The N = 4 Pentabox through Colour—Kinematics

Duality
Young Theorists Forum 2014

Gustav Mogull
g.mogull@ed.ac.uk

Higgs Centre for Theoretical Physics, University of Edinburgh

s
\
(//(1 1N D

December 17, 2014



Complexity of Feynman Diagrams

m Scattering amplitudes are traditionally formed as a sum of
constituent Feynman diagrams.

m These grow both in complexity and number with increasing
numbers of scattered particles and internal loops.
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Figure: Three gluon jet production events.

m The situation is worse for gravity amplitudes as all possible
kinds of vertex exist.



—————
Hidden Structure in Yang Mills Amplitudes

m The Parke—Taylor formula for tree—level colour—ordered Yang
Mills scattering amplitudes takes the form
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m Colour—ordered (colour—stripped) amplitudes are formed from
planar Feynman diagrams with ordered external legs only.

m Recent advances in Yang Mills amplitudes are Lagrangian free,
e.g. Yangian symmetry, Grassmannia, dual coordinates, the
Amplituhedron, etc.

m Can we reconcile this elegant structure with our intuitive, yet
computationally impractical, Feynman diagrams?



The Tree—Level Feynman Diagram Expansion

m The Feynman diagram expansion at tree—level is realised as a
sum of cubic graphs only.
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m D; are products of Feynman propagators, ¢; are colour factors
(products of £2°¢s) and n; are kinematic numerators.

m At 4 points we have the s, t and u channels.
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—————
Colour—Kinematics Duality

m Colour—factors of diagrams often satisfy Jacobi identities of
the form

C;:l:Cj:l:CkZO,

due to fabCfcde 4 fbcdfade 4 fcadfbde =0.

m This occurs whenever three diagrams are the same, except for
internal s, t and u— channels.

m At tree—level, it has been proven (arXiv:0805.3993) that we
may choose Bern, Carrasco & Johansson (BCJ) kinematic
numerators, n;, satisfying

n;injj:nk:O.

m Does this imply the existence of a kinematic group?



Loop—Level Expressions

m Existence of loop—level BCJ numerators is merely conjectured,
though there is strong evidence.

m Yang Mills amplitudes take the form, with D = 4 — 2¢,
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m An example of a BCJ move on the “pentabox” numerator
would be
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—————
The Double-Copy Formula

m This gives tree—level gravity amplitudes from BCJ numerators:
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m At loop—level, the double—copy formula generalises to
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m These formulae continue to hold in the supersymmetric
regime, potentially providing supergravity amplitudes at
loop—level.




—————
Finding BCJ Numerators

m BCJ systems are formed by diagrams making up an L-loop
amplitude.
m Candidate numerators must satisfy 3 important properties:
All possible BCJ moves of the form n; + n; + n, = 0.
Any symmetries of the corresponding graphs.
Reproduction of the complete amplitude on summation of
diagrams.
m It suffices to determine the numerators of the master
diagrams: from these, all other numerators are
straightforwardly obtainable through BCJ moves.

m However, if we need to compare to a known amplitude, what
have we achieved?



Generalized Unitarity in A/ = 4 at 1 Loop

m Colour—ordered, 1-loop N = 4 amplitudes are expressible as a
sum of box diagrams,
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m {K?} is an ordered partition of the external momenta p;, e.g.
{K1, K2, K3, K4} = {p1 + p2, p3 + pa, Ps, ps} at 6 points.
m The coefficients B4 are unknown and independent of /.



—————
Generalized Unitarity in A/ = 4 at 1 Loop
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m Choose the 4 components of £ such that
P=U—-KMN?=(-K}= K=+ KP)2=0.
Ba= 20 — K{P(£— K — KER(0+ KEPA(L2,. ... n)
= Cuta(1,2,...,n). (1)
m Key point: a knowledge of the cuts suffices to reconstruct the

full amplitude.
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Generalizing to the 2—Loop, 5—-Point System

m We need only compare to 3 different cuts, all of which contain
no triangles, bubbles or tadpoles.
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m We compare these to the BCJ expansion (rather than the
irreducible expansion) of the colour—ordered integrand,
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APTO%P (12345, 01, 05) =

m Nonplanar graphs and topologies make no contribution as we
are interested in the colour—ordered amplitude.



The 5-Point, 2-Loop System in N = 4
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Figure: The 6 diagrams contributing to the 5—point, 2—loop amplitude in
N =4
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The New Approach

A= CUtpentabox =
6%(61 —p1)2(f1 — p1 — p2)? ... (01 + £2)? A%7°° s the
maximal cut of the integrand, taken when all pentabox
propagators are zero.

m The pentabox itself is the only diagram that contributes on
this cut, hence in this case n = A. Thus,

n(12345; (1, 02) = A + £(12345; (1, 05)(3
+ £5(12345; 01, 05) (61 — p1)*> + .. ..

m We determine the unknown rational functions f; by considering
the other two cuts, both of which are double—boxes.
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A Double-Box Cut

m Take the same cut as previously leaving (£ — p1)? nonzero.
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—————
Solving the Double—Box Cut

m We choose to express the cut in terms of irreducible
numerators,

A
Cutdouble—box = m + Ao.

m The cut equation holds under arbitrary permutations of
external momenta. So consider the same equation, taking
p1 <> p2, and solve to obtain

@(12345; l1, 52) + f2(21345; l1, 62)
= A2(12345; ly, 52) + A2(21345; ly, 62)
m This is a symmetry condition on f, and can be solved by

taking fo = Ay + g», where
g2(12345; 51, 52) = —g2(21345; 61, 52)
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Progressing to a Solution

m Once all the cut equations are solved, we are most of the way
to a solution. For A/ = 4 we also need to set diagrams
containing triangles to zero.

m Ultimately we are left with a solution of the form

n(12345; 01, 0,) = n“I(12345; (1, (,) — x(34512)(3
— (x(13254) — x(25413))(f1 — p1)?
+ (x(13254) — x(24513))(¢1 — p1 — p2)?
— x(12345)((1 — p1 — p2 — p3)*,
where n*- is a solution, first found by Carrasco & Johansson

via method of ansatz (arXiv:1106.4711), and x is a new
function satisfying

x([1,2]345) = v(123[4, 5]) = x(12345) — x(54321) = 0,
x(12345) + x(25341) + x(51342) = 0.

CJ
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Outlook

m Our workflow can be summarised as:
Evaluate cuts of planar integrands using unitarity methods.
Use these to derive BCJ master numerators.
From these extract the full amplitude using BCJ moves, and a
corresponding gravity amplitude.

m The ansatz method has failed to produce a solution for the
5—loop, 4—point N' = 4 system,

m We would like to move beyond N = 4, deriving numerators
for pure YM amplitudes.



Thanks for listening!



