s =
t = u = µ), we get the result

Γ(4) = − i
h̄

λphys(µ)+ iCλ2
phys(µ)

[
log
(

µ2

s

)
+ log

(
µ2

t

)
+ log

(
µ2

u

)]
+O

(
λphys(µ)

3) .

(7.12)
This result is quite remarkable: all dependence on the cut-off has disappeared! Once
we have measured the strength of the coupling at one particular momentum scale µ,
the expression above will tell us the strength at any other value of the momenta.
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Note that since λphys is finite, we see that we are forced to make λ go to zero
in the limit that we take the cut-off Λ to infinity. In more standard language, the
bare coupling λ vanishes in the limit in which the cut-off is removed. This is good
to keep in the back of your mind, however, once you express amplitudes in terms
of λphys you do not have to worry about it anymore. This process of tuning the bare
parameters such as to obtain the correct physical amplitudes is called renormalisation
(somewhat of a misnomer since we never normalised the bare parameters before).

The feature that the cut-off does not show up in any amplitude when it is ex-
pressed in terms of physical coupling constants is a property of so-called renormal-
isable theories. Theories which are non-renormalisable do not have this property, and
physical quantities will come out to depend on Λ. This simply means that knowl-
edge of physics at or beyond the scale Λ will be necessary in order to understand
the low-energy physics which we are interested in.

▶ Summary: The physical mass mphys and coupling constant gphys are defined by
measurable quantities, in our case Γ(2)(k2 = 0) = m2

phys and Γ(4)(ki = 0) = gphys.
Imposing that these are independent of the cut-off Λ requires that the bare parame-
ters m2 and g depend on Λ, in a divergent way.

▶ See also: The renormalisation of ϕ4 theory, as well as many more computa-
tional details, are given in e.g. M. Srednicki, “Quantum field theory”, Cambridge,
2007 and M. Peskin and D. Schroeder, “An introduction to quantum field theory”,
Perseus, 1995.

7.3. Renormalisation group flow

Let us now consider once more the physical coupling λphys(µ). It gives us the
strength of the interaction when the particles which are involved have a momen-
tum s = t = u = µ.2 An interesting thing to work out is the dependence of this
coupling on the energy scale µ. We can use (7.10) to work out the way in which the
value of the couplings at two different energy scales are related. We find

λphys(µ
′) = λphys(µ) + 3Cλphys(µ)

2 log
(

µ′2

µ2

)
+O(λphys(µ)

3) . (7.13)

The coupling thus has a logarithmic dependence on the overall energy scale. Such
an energy-dependent physical coupling is called a running coupling constant.3

The beta functions for the ϕ4 and QCD
theories in four dimensions (to lowest
order in perturbation theory). In the
top plot the fixed point at λphys = 0 is
UV unstable, while in the bottom plot
it is UV stable.

It is common to express the scale dependence of physical couplings in the form
of a differential equation. By differentiating equation (7.13) with respect to µ′ we see
that is equivalent to

µ
d

dµ
λphys(µ) = 6Cλphys(µ)

2 +O
(
λphys(µ)

3) . (7.14)

This kind of equation is called a renormalisation group flow equation. It describes
the flow of the coupling constant as µ is changed. The word ‘group’ is a bit out
of place here, as the only group which plays a role here is that of one-dimensional
translations µ → µ + δµ.

2This is not even actually physically reachable, but for computational purposes it will do.
3What “energy” means in this definition can be quite confusing. In the example we discussed here,

we defined the coupling to be the value of the scattering amplitude for the particular process in which s2 =
t2 = u2 = µ2. But the amplitude is a function of more than one energy scale, and we could have taken
something else as our definition.
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The object on the left-hand side of (7.14) is an important one, and called the beta
function for the coupling λ,

βλ := µ
d

dµ
λphys . (7.15)

If the coupling depends on the energy scale, the beta function is non-zero. The beta
function says what happens to the coupling when the energy scale is increased.

If we want to understand how couplings behave as we go towards high energies
(the UV) or low energies (the IR), it is convenient to make a plot of β as a function
of the coupling. The bit of information (7.14) which we have just extracted at lowest
order in perturbation theory is represented in the top plot of figure 7.3. For any
value of g, the change of g is positive as the energy scale is increased (at least for
small enough values of g).4

This is to be contrasted with the coupling constant for the strong nuclear force
(QCD). We have not discussed that theory in these lectures, but a perturbative anal-
ysis produces a plot as in the bottom half of figure 7.3. For any value of the cou-
pling, an increase of the energy scale makes the coupling smaller, until it vanishes
completely in the high-energy limit. This behaviour is called “asymptotic freedom”,
and tells us that quarks become free in the high-energy limit.

▶ See also: A. Zee, “Quantum field theory in a nutshell”, 2003 chapter VI.8, M. Le Bel-
lac, “Quantum and statistical field theory”, Oxford University Press, 1991 chapter 7.

7.4. Power counting

We have seen examples divergent integrals in the previous sections, and explored
their behaviour by working them out explicitly. However, there is a quick way to
determine whether integrals are likely to be divergent, which does not involve doing
them explicitly. This method goes under the name of power counting.

For power counting we simply use the fact that every loop is associated to a four-
dimensional integral which goes like p4 and every propagator goes like 1/p2. The
superficial degree of divergence is defined as

D = 4L − 2I , (7.16)

where L is the number of loops and I the number of propagators or internal lines
in the diagram (i.e. excluding external propagators which get removed by the LSZ
formula). It is superficial because often integrals behave in more subtle ways than
indicated by the power counting argument. Nevertheless, it can be helpful as a
rough guideline. If D = 0 we have an integral of the form

∫ Λdxx−1 which is likely
to diverge as log Λ. If D > 0 we will get a power-like divergence ΛD. For negative D
the integral is likely to be finite (at least in the UV region).

If we use the fact that the number of loops equals

L = I − (v − 1) (7.17)

where v is the number of vertices, and if we also use the fact that the number of
vertices in a theory with ϕn interactions is given by

v =
E + 2I

n
, (7.18)

4There is a similar running of the mass mphys, but since we have at various points in this section used
the massless approximation, we will not look at it here.
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we can express D in a sometimes more useful form. This reads

D = 4 − E + (n − 4)v . (7.19)

For the example ϕ4 theory which we discussed in the previous sections we have n =
4, and we immediately find that D = 2 for the one-loop correction to the two-point
function and D = 0 for the one-loop correction to the four-point function. These
numbers agree with the type of divergences which we have computed explicitly.

7.5. Integrals

(The material in this section is for information only, do not learn these formulas by
heart). Feynman parameters can be used to combine products of denominators into
one factor. In general it states that

1
Aα1

1 Aα2
2 · · · Aα2

2
=

Γ(α1 + α2 + · · ·+ αn)

Γ(α1)Γ(α2) · · · Γ(αn)

×
∫ 1

0
dx1 · · ·dxn

xα1−1
1 xα2−1

2 · · · xαn−1
n δ(1 − x1 − x2 · · · xn)

(x1 A1 + x2 A2 + · · ·+ xn An)α1+α2+···+αn
. (7.20)

Here Γ is the Euler gamma function, which for positive integers satisfies Γ(n) =
(n − 1)!.

The momentum integral can then be done by making use of∫ ∞

0

uα du
(u + r)β

= rα+1−β Γ(α + 1)Γ(β − α − 1)
Γ(β)

. (7.21)

This will leave the integral over the Feynman parameter, which can typically only
be re-written in terms of hypergeometric functions, which is rather unilluminating.
In the massless limit one can reduce to gamma functions which is sometimes useful,∫ 1

0
du uα−1(1 − u)β−1 = B(α, β) =

Γ(α)Γ(β)

Γ(α + β)
. (7.22)

The above will simplify further in the large Λ limit which we have been looking
at in the main text. The relevant integrals are then

∫ d4k
(2π)4

1
(k2 + c2 − iϵ)3 =

−i
32π2c2 ,

∫ d4k
(2π)4

1
(k2 + c2 − iϵ)2 =

i
16π2

(
log(

Λ2

c2 )− 1 + . . .
)

.

(7.23)

The second one is related to the first one by differentiating with respect to m2.
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8
Assorted material

8.1. What you should be able to do on the exam

chapter 2 Compute equations of motion, canonical momenta, transform fields and
show that an action is invariant, understand the Noether procedure and know
how to compute Noether charges; all for classical mechanics systems as well
as for real and complex scalar field theories.

chapter 3 Understand the logic behind free field expansions such as (3.26), know
what Poisson brackets are, know what Dirac quantisation is, know how to
expand fields in modes and derive the commutation relations of the mode
operators from the canonical commutators, do oscillator algebra with quan-
tum fields and operators built from them, know what normal ordering means,
understand the meaning of the quantum operators â and b̂, know what a prop-
agator is and be able to compute it from the oscillator expansion.

chapter 4 Know how to compute correlators of an interacting theory by only us-
ing correlators of a free theory, compute correlators of time-ordered free fields
using oscillator algebra, know Wick’s theorem and how to prove it for small
numbers of fields, know what Feynman diagrams are and how to associate
them to correlators, compute symmetry factors of diagrams, know the Feyn-
man rules for real and complex scalar fields, how to determine them from a
Lagrangian, and how to use them to translate graphs to mathematical expres-
sions, know how to determine the order of h̄ of a graph, know the building
blocks of a scattering amplitude and the Lehmann-Symanzik-Zimmermann
reduction formula.

chapter 5 Understand the concept of path integration, do simple path integrals of
Gaussian type, know how to write down correlators of fields in path inte-
gral language, know what it means to couple the system to an external source
and why that is useful in computing correlators, know how to compute Z[J]
by completing a square and integrating out ϕ, be able to express Z[J] for an
interacting theory in terms of diagrams, know how to compute correlation
functions from Z[J] by differentiating w.r.t. J, and be able to do this also at the
graphical level using the graphs of Z[J].

chapter 6 Understand reparameterisation invariance, know the Nambu-Goto and
Polyakov forms of the actions for particles and strings, compute the corre-
sponding equations of motion, understand the symmetries of the string world-
sheet action, know the string equations of motion in flat gauge, understand
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what light-cone and static gauge mean, be able to verify and interpret classi-
cal solutions to the equations of motion, know about left/right-movers and
the expansion of fields in oscillators, be able to use the constraints to compute
the mass of a string state, compute with quantum Virasoro charges and their
algebra, know about the normal ordering issues.

chapter 7 Know how to write down expressions for loop diagrams, know how to
determine whether graphs diverge and what is their superficial degree of di-
vergence, understand the concept of cut-off integrals, understand the differ-
ence between bare and renormalised couplings, understand the logic behind
renormalisation, know what renormalisability means physically, know what
is a renormalisation group equation and a beta function.
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8.2 Special relativity reminder

8.2. Special relativity reminder

This is a brief reminder of some of the concepts and notation used in special relativ-
ity. The key postulate is that light always travels with the same speed c, independent
of the velocity of the observer. The distance travelled by light satisfies

∆t =
√
(∆x)2 + (∆y)2 + (∆z)2 , (8.1)

for any coordinate system t, x, y, z corresponding to an observer moving with con-
stant velocity. The interval between two space-time events (not necessarily on the
same light beam’s world line) is defined as

ds2 = −dt2 + dx2 + dy2 + dz2 . (8.2)

This is the Minkowski interval. Time and space are unified into space-time. The
coordinates are unified in the notation xµ where µ = 0, 1, 2, 3. We have x0 = t,
x1 = x, x2 = y and x3 = z.

Let us now consider vector and gradient objects in this four-dimensional space.
Vectors are simply arrows, which associate a direction to the point at which they are
located. We denote them with

vµ = (v0, v1, v2, v3) . (8.3)

Such vectors transform, under a coordinate transformation which takes us from
original coordinates xµ to new coordinatecompactly s x′µ, as

vµ → v′µ =
∂x′µ

∂xν
vν . (8.4)

This transformation rule is called contra-variant (the reason is essentially that the
components of a vector transform in the opposite way from basis vectors).

Gradients of functions also carry an index,

∂ f
∂xµ =

( ∂ f
∂x0 ,

∂ f
∂x1 ,

∂ f
∂x2 ,

∂ f
∂x3

)
. (8.5)

By the chain rule, such gradients transform under a coordinate transformation as

∂ f
∂xµ → ∂ f

∂x′µ
=

∂xν

∂x′µ
∂ f
∂xν

. (8.6)

Note that the transformation matrix here is different from the one of vectors. The
transformation behaviour of gradients is called co-variant. One often uses the short-
hand notation

∂

∂xµ = ∂µ f , (8.7)

which is only ambiguous if f depends on more than one coordinate.
From the expressions above, it is also clear that if we multiply a contra-variant

object with a co-variant one and sum over the index values, we get an expression
which does not change under a coordinate transformation,

3

∑
µ=0

vµ ∂ f
∂xµ . (8.8)

One typically uses the Einstein summation convention in which the summation
symbol is suppressed, and summation is understood whenever there is both a ‘lower’
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and an ‘upper’ index of the same name. Such a summation is called an index con-
traction or simply contraction.

The space-time interval can be summarised by making use of a two-tensor, the
Minkowski metric,

ds2 = ηµνdxµdxν , ηµν = diag(−1, 1, 1, 1) . (8.9)

Using this metric we can convert upper indices to lower ones,

vµ = ηµνvν . (8.10)

In particular, the coordinate-independent four-dimensional squared norm of a vec-
tor is given by making a double contraction |v|2 = vµvµ = ηµνvµvν.

▶ See also: See also “Introduction to tensor calculus” by Kees Dullemond and
Kasper Peeters [27].

8.3. Variational derivatives reminder

Variational derivatives (also called functional derivatives) are derivatives of func-
tionals F[ϕ] with respect to the function(s) on which they depend (here ϕ). Formally,
one writesDefinition of the variational

derivative.
∫

δF
δϕ(x)

δϕ(x)dx = lim
ϵ→0

F[ϕ(x) + ϵδϕ(x)]− F[ϕ(x)]
ϵ

. (8.11)

which defines the derivative δF/δϕ(x). But where does this definition1 come from?
It is probably best intuitively understood to be a generalisation of ordinary par-

tial derivatives of functions of multiple variables. Consider a function F(ϕ1, . . . , ϕn)
of n variables ϕi. One can write down the partial derivative with respect to any
single variable ϕk,

∂F
∂ϕk

= lim
ϵ→0

F(ϕ1, . . . , ϕk + ϵ, . . . , ϕn)− F(ϕ1, . . . ϕn)

ϵ
, (8.12)

We can rewrite this slightly by changing ϕk not by ϵ, but by some constant δϕk · ϵ.
The expression then reads

∂F
∂ϕk

δϕk = lim
ϵ→0

F(ϕ1, . . . , ϕk + ϵδϕk, . . . , ϕn)− F(ϕ1, . . . ϕn)

ϵ
, (8.13)

(with no sum over k implied). Because we have the freedom to take δϕk different
for any value of k, we can now write down a kind-of “derivative in all directions
simultaneously”: change all ϕi on the right hand side above, and sum over k,

∑
k

∂F
∂ϕk

δϕk = lim
ϵ→0

F(ϕ1 + ϵδϕ1, . . . , ϕn + ϵδϕn)− F(ϕ1, . . . ϕn)

ϵ
, (8.14)

The connection to (8.11) is now made by taking the limit of an infinite number of
variables ϕi, i.e. take n → ∞. Instead of labelling the variables by a discrete index i,
we then label them by a continuous (real) variable x.

1Note that neither the left-hand side nor the right-hand side depend on x. On the left-hand side you
can see this because there is an explicit integral over x. On the right-hand side, there is no x-dependence
because F[ϕ(x)] does not actually depend on x, only on ϕ(x). If you are confused: an example of an
F[ϕ(x)] would be the action of a field ϕ(x).
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In physics, people are often sloppy with the choice of δϕ(x). This is supposed
to be a small change, to be added to ϕ(x). But what we do instead is to just take
δϕ(x) = δ(x − y). The key formula (8.11) then reads∫

δF
δϕ(x)

δ(x − y)dx =
δF

δϕ(y)
= lim

ϵ→0

F[ϕ(x) + ϵδ(x − y)]− F[ϕ(x)]
ϵ

. (8.15)

This works fine most of the time, but you may run into trouble in cases where
F[ϕ(x) + ϵδ(x − y)] is not well-defined, for instance because this formal change of
the argument of F leads to products of Dirac delta functions.
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