Higgs production with High Energy Jets

Helen Brooks Jeppe Andersen

IPPP, Durham University

YTF 18th December 2014

Outline

- Introduction
- 2 Effective Field Theory
- Finite Quark Mass Corrections
- 4 Conclusions

Motivation

 Higgs plus jets production via gluon fusion is an important background to VBF

- Higgs plus jets production via gluon fusion is an important background to VBF
- Typical VBF studies place a large cut on the invariant mass between the two leading jets (400-600 GeV) to suppress gluon backgrounds

Motivation

- Higgs plus jets production via gluon fusion is an important background to VBF
- Typical VBF studies place a large cut on the invariant mass between the two leading jets (400-600 GeV) to suppress gluon backgrounds
- The remaining gluon contribution still needs to be estimated

Motivation

- Higgs plus jets production via gluon fusion is an important background to VBF
- Typical VBF studies place a large cut on the invariant mass between the two leading jets (400-600 GeV) to suppress gluon backgrounds
- The remaining gluon contribution still needs to be estimated
- HEJ provides a good description in precisely this part of phase space

Motivation W+jets

000

As the radiation pattern at large m_{ii} will be relatively process-independent we can test our description using another process.

Recap of Factorization

• The colour and helicity summed/averaged matrix element for a $qQ \rightarrow n$ partonic process was given by:

$$\begin{split} \overline{\left|\mathcal{M}_{qQ \to qg \dots gQ}^{t}\right|^{2}} &= \frac{1}{4(N_{c}^{2} - 1)} \|S_{qQ \to qQ}\|^{2} \\ &\cdot \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{1}}\right) \cdot \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{n-1}}\right) \\ &\cdot \prod_{i=1}^{n-2} \left(\frac{-g_{s}^{2} C_{A}}{\hat{t}_{i} \hat{t}_{i+1}} V^{\mu}(q_{i}, q_{i+1}) V_{\mu}(q_{i}, q_{i+1})\right) \end{split}$$

where
$$S_{qQ o qQ}^{h_ah_b o h_1h_2}=\langle 1_{h_1}|\mu|a_{h_a}
angle g^{\mu
u}\langle 2_{h_2}|
u|b_{h_b}
angle$$

Recap of Factorization

• The colour and helicity summed/averaged matrix element for a $qQ \rightarrow n$ partonic process was given by:

$$\begin{split} \overline{\left|\mathcal{M}_{qQ \to qg \dots gQ}^{t}\right|^{2}} &= \frac{1}{4(N_{c}^{2} - 1)} \|S_{qQ \to qQ}\|^{2} \\ &\cdot \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{1}}\right) \cdot \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{n-1}}\right) \\ &\cdot \prod_{i=1}^{n-2} \left(\frac{-g_{s}^{2} C_{A}}{\hat{t}_{i} \hat{t}_{i+1}} V^{\mu}(q_{i}, q_{i+1}) V_{\mu}(q_{i}, q_{i+1})\right) \end{split}$$

where
$$S_{qQ o qQ}^{h_ah_b o h_1h_2}=\langle 1_{h_1}|\mu|a_{h_a}
angle g^{\mu
u}\langle 2_{h_2}|
u|b_{h_b}
angle$$

• It was the simplicity of the factorized structure that made it possible to perform the summation of emissions to all orders in $\alpha_{\rm S}$

Recap of Factorization

 The colour and helicity summed/averaged matrix element for a $qQ \rightarrow n$ partonic process was given by:

$$\begin{split} \overline{|\mathcal{M}_{qQ \to qg \dots gQ}^{t}|^{2}} = & \frac{1}{4(N_{c}^{2} - 1)} \|S_{qQ \to qQ}\|^{2} \\ & \cdot \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{1}}\right) \cdot \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{n-1}}\right) \\ & \cdot \prod_{i=1}^{n-2} \left(\frac{-g_{s}^{2} C_{A}}{\hat{t}_{i} \hat{t}_{i+1}} V^{\mu}(q_{i}, q_{i+1}) V_{\mu}(q_{i}, q_{i+1})\right) \end{split}$$

where
$$S_{qQ o qQ}^{h_ah_b o h_1h_2}=\langle 1_{h_1}|\mu|a_{h_a}
angle g^{\mu
u}\langle 2_{h_2}|
u|b_{h_b}
angle$$

- It was the simplicity of the factorized structure that made it possible to perform the summation of emissions to all orders in α_s
- Need to adapt this to include emission of a Higgs boson
 বিচাৰ বিচাৰ

 The fact that even at leading order Higgs production involves a loop diagram means that all computations are automatically more complicated

- The fact that even at leading order Higgs production involves a loop diagram means that all computations are automatically more complicated
- At leading order we have (and counting as one charge-conjuation related diagrams):

- The fact that even at leading order Higgs production involves a loop diagram means that all computations are automatically more complicated
- At leading order we have (and counting as one charge-conjuation related diagrams):
 - ullet qQ
 ightarrow qQH 1 diagram

- The fact that even at leading order Higgs production involves a loop diagram means that all computations are automatically more complicated
- At leading order we have (and counting as one charge-conjuation related diagrams):
 - $qQ \rightarrow qQH$ 1 diagram
 - $qg \rightarrow qgH 10$ diagrams

- The fact that even at leading order Higgs production involves a loop diagram means that all computations are automatically more complicated
- At leading order we have (and counting as one charge-conjuation related diagrams):
 - ullet qQ
 ightarrow qQH 1 diagram
 - $qg \rightarrow qgH$ 10 diagrams
 - $gg \rightarrow ggH$ 49 diagrams

- The fact that even at leading order Higgs production involves a loop diagram means that all computations are automatically more complicated
- At leading order we have (and counting as one charge-conjuation related diagrams):
 - $qQ \rightarrow qQH 1$ diagram
 - $qg \rightarrow qgH 10$ diagrams
 - $gg \rightarrow ggH$ 49 diagrams
- The standard simplification made is to integrate out the top mass, effectively sending the top mass to infinity

Constructing the matrix element

 As in the pure jets case, we want to accurately describe the Multi-Regge Kinematic limit, in which the momenta and rapidity of the jets satisfy: $y_1 \gg y_2 \gg \ldots \gg y_n$ and $p_{i\perp} \simeq p_{i\perp}$ and where $\hat{s} \gg \hat{s}_{ii} \gg p_{i\perp}^2$

As in the pure jets case, we want to accurately describe the Multi-Regge Kinematic limit, in which the momenta and rapidity of the jets satisfy: $y_1 \gg y_2 \gg \ldots \gg y_n$ and $p_{i\perp} \simeq p_{i\perp}$ and where $\hat{s} \gg \hat{s}_{ii} \gg p_{i\perp}^2$

- There are therefore two possible rapidity orderings when we include a Higgs emission
 - Higgs between jets
 - Higgs outside jets

- As in the pure jets case, we want to accurately describe the Multi-Regge Kinematic limit, in which the momenta and rapidity of the jets satisfy: $y_1 \gg y_2 \gg \ldots \gg y_n$ and $p_{i\perp} \simeq p_{i\perp}$ and where $\hat{s} \gg \hat{s}_{ii} \gg p_{i\perp}^2$
- There are therefore two possible rapidity orderings when we include a Higgs emission
 - Higgs between jets
 - Higgs outside jets
- We shall consider these cases separately

Constructing the matrix element Higgs between jets

 For Higgs between jets, emission off a t-channel gluon is the dominant contribution, so it is sufficient to insert the effective Higgs vertex with the t-channel gluon momenta flowing into the vertex, and contract this with the parton currents. Introduction

- For Higgs between jets, emission off a t-channel gluon is the dominant contribution, so it is sufficient to insert the effective Higgs vertex with the t-channel gluon momenta flowing into the vertex, and contract this with the parton currents.
- The effective Higgs vertex can then be absorbed into the spinor string:

$$S_{qQ o qHQ}^{h_a h_b o h_1 h_2}(q_1,q_2) = \langle 1_{h_1} | \mu | a_{h_a}
angle g^{\mu \sigma_1} V_{\sigma_1 \sigma_2}^H(q_1,q_1) \langle 2_{h_2} | \sigma_2 | b_{h_b}
angle$$

Constructing the matrix element Higgs between jets

 The colour/helicity summed/averaged matix element squared is then:

$$\begin{split} \overline{\left|\mathcal{M}_{qQ \to qHQ}^{t}\right|^{2}} &= \frac{1}{4(N_{c}^{2} - 1)} \|S_{qQ \to qHQ}\|^{2} \\ &\cdot \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{1}}\right) \left(\frac{1}{\hat{t}_{1}} \left(\frac{\alpha_{s}}{6\pi v}\right)^{2} \frac{1}{\hat{t}_{2}}\right) \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{2}}\right) \end{split}$$

Constructing the matrix element Higgs between jets

 The colour/helicity summed/averaged matix element squared is then:

$$\begin{aligned} \overline{\left|\mathcal{M}_{qQ \to qHQ}^{t}\right|^{2}} &= \frac{1}{4(N_{c}^{2} - 1)} \left\|S_{qQ \to qHQ}\right\|^{2} \\ &\cdot \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{1}}\right) \left(\frac{1}{\hat{t}_{1}} \left(\frac{\alpha_{s}}{6\pi v}\right)^{2} \frac{1}{\hat{t}_{2}}\right) \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{2}}\right) \end{aligned}$$

ullet Then, for example, the rapidity ordered process qQ o qHgQ we have:

$$\overline{\left|\mathcal{M}_{qQ \to qHgQ}^{t}\right|^{2}} = \frac{1}{4(N_{c}^{2} - 1)} \left\|S_{qQ \to qHQ}\right\|^{2} \\
\cdot \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{1}}\right) \left(\frac{1}{\hat{t}_{1}} \left(\frac{\alpha_{s}}{6\pi v}\right)^{2} \frac{1}{\hat{t}_{2}}\right) \\
\cdot \left(g_{s}^{2} C_{A} \frac{1}{\hat{t}_{2}} \left(-V \cdot V\right) \frac{1}{\hat{t}_{3}}\right) \left(g_{s}^{2} C_{F} \frac{1}{\hat{t}_{3}}\right)$$

Constructing the matrix element Higgs outside jets

 For Higgs outside jets, we define impact factors for Higgs+jet and the quark/gluon jet, e.g. for $qQ \rightarrow HqQ$ we have:

$$\overline{\left|\mathcal{M}_{qQ\to HqQ}^{t}\right|^{2}} = 4\frac{\hat{s}^{2}}{\hat{t}_{1}\hat{t}_{2}}I^{q;Hq}(p_{2};p_{1},p_{H})I^{q;Hq}(p_{4};p_{3})$$

Constructing the matrix element Higgs outside jets

 For Higgs outside jets, we define impact factors for Higgs+jet and the quark/gluon jet, e.g. for $qQ \rightarrow HqQ$ we have:

$$\overline{\left|\mathcal{M}_{qQ\to HqQ}^{t}\right|^{2}} = 4 \frac{\hat{s}^{2}}{\hat{t}_{1}\hat{t}_{2}} I^{q;Hq}(p_{2}; p_{1}, p_{H}) I^{q;Hq}(p_{4}; p_{3})$$

• This now has a similar structure to our $2 \rightarrow 2$ partonic amplitudes

Constructing the matrix element Higgs outside jets

 For Higgs outside jets, we define impact factors for Higgs+jet and the quark/gluon jet, e.g. for $qQ \rightarrow HqQ$ we have:

$$\overline{|\mathcal{M}_{qQ\to HqQ}^t|^2} = 4 \frac{\hat{s}^2}{\hat{t}_1 \hat{t}_2} I^{q;Hq}(p_2; p_1, p_H) I^{q;Hq}(p_4; p_3)$$

- This now has a similar structure to our $2 \rightarrow 2$ partonic amplitudes
- Can just continue as before by adding in effective (Lipatov) vertices for each additional gluon emission

 Using Higgs effective theory works well when there is only one scale - m_H - involved

- Using Higgs effective theory works well when there is only one scale - m_H - involved
- However, for the kinematics we are interested in, the invariant mass between the jets can get large and the top mass becomes a relevant scale

- Using Higgs effective theory works well when there is only one scale - m_H - involved
- However, for the kinematics we are interested in, the invariant mass between the jets can get large and the top mass becomes a relevant scale
- Expect to see differences in tails of distributions such as Δy_{jj} and m_{jj} revelvant for VBF cuts

- Using Higgs effective theory works well when there is only one scale - m_H - involved
- However, for the kinematics we are interested in, the invariant mass between the jets can get large and the top mass becomes a relevant scale
- Expect to see differences in tails of distributions such as Δy_{jj} and m_{jj} revelvant for VBF cuts
- It is therefore important to account for these effects in our formalism.

- Using Higgs effective theory works well when there is only one scale - m_H - involved
- However, for the kinematics we are interested in, the invariant mass between the jets can get large and the top mass becomes a relevant scale
- Expect to see differences in tails of distributions such as Δy_{jj} and m_{jj} revelvant for VBF cuts
- It is therefore important to account for these effects in our formalism.
- Accuracy can be improved further by including digrams that have a b quark circulating in the loop - this has an effect via interefence with the top loop.

- Using Higgs effective theory works well when there is only one scale - m_H - involved
- However, for the kinematics we are interested in, the invariant mass between the jets can get large and the top mass becomes a relevant scale
- Expect to see differences in tails of distributions such as Δy_{ii} and m_{ii} - revelvant for VBF cuts
- It is therefore important to account for these effects in our formalism.
- Accuracy can be improved further by including digrams that have a b quark circulating in the loop - this has an effect via interefence with the top loop.
- Accounting for the b does not add any complexity to the problem - it is a simple matter of summing over the flavours once the top corrections have been implemented.

• In the case of $qQ \rightarrow qQH$ there is just a single diagram. This is easily accounted for by replacing the effective vertex in our spinor string by the full expression:

$$S_{qQ o qHQ}^{h_a h_b o h_1 h_2}(q_1, q_2) = \langle a_{h_a} | \mu | 1_{h_1} \rangle \langle b_{h_b} | \nu | 2_{h_2} \rangle q_2^{\mu} q_1^{\nu} A_1(q_1, q_2)
onumber \ - \langle a_{h_a} | \mu | 1_{h_1} \rangle \langle b_{h_b} | \mu | 2_{h_2} \rangle A_2(q_1, q_2)$$

• In the case of $qQ \rightarrow qQH$ there is just a single diagram. This is easily accounted for by replacing the effective vertex in our spinor string by the full expression:

$$S_{qQ o qHQ}^{h_a h_b o h_1 h_2}(q_1, q_2) = \langle a_{h_a} | \mu | 1_{h_1}
angle \langle b_{h_b} |
u | 2_{h_2}
angle q_2^{\mu} q_1^{
u} A_1(q_1, q_2)
onumber \ - \langle a_{h_a} | \mu | 1_{h_1}
angle \langle b_{h_b} | \mu | 2_{h_2}
angle A_2(q_1, q_2)$$

• For Higgs outside jets, need to adjust the q-H impact factor.

Replacing a quark by a gluon means we have to insert a triangle loop on every gluon line in the 3 diagrams for $qg \rightarrow qg$, and box diagram in the 3-gluon vertex in 3 different ways:

• For Higgs between jets, as before the dominant contribution is Higgs emission off a t-channel gluon. So we proceed as for $qQ \rightarrow qQH$, simply replacing the quark current with a gluon current.

- For Higgs between jets, as before the dominant contribution is Higgs emission off a t-channel gluon. So we proceed as for $qQ \rightarrow qQH$, simply replacing the quark current with a gluon current.
- However, in the case of Higgs outside jets, all of these diagrams need to be incorported into the impact factor difficult!

- For Higgs between jets, as before the dominant contribution is Higgs emission off a t-channel gluon. So we proceed as for $qQ \rightarrow qQH$, simply replacing the quark current with a gluon current.
- However, in the case of Higgs outside jets, all of these diagrams need to be incorported into the impact factor difficult!
- The difficulty is factorizing out the t-channel pole this is important for incorporating the corrections into the HEJ framework. Currently a work in progress.

- For Higgs between jets, as before the dominant contribution is Higgs emission off a t-channel gluon. So we proceed as for $qQ \rightarrow qQH$, simply replacing the quark current with a gluon current.
- However, in the case of Higgs outside jets, all of these diagrams need to be incorported into the impact factor difficult!
- The difficulty is factorizing out the t-channel pole this is important for incorporating the corrections into the HEJ framework. Currently a work in progress.
- The case will be similar for gg → ggH, but even more diagrams - need to include pentagon loops:

Results Dijet Invariant Mass Spectrum

Preliminary results for $ud \rightarrow uHd$

 The main background to Higgs production via VBF is gluon fusion to Higgs plus jets.

- The main background to Higgs production via VBF is gluon fusion to Higgs plus jets.
- To suppress these backgrounds one typically places large cuts on invariant dijet mass, and rapidity separation of the jets.

- The main background to Higgs production via VBF is gluon fusion to Higgs plus jets.
- To suppress these backgrounds one typically places large cuts on invariant dijet mass, and rapidity separation of the jets.
- However, one still needs to quantify backgrounds once these cuts are imposed.

- The main background to Higgs production via VBF is gluon fusion to Higgs plus jets.
- To suppress these backgrounds one typically places large cuts on invariant dijet mass, and rapidity separation of the jets.
- However, one still needs to quantify backgrounds once these cuts are imposed.
- By summing to all orders hard wide angle emssions, HEJ provides a good description of this region of phase space.

- The main background to Higgs production via VBF is gluon fusion to Higgs plus jets.
- To suppress these backgrounds one typically places large cuts on invariant dijet mass, and rapidity separation of the jets.
- However, one still needs to quantify backgrounds once these cuts are imposed.
- By summing to all orders hard wide angle emssions, HEJ provides a good description of this region of phase space.
- To get the most accurate description it is important to include finite quark mass corrections.

- The main background to Higgs production via VBF is gluon fusion to Higgs plus jets.
- To suppress these backgrounds one typically places large cuts on invariant dijet mass, and rapidity separation of the jets.
- However, one still needs to quantify backgrounds once these cuts are imposed.
- By summing to all orders hard wide angle emssions, HEJ provides a good description of this region of phase space.
- To get the most accurate description it is important to include finite quark mass corrections.
- We have promising results for $qQ \rightarrow qQH$.

- The main background to Higgs production via VBF is gluon fusion to Higgs plus jets.
- To suppress these backgrounds one typically places large cuts on invariant dijet mass, and rapidity separation of the jets.
- However, one still needs to quantify backgrounds once these cuts are imposed.
- By summing to all orders hard wide angle emssions, HEJ provides a good description of this region of phase space.
- To get the most accurate description it is important to include finite quark mass corrections.
- We have promising results for $qQ \rightarrow qQH$.
- We are currently working on incorporating finite quark mass corrections for other channels.

