Induced Chern-Simons Terms from 3d Field Theories with Massive Matter: A String Theorist's Perspective

Siraj R Khan

Supervisors: Dr Radu Tatar

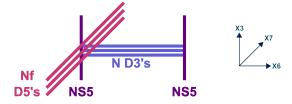
University of Liverpool

December 17, 2014

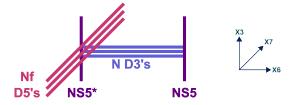
What is Chern-Simons Theory

- $-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}-A_{\mu}J^{\mu}$ terms allowed (Maxwell or Yang-Mills)
- Odd dimensions also allows for new type of gauge field terms
- Abelian: $\frac{k}{4\pi}\epsilon^{\mu\nu\rho}A_{\mu}\partial_{\nu}A_{\rho} A_{\mu}J^{\mu}$
- Non-Abelian: $\frac{k}{4\pi}\epsilon^{\mu\nu\rho}\left(A_{\mu}\partial_{\nu}A_{\rho}+A_{\mu}A_{\nu}A_{\rho}\right)-A_{\mu}J^{\mu}$
- k is the 'level' of the theory
- We look at N = 2 (2+1)-dimensional theories with Yang-Mills and non-abelian Chern-Simons term

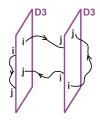
- In 10d maximal SUSY corresponds to 32 supercharges.
- Two supersymmetry generators Q_L and Q_R , each with 16 components.
- Put in 2 NS5-branes, each extending in $(x^1, x^2, x^3, x^4, x^5)$ and seperated in x^6 :


New equations for Q_L , Q_R reduce number of independent components by half \rightarrow 16 supercharges

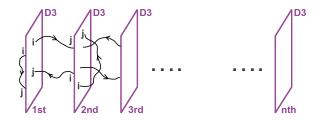
Add in N_f D5-branes in $(x^1, x^2, x^7, x^8, x^9)$ and intersecting left-most NS5


- New equations for Q_L , Q_R relate half the remaining supercharges to the other half.
- $16 \rightarrow 8$ independent supecharges

Add in N D3-branes extending in (x^1, x^2, x^6) and stretched between the two NS5-branes.

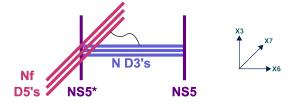

- These are the only branes that can be added without breaking SUSY completely.
- SUSY remains the same, 8 supercharges.

- Low energy theory is 3d when NS5-brane seperation is small
- Rotate the left-most NS5-brane from $(x^1, x^2, x^3, x^4, x^5)$ to $(x^1, x^2, x^3, x^8, x^9)$


- Number of independent supercharges $8 \rightarrow 4$
- Corresponds to making adjoint chiral multiplet in 3d N = 4 vector multiplet massive
- Breaks N = 4 to N = 2 in 3d.

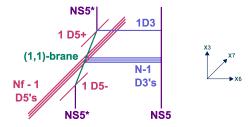
Gauge Fields from D3-D3 Strings

- \blacksquare 4 combinations of end point configurations: $|1,1\rangle,\,|2,2\rangle,\,|1,2\rangle,\,|2,1\rangle$
- 4 gauge bosons
- U(2) gauge group has $2^2 = 4$ gauge bosons (corresponding to number of generators of group)

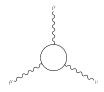

Gauge Fields from D3-D3 Strings

- N D3-branes has N^2 combinations of $|i,j\rangle$
- N² gauge bosons
- $lackbox{U}(N)$ gauge theory
- 2 separate stacks of branes would give $U(N) \otimes U(N)$

Quarks from D5-D3 Strings


- \blacksquare N_f D5-branes also called 'flavour branes'.
- Strings between D5's and D3's give quarks transforming in fundamental of U(N). [N = number of D3's.]

In this case quarks are massless


Massive Quarks from D5-D3 Strings

- Can't just move D5's along NS5* without breaking SUSY
- Need to create a (p,q)-brane at angle in (x^3, x^7) -plane $p = no^\circ$ of D5's at (D5, NS5, D3)-intersection $q = no^\circ$ of NS5's at (D5, NS5, D3)-intersection
- 4 supercharges (N = 2 in 3d) preserved.
- Massive quarks as strings stretch between D5's and D3's

Massive Quarks and Chern-Simons level k

- In 3d, calculating the effective action of a massive fermion to one-loop in perturbation theory results in a Chern-Simons term.
- In the non-abelian case this corresponds to the diagram:

■ For a single massive quark we get:

$$\frac{1}{4\pi}\frac{m}{|m|}\epsilon^{\mu
u
ho}\left(A_{\mu}\partial_{
u}A_{
ho}+A_{\mu}A_{
u}A_{
ho}\right)$$

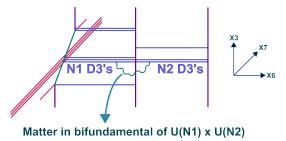
Aharony Duality

- In 3d N=2 low energy theories with k = 0 we have 'Aharony duality'.
- U(N) theory with N_f flavours is 'dual' to a $U(N_f N)$ theory with N_f flavours
- The scalars of one behave the same as the scalars of the other.
 - ightarrow vevs of scalars in one match the vevs of scalars in the other (same moduli spaces)
- Global symmetries also match for the two theories
- When one is weakly coupled other is strongly coupled (very useful!)

Giveon-Kutasov Duality

- In 3d N=2 low energy theories with $k \neq 0$ we have 'Giveon-Kutasov duality'.
- $U(N)_k$ theory with N_f flavours is 'dual' to a $U(|k| + N_f N)_{-k}$ theory with N_f flavours
- Again scalar vevs match up same moduli
- Same Global symmetries
- When one is weakly coupled other is strongly coupled
- Other tests of Aharony and Giveon Kutasov Dualities exist

Flowing between Aharony and Giveon-Kutasov Dualities


Aharony duality for k = 0

• Giveon-Kutasov duality for $k \neq 0$

We can change whether a theory is Aharony dual or Giveon-Kutasov dual at low energies by introducing massive matter accordingly!

Current Project

Bifundamental quarks from strings between one stack of D3's and another stack of D3's separated by NS5:

- Bifundamental quarks transform in $(N_1, \bar{N_2})$
- What are the resulting gauge theories from integrating out numerous massive bifundamentals?

References

K. Intriligator, N. Seiberg (2013)

Aspects of 3d N=2 Chern-Simons Matter Theories arXiv:hep-th/1305.1633

G. V. Dunne (1999)

Aspects of Chern-Simons Theory arXiv:hep-th/9902115.

A. Giveon, D. Kutasov (1998) Brane Dynamics and Gauge Theory arXiv:hep-th/9802067

J. L. F. Barbón (1997)

Rotated Branes and N=1 Duality arXiv:hep-th/9703051

O. Aharony, A. Hanany, B. Kol (1997)

Branes and Supersymmetry Breaking in 3D Gauge Theories arXiv:hep-th/9710116v3

Some more references

A. N. Redlich (1984)

Gauge Noninvariance and Parity Nonconservation of Three-Dimensional Fermions

Phys. Rev. Lett. 52, 18

S. Ojima (1989)

Derivation of Gauge and Gravitational Induced Chern-Simons Terms in Three Dimensions

Progress of Theoretical Physics. Vol.81, No.2

O. Aharony (1997)

IR Duality in d=3 N=2 Supersymmetric USp(2N(c)) and U(N(c)) Gauge Theories

arXiv:hep-th/9703215

A. Giveon, D. Kutasov (2009)

Seiberg Duality in Chern-Simons Theory

arXiv:hep-th/0808.0360

Induced Chern-Simons Terms from 3d Field Theories with Massive Matter: A String Theorist's Perspective

The End