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Light and the nature of space-time

Light follows the geodesics of space-time

Gravitational lensing

Massive objects curve space-time in their vicinity

What is the nature of quantum space-time?
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Space-time on the quantum level

(~1073°m)

Closed strings probe or ‘feel-out’ space-time on the quantum level

Worldsheet of closed string probing space-time

N
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Flux compactifications

> string vacua with p-form fluxes along the extra dimensions
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X:¥ —M=R"x Ky

H-flux, H = d B, turned on in extra dimensions of string vacua Ky
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T—duality

geometric Ky non — geometric” Kgr

> closed strings propagating and winding in the R-flux background probe a
non-commutative and non-associative space-time geometry
(Blumenhagen, Plauschinn: 2010, List: 2010)

» confirmed by explicit string and CFT calculations (Blumenhagen, Deser,
Liist, Plauschinn, Rennecke: 2011, Condeescu, Florakis, Liist: 2012)

Constant trivector R-flux: R = % R%0; A 0; A Ok
Coordinate algebra probed by closed strings in R-flux compactification:

non-commutative [x',x/] = %Rﬁk(‘?k , [¥',9)] = ind’; and [9;,0] =0

non-associative [x', x/, x*] = ¢R



Motivation

Attempt to understand non-geometric space-time

» Kontsevich's deformation quantization of twisted Poisson manifolds
provides explicit star product realizations of this non-associative geometry
(Mylonas, Schupp, Szabo: 2012)



Motivation

Attempt to understand non-geometric space-time

» Kontsevich's deformation quantization of twisted Poisson manifolds
provides explicit star product realizations of this non-associative geometry
(Mylonas, Schupp, Szabo: 2012)

» If one replaces

‘x’~x’l—>x’*xl‘

one recovers the “non-geometric” commutation relations and Jacobiator
nc [x', %], = 52 R™ 9, [x', 9], = ihd'; and [9;, ] =0

na [x', x/, x|, = ¢R¥



Motivation

Attempt to understand non-geometric space-time

» Kontsevich's deformation quantization of twisted Poisson manifolds
provides explicit star product realizations of this non-associative geometry
(Mylonas, Schupp, Szabo: 2012)

» If one replaces

‘x’~x’l—>x’*xl‘

one recovers the “non-geometric” commutation relations and Jacobiator
. it . o
nc [x',¥]. = 5:R™ 0k, [x',0)]. = ihd'; and [9;,0]« =0
na [x', x/, x|, = ¢R¥

» The coordinate algebra with the x-product is a non-commutative and
non-associative algebra on the R-flux compactification
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» (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and
nonassociative star products can be obtained via a cochain twisting of
classical symmetries to a quasi-Hopf algebra
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Twist deformation quantisation

v

(Mylonas, Schupp, Szabo: 2013) observed that noncommutative and
nonassociative star products can be obtained via a cochain twisting of
classical symmetries to a quasi-Hopf algebra

For a particular choice of “classical algebra of symmetries” g
and “cochain twist” F € Ug ® Ug, we obtain
*-product: * = g o F! o o
flipp T=F2o0oF ! xsx =11 (Xf *x')
associator: ¢r = (1@ F)o(1® A)(F)ogo(A® 1)_(F_1) o(F'®1)
(x5 x) % xK = gp b (x x (X % x5))

quasi-Hopf algebra (H, 7, ¢r) = “generalised quantum group /
quantum symmetries”
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Where these formulae come from...

x and flip: Ar ®F AF =—— A Ar @F AF —— Ar ®F Ar
FIJ / Fll TFH
AR A ARA———— AR A

=z

. [
assoclator: (AF KF AF) ®F AF *F> ArF QF (AF QKF AF)

F1®1l Tl@F

(A® A)rF ®F AF Ar®r (A® A)F
(A®1)(F1)l TU@A)(F)
ARA)RA— AR (A® A)

¢r=(1@F)o(1@A)(F)ogo(AR1)(F o (F el




Motivation
Goal

Goal Mathematical development of a framework to describe a large
class of non-commutative and non-associative geometries,
including the non-geometric flux compactification above.
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Non-commutative and non-associative algebras from deformations

Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds
with a symmetry group action G.

Gelfand-Naimark “Manifolds can be analyzed by studying functions on them.”

Lem G a Lie group, Ug the universal enveloping algebra of its
associated Lie algebra g. Then there is a functor:

coo

G-Man®? — YsAlg

Thm F a twist of Ug. Then there is a functor:

Quantisation | YSAlg % Halg

“Algebras transforming under classical symmetries are twisted
to nc/ na algebras transforming under quantum symmetries H."

Remark Twist deformation quantisation is an equivalence of categories.

Application Recover MSS Algebra by choosing Ug, a particular algebra A in
UsAlg and twist F € Ug ® Ug.
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> g the non-Abelian nilpotent Lie algebra over C with generators
{t,t',m; : 1 <i < j< n} and Lie bracket relations

(B, mp] =8t — s

» classical algebra of symmetries Ug
> algebra A = C>®(R*") in Y9Alg
» cochain twist F € Ug ® Ug given by

F:exp(f%h (%R'jk(m;j@)tkfti®mjk)+ti®%i*i~?i®t;))

» The star product is given by * = pro F~!, which yields on A
o it i iy o
nc [x',x]. = SR p. . [x',ple = ihd'; and [pi, pjl. =0
na [x', x/, x|, = ¢2R¥
> The flip is given by 7 = F 2

» The associator is given by ¢ = exp (% R t; ® L ® tk)
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Non-commutative and non-associative bundles from deformations

Equivalence of module representation categories
Given a nc/ na space, we want to understand all H-equivariant vector bundles
(e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan “Vector bundles may be analysed by studying their modules of

UgCOC(M)z%COO(M)

sections.”
Lem M a manifold with G-action. Then there is a functor:
poo

~

G-VecBuny,
F a twist of Ug. Then there is a functor:

F
Y8 ooy M ooty ———— sty

Thm

Quantisation
“Modules of sections over classical algebras are twisted to nc/
na modules of sections over quantum algebras.”
Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all
H-equivariant vector bundles over the nc/na algebra describing

the flux compactification.



Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

» The representation category of any quasi-Hopf algebra is a closed braided
monoidal category, which means that it has a tensor product, a braiding
and internal homomorphisms.



Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

» The representation category of any quasi-Hopf algebra is a closed braided
monoidal category, which means that it has a tensor product, a braiding
and internal homomorphisms.

> For the category " ,.#, of H-equivariant vb over A €' Alg we obtain:



Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

» The representation category of any quasi-Hopf algebra is a closed braided
monoidal category, which means that it has a tensor product, a braiding
and internal homomorphisms.

> For the category " ,.#, of H-equivariant vb over A €' Alg we obtain:

Thm Y4, is a closed braided monoidal category (®4, 74, homa)



Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

» The representation category of any quasi-Hopf algebra is a closed braided
monoidal category, which means that it has a tensor product, a braiding
and internal homomorphisms.

> For the category " ,.#, of H-equivariant vb over A €' Alg we obtain:

Thm Y4, is a closed braided monoidal category (®4, 74, homa)
Physical relevance This gives standard operations on fields:



Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

» The representation category of any quasi-Hopf algebra is a closed braided
monoidal category, which means that it has a tensor product, a braiding
and internal homomorphisms.

> For the category " ,.#, of H-equivariant vb over A €' Alg we obtain:
Thm Y4, is a closed braided monoidal category (®4, 74, homa)
Physical relevance This gives standard operations on fields:

1 nc/na vector bundles can be tensored ®4 ~~ tensor fields



Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

» The representation category of any quasi-Hopf algebra is a closed braided
monoidal category, which means that it has a tensor product, a braiding
and internal homomorphisms.

> For the category " ,.#, of H-equivariant vb over A €' Alg we obtain:
Thm Y4, is a closed braided monoidal category (®4, 74, homa)
Physical relevance This gives standard operations on fields:

1 nc/na vector bundles can be tensored ®4 ~~ tensor fields

2 VeoaW A ew ®a V' ~~ allows us to define symmetric
and anti-symmetric tensors



Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

» The representation category of any quasi-Hopf algebra is a closed braided
monoidal category, which means that it has a tensor product, a braiding
and internal homomorphisms.

> For the category " ,.#, of H-equivariant vb over A €' Alg we obtain:
Thm Y4, is a closed braided monoidal category (®4, 74, homa)
Physical relevance This gives standard operations on fields:

1 nc/na vector bundles can be tensored ®4 ~~ tensor fields

2 Vs W A ew ®a V' ~~ allows us to define symmetric
and anti-symmetric tensors

3 homa are nc/na homomorphism bundles ~~ e.g. g, R
metric: g : VField — 1 — Forms
curvature: R:V — V @4 Q?
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Work in progress/ outlook

» Differential operators, connections, Riemannian geometry in HA///A

» Develop a gravity theory in "' 5./, which is a candidate for a low-energy
effective theory for non-geometric closed string theory

Geometry on curved spaces
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