The $\mathcal{N}=4$ Pentabox through Colour–Kinematics Duality

Young Theorists Forum 2014

Gustav Mogull g.mogull@ed.ac.uk

Higgs Centre for Theoretical Physics, University of Edinburgh

December 17, 2014

Complexity of Feynman Diagrams

- Scattering amplitudes are traditionally formed as a sum of constituent Feynman diagrams.
- These grow both in complexity and number with increasing numbers of scattered particles and internal loops.

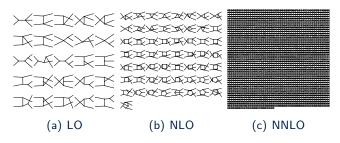


Figure: Three gluon jet production events.

■ The situation is worse for gravity amplitudes as all possible kinds of vertex exist.

Hidden Structure in Yang Mills Amplitudes

■ The Parke—Taylor formula for tree—level colour—ordered Yang Mills scattering amplitudes takes the form

$$A^{\mathsf{tree}}(1^+, 2^+, \dots, i^-, \dots, j^-, \dots, n^+) = \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle},$$

$$A^{\mathsf{tree}}_n = \sum_{\sigma \in \mathcal{S}_n} A^{\mathsf{tree}}(\sigma(1), \sigma(2), \dots, \sigma(n)) \mathsf{Tr} \left[T^{a_{\sigma(1)}} T^{a_{\sigma(2)}} \dots T^{a_{\sigma(n)}} \right].$$

- Colour-ordered (colour-stripped) amplitudes are formed from planar Feynman diagrams with ordered external legs only.
- Recent advances in Yang Mills amplitudes are Lagrangian free, e.g. Yangian symmetry, Grassmannia, dual coordinates, the Amplituhedron, etc.
- Can we reconcile this elegant structure with our intuitive, yet computationally impractical, Feynman diagrams?

The Tree-Level Feynman Diagram Expansion

The Feynman diagram expansion at tree-level is realised as a sum of cubic graphs only.

$$A_m^{\text{tree}} = g^{m-2} \sum_{\text{diagrams j}} \frac{c_j n_j}{\mathcal{D}_j}.$$

- \mathcal{D}_j are products of Feynman propagators, c_j are colour factors (products of f^{abc} s) and n_j are kinematic numerators.
- At 4 points we have the s, t and u channels.

Colour-Kinematics Duality

 Colour–factors of diagrams often satisfy Jacobi identities of the form

$$c_i \pm c_j \pm c_k = 0$$
,

due to $f^{abc}f^{cde} + f^{bcd}f^{ade} + f^{cad}f^{bde} = 0$.

- This occurs whenever three diagrams are the same, except for internal s, t and u— channels.
- At tree-level, it has been proven (arXiv:0805.3993) that we may choose Bern, Carrasco & Johansson (BCJ) kinematic numerators, n_i, satisfying

$$n_i \pm n_j \pm n_k = 0.$$

Does this imply the existence of a kinematic group?

Loop-Level Expressions

- Existence of loop-level BCJ numerators is merely conjectured, though there is strong evidence.
- Yang Mills amplitudes take the form, with $D = 4 2\epsilon$,

$$\mathcal{A}_{m}^{\text{L-loop}} = i^{L} g^{m-2+2L} \sum_{\text{diagrams } j} \int \prod_{k=1}^{L} \frac{d^{D} \ell_{k}}{(2\pi)^{D}} \frac{1}{S_{j}} \frac{n_{j}(\ell_{k}) c_{j}}{\mathcal{D}_{j}(\ell_{k})}.$$

 An example of a BCJ move on the "pentabox" numerator would be

The Double-Copy Formula

■ This gives tree—level gravity amplitudes from BCJ numerators:

$$\mathcal{M}_{m}^{\text{tree}} = i \left(\frac{\kappa}{2}\right)^{m-2} \sum_{j} \frac{n_{j} \tilde{n}_{j}}{\mathcal{D}_{j}}.$$

■ At loop—level, the double—copy formula generalises to

$$\mathcal{M}_{m}^{\text{L-loop}} = i^{L+1} \left(\frac{\kappa}{2}\right)^{m-2+2L} \sum_{j} \int \prod_{k=1}^{L} \frac{d^{D}\ell_{k}}{(2\pi)^{D}} \frac{1}{S_{j}} \frac{n_{j}(\ell_{k})\tilde{n}_{j}(\ell_{k})}{\mathcal{D}_{j}(\ell_{k})}.$$

These formulae continue to hold in the supersymmetric regime, potentially providing supergravity amplitudes at loop-level.

Finding BCJ Numerators

- BCJ systems are formed by diagrams making up an *L*-loop amplitude.
- Candidate numerators must satisfy 3 important properties:
 - 1 All possible BCJ moves of the form $n_i \pm n_j \pm n_k = 0$.
 - 2 Any symmetries of the corresponding graphs.
 - Reproduction of the complete amplitude on summation of diagrams.
- It suffices to determine the numerators of the master diagrams: from these, all other numerators are straightforwardly obtainable through BCJ moves.
- However, if we need to compare to a known amplitude, what have we achieved?

Generalized Unitarity in $\mathcal{N}=4$ at 1 Loop

■ Colour–ordered, 1–loop $\mathcal{N}=4$ amplitudes are expressible as a sum of box diagrams,

$$\ell_{+K_{4}^{A}} = \ell_{-K_{1}^{A} - K_{2}^{A}}$$

$$K_{3}^{A^{1-\text{loop}}}(1, 2, \dots, n) = \int \frac{d^{4}\ell}{(2\pi)^{4}} \mathcal{A}^{1-\text{loop}}(1, 2, \dots, n)$$

$$= \sum_{\text{channels } A} \int \frac{d^{4}\ell}{(2\pi)^{4}} \frac{B_{A}}{\ell^{2}(\ell - K_{1}^{A})^{2}(\ell - K_{1}^{A} - K_{2}^{A})^{2}(\ell + K_{4}^{A})^{2}}.$$

- $\{K_i^A\}$ is an ordered partition of the external momenta p_i , e.g. $\{K_1, K_2, K_3, K_4\} = \{p_1 + p_2, p_3 + p_4, p_5, p_6\}$ at 6 points.
- The coefficients B_A are unknown and independent of ℓ .

Generalized Unitarity in $\mathcal{N}=4$ at 1 Loop

$$\mathcal{A}(1,2,\ldots,n) = \sum_{\text{channels }C} \frac{B_C}{\ell^2(\ell - K_1^C)^2(\ell - K_1^C - K_2^C)^2(\ell + K_4^C)^2}$$

$$\ell^2(\ell - K_1^A)^2(\ell - K_1^A - K_2^A)^2(\ell + K_4^A)^2\mathcal{A}(1,2,\ldots,n)$$

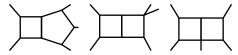
$$= \sum_{\text{channels }C} B_C \frac{\ell^2(\ell - K_1^A)^2(\ell - K_1^A - K_2^A)^2(\ell + K_4^A)^2}{\ell^2(\ell - K_1^C)^2(\ell - K_1^C - K_2^C)^2(\ell + K_4^C)^2}.$$

■ Choose the 4 components of ℓ such that $\ell^2 = (\ell - K_1^A)^2 = (\ell - K_1^A - K_2^A)^2 = (\ell + K_4^A)^2 = 0.$ $B_A = \ell^2 (\ell - K_1^A)^2 (\ell - K_1^A - K_2^A)^2 (\ell + K_4^A)^2 \mathcal{A}(1, 2, \dots, n)$ $= \operatorname{Cut}_A(1, 2, \dots, n). \tag{1}$

Key point: a knowledge of the cuts suffices to reconstruct the full amplitude.

Generalizing to the 2-Loop, 5-Point System

■ We need only compare to 3 different cuts, all of which contain no triangles, bubbles or tadpoles.



■ We compare these to the BCJ expansion (rather than the irreducible expansion) of the colour—ordered integrand,

$$\mathcal{A}^{2-\mathsf{loop}}(12345;\ell_1,\ell_2) = \sum_{\mathsf{diagrams}\ i} \frac{n_i}{\mathcal{D}_i}.$$

Nonplanar graphs and topologies make no contribution as we are interested in the colour-ordered amplitude.

The 5-Point, 2-Loop System in $\mathcal{N}=4$

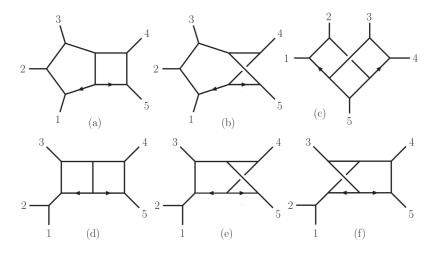
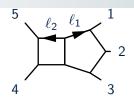


Figure: The 6 diagrams contributing to the 5–point, 2–loop amplitude in $\mathcal{N}=4$.

The New Approach



- $\Delta = \operatorname{Cut}_{\operatorname{pentabox}} = \ell_1^2 (\ell_1 p_1)^2 (\ell_1 p_1 p_2)^2 \dots (\ell_1 + \ell_2)^2 \mathcal{A}^{2-\operatorname{loop}}$ is the maximal cut of the integrand, taken when all pentabox propagators are zero.
- The pentabox itself is the only diagram that contributes on this cut, hence in this case $n = \Delta$. Thus,

$$n(12345; \ell_1, \ell_2) = \Delta + f_1(12345; \ell_1, \ell_2)\ell_1^2 + f_2(12345; \ell_1, \ell_2)(\ell_1 - p_1)^2 + \dots$$

■ We determine the unknown rational functions f_i by considering the other two cuts, both of which are double—boxes.

A Double-Box Cut

■ Take the same cut as previously leaving $(\ell_1 - p_1)^2$ nonzero.

$$= \frac{2}{3} + \frac{$$

Solving the Double-Box Cut

 We choose to express the cut in terms of irreducible numerators,

$$\mathsf{Cut}_{\mathsf{double-box}} = \frac{\Delta}{(\ell_1 - p_1)^2} + \Delta_2.$$

■ The cut equation holds under arbitrary permutations of external momenta. So consider the same equation, taking $p_1 \leftrightarrow p_2$, and solve to obtain

$$f_2(12345; \ell_1, \ell_2) + f_2(21345; \ell_1, \ell_2)$$

= $\Delta_2(12345; \ell_1, \ell_2) + \Delta_2(21345; \ell_1, \ell_2).$

■ This is a symmetry condition on f_2 and can be solved by taking $f_2 = \Delta_2 + g_2$, where $g_2(12345; \ell_1, \ell_2) = -g_2(21345; \ell_1, \ell_2)$.

Progressing to a Solution

- Once all the cut equations are solved, we are most of the way to a solution. For $\mathcal{N}=4$ we also need to set diagrams containing triangles to zero.
- Ultimately we are left with a solution of the form

$$n(12345; \ell_1, \ell_2) = n^{CJ}(12345; \ell_1, \ell_2) - \chi(34512)\ell_1^2$$

$$- (\chi(13254) - \chi(25413))(\ell_1 - p_1)^2$$

$$+ (\chi(13254) - \chi(24513))(\ell_1 - p_1 - p_2)^2$$

$$- \chi(12345)(\ell_1 - p_1 - p_2 - p_3)^2,$$

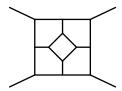
where $n^{\rm CJ}$ is a solution, first found by Carrasco & Johansson via method of ansatz (arXiv:1106.4711), and χ is a new function satisfying

$$\chi([1,2]345) = \chi(123[4,5]) = \chi(12345) - \chi(54321) = 0,$$

 $\chi(12345) + \chi(25341) + \chi(51342) = 0.$

Outlook

- Our workflow can be summarised as:
 - 1 Evaluate cuts of planar integrands using unitarity methods.
 - 2 Use these to derive BCJ master numerators.
 - 3 From these extract the full amplitude using BCJ moves, and a corresponding gravity amplitude.
- The ansatz method has failed to produce a solution for the 5-loop, 4-point $\mathcal{N}=4$ system,



■ We would like to move beyond $\mathcal{N}=4$, deriving numerators for pure YM amplitudes.

Thanks for listening!