Constraining simplified dark matter models with the LHC

Karl Nordström¹ and Thomas Jacques²

¹University of Glasgow

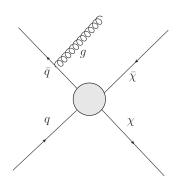
²Université de Genève

December 18th, 2014

Some brief background:

- The LHC can investigate dark matter (DM) models where there is some way for the dark sector to talk to light quarks
- Can roughly separate searches into two types:
 - 1. Model-dependent (SUSY searches, ...)
 - 2. Model-agnostic (typically mono-X)

I will discuss the models used for settings limits on 2. and present some constraints using monojet (a single jet $+ E_T^{\rm miss}$) limits in particular



Karl Nordström 1 / 10

We will assume:

- ▶ Dirac fermion dark matter χ with mass $m_{
 m DM}$
- A vector mediator Z' with mass M and pure axial-vector¹ couplings g_q , g_{DM}

$$\Rightarrow \mathcal{L}_{\mathrm{MSDM}} \supset -\sum_{q} g_{q} Z_{\mu}^{\prime} \bar{q} \gamma^{\mu} \gamma_{5} q - g_{\mathrm{DM}} Z_{\mu}^{\prime} \, \bar{\chi} \gamma^{\mu} \gamma_{5} \chi \qquad (1)$$

This is the interaction term of our minimal simplified dark matter model (MSDM). There are four free parameters (M, $m_{\rm DM}$, g_q , $g_{\rm DM}$).

Karl Nordström 2 / 10

¹The LHC has little sensitivity to vector couplings compared to direct detection (spin-independent vs spin-dependent).

Can expand the mediator propagator:

$$\frac{g_q g_{\rm DM}}{Q^2 - M^2} \sim -\frac{g_q g_{\rm DM}}{M^2} \left(1 + \frac{Q^2}{M^2} + \mathcal{O}\left(\frac{Q^4}{M^4}\right) \right) \tag{2}$$

Let $\Lambda = M/\sqrt{g_q g_{\rm DM}}$, then:

$$\mathcal{L}_{\rm EFT} \supset \frac{1}{\Lambda^2} \chi \gamma^{\mu} \gamma_5 \bar{\chi} q \gamma_{\mu} \gamma_5 \bar{q} \tag{3}$$

where we have integrated out the mediator using (2). This is an effective interaction term which is valid when $Q \ll M$. We've reduced the number of free parameters to two $(\Lambda, m_{\rm DM})$.

Karl Nordström 3 / 10

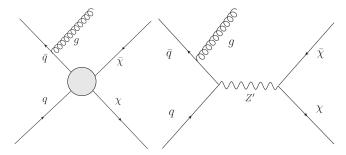


Figure: Example of what we are working with.

Karl Nordström 4 / 10

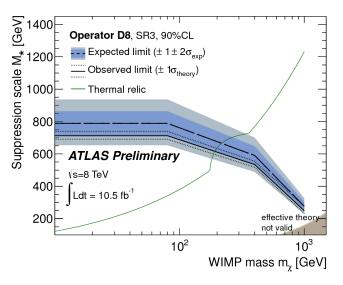


Figure: ATLAS limits on our EFT operator set in ATLAS-CONF-2012-147.

Karl Nordström 5 / 10

To facilitate the comparison to direct detection constraints² LHC experiments have generally interpreted model-agnostic searches using EFTs.

But:

- ▶ Direct detection: $Q \sim \mathcal{O}(10 \text{ keV}) \Rightarrow \text{EFT valid} \sim \text{always}$
- ▶ LHC: $Q \sim \mathcal{O}(1 \text{ TeV}) \Rightarrow \text{EFT valid } \sim ?$

Answer (1307.2253, 1308.6799 + others): EFT is only valid for $M\gtrsim 2.5$ TeV at $\sqrt{s}=8$ TeV.

Karl Nordström 6 / 10

 $^{^2}$ And also just because there are fewer parameters \Rightarrow cheaper, easier.

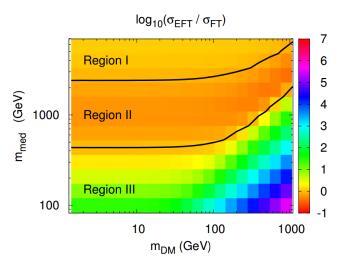


Figure : Ratio of simplified model to EFT cross-section for $g_q,g_{\rm DM}=1$ (from 1308.6799).

Karl Nordström 7 / 10

- Some recent studies using the CMS limits and NLOPS predictions for $\chi\bar{\chi}+1$ jet (1407.8257, 1411.0535)
- ▶ Generally present constraints in e.g. the $M-m_{\rm DM}$ plane as an exclusion contour for a particular choice of $g_q, g_{\rm DM}$
- Note that the minimum width $\Gamma_{\min} \propto \sum_f N_{C,f} g_f^2$ can be calculated from the input parameters and needs to be taken into account!

We have studied constraints using ATLAS limits and LOPS predictions scanning $g_q/g_{\rm DM}$ and $g_q.g_{\rm DM}$ assuming $\Gamma_M=\Gamma_{\rm min}$.

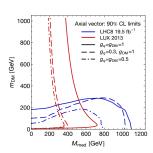
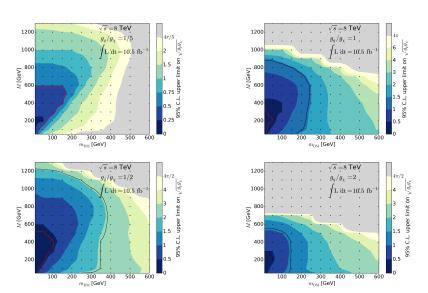


Figure: Example of constraints from 1407.8257.

Karl Nordström 8 / 10



Karl Nordström 9 / 10

- Dark matter is a Big Thing at 14 TeV LHC
- Need to make sure constraints are robust and can be compared to Direct Detection ⇒ EFTs are of limited use
- Simplified Models give a consistent and robust framework at cost of more parameters

Karl Nordström 10 / 10

- 1. Implement Lagrangian in FeynRules
- 2. Generate parton level events with MadGraph5
- 3. Match to Pythia 8 for showering
- 4. Perform detector simulation and analysis in ATOM+Rivet
- 5. Get out visible cross-section, compare to ATLAS limits

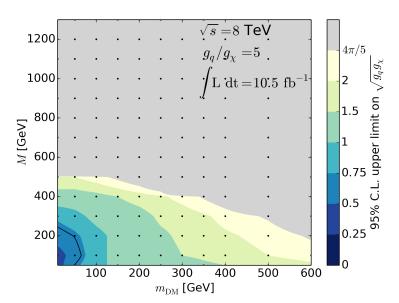
Karl Nordström 11 / 10

Since we assume axial-vector couplings the minimal width³ is:

$$\begin{split} \Gamma_{\min} &= \frac{\textit{N}_{\textit{C}} \textit{g}_{\mathrm{DM}}^{2} \textit{M} (1 - 4 \textit{m}_{\mathrm{DM}}^{2} / \textit{M}^{2})^{3/2}}{12 \pi} \Theta(\textit{M} - 2 \textit{m}_{\mathrm{DM}}) \\ &+ \sum_{\textit{q}} \frac{\textit{N}_{\textit{C}} \textit{g}_{\textit{q}}^{2} \textit{M} (1 - 4 \textit{m}_{\textit{q}}^{2} / \textit{M}^{2})^{3/2}}{12 \pi} \Theta(\textit{M} - 2 \textit{m}_{\textit{q}}) \end{split}$$

Karl Nordström 11 / 10

³Assuming no additional invisible decays.



Karl Nordström 11 / 10