Tension between the power spectrum of density perturbation measured on large and small scales.

Tom Charnock¹

in collaboration with Adam Moss¹ and Richard Battye² arxiv:1411.2641

¹Particle Theory Group University of Nottingham

² Jodrell Bank Centre for Astrophysics University of Manchester

Content

Parameterisation of ΛCDM

Data Sets

Tension

Neutrinos

Other Models

Section 1

Parameterisation of ACDM

Parameterisation of ACDM

Successes

- ► Baryonic Acoustic Oscillations
- Polarisation of CMB
- Weak Gravitational Lensing

Parameterisation of ACDM

Successes

- Baryonic Acoustic Oscillations
- Polarisation of CMB
- Weak Gravitational Lensing

Problems

Predicts too much small structure

Parameterisation of ACDM

Successes

- Baryonic Acoustic Oscillations
- Polarisation of CMB
- Weak Gravitational Lensing

Problems

Predicts too much small structure

Parameterisation

$$\mathbf{p} = \{\Omega_b h^2, \Omega_c h^2, \Theta_{MC}, A_S, n_S\}$$

Section 2

Data Sets

CMB and LSS data sets

CMB

- ▶ Planck with WMAP Polarisation data
- ► WMAP with high-ℓ data from SPT and ACT
- Combined with BAO data from BOSS DR9, 6dF and SDSS DR7

CMB and LSS data sets

CMB

- Planck with WMAP Polarisation data
- ► WMAP with high-ℓ data from SPT and ACT
- Combined with BAO data from BOSS DR9, 6dF and SDSS DR7

LSS

- ► SZ Cluster Counts (Marginalised 1-b=[0.7,1.0])
- Weak Lensing from CFHTLenS, Planck and SPT
- RSD from BOSS DR11

Constrained LSS results

Section 3

Tension

Tension between large and small scale

Total amount of tension

Parameter Likelihoods

- ▶ Marginalised likelihoods, $P(\mathbf{p}|d, M)$
- ▶ Integrate to find mean, $\mu_{\mathbf{p},d}$ and covariance matrix, Σ_d
- ▶ Difference in the means, $\delta \mu = \mu_{\mathbf{p},\mathsf{CMB}} \mu_{\mathbf{p},\mathsf{LSS}}$
- Multivariate gaussian distribution
- Evaluate at $\delta\mu=0$

Total amount of tension

Parameter Likelihoods

- ▶ Marginalised likelihoods, $P(\mathbf{p}|d, M)$
- ▶ Integrate to find mean, $\mu_{\mathbf{p},d}$ and covariance matrix, Σ_d
- ▶ Difference in the means, $\delta \mu = \mu_{\mathbf{p},\mathsf{CMB}} \mu_{\mathbf{p},\mathsf{LSS}}$
- Multivariate gaussian distribution
- Evaluate at $\delta\mu=0$

Tension

 \triangleright Exceeds 5σ

Section 4

Neutrinos

Neutrinos

Active Neutrinos

- Additional parameter, $\sum m_{\nu}$
- Assumed mass eigenstate degeneracy

$$m_1 = m_2 = m_3 = \sum m_{\nu}/3$$

► Closer last-scattering, anisotropies at larger scales

Neutrinos

Active Neutrinos

- Additional parameter, $\sum m_{\nu}$
- Assumed mass eigenstate degeneracy

$$m_1 = m_2 = m_3 = \sum m_{\nu}/3$$

► Closer last-scattering, anisotropies at larger scales

Sterile Neutrinos

- ▶ Two additional parameters, $m_{\text{sterile}}^{\text{eff}}$ and $N_{\text{eff}} = 3.046 + \Delta N_{\text{eff}}$
- True mass depends on model
- Well motivated by short-baseline experiments

Reduction of tension

Neutrino Likelihoods

Active Neutrinos

- ho $\sum m_{
 u} = 0.357 \pm 0.099 \mathrm{eV}$
- ▶ Tension in Λ CDM parameters $\sim 2.6\sigma$
- $\Delta\chi^2$ greatly reduced
- \blacktriangleright $\Delta \chi^2$ for CMB data worsened

Neutrino Likelihoods

Active Neutrinos

- $ightharpoonup \sum m_
 u = 0.357 \pm 0.099 {
 m eV}$
- ▶ Tension in Λ CDM parameters $\sim 2.6\sigma$
- $\Delta \chi^2$ greatly reduced
- $ightharpoonup \Delta \chi^2$ for CMB data worsened

Sterile Neutrinos

- $m_{
 m sterile}^{
 m eff} = 0.66 \pm 0.18 {
 m eV}$ and $\Delta N_{
 m eff} = 0.32 \pm 0.21$
- Tension in ΛCDM parameters $\sim 2.2\sigma$
- $\Delta \chi^2$ greatly reduced
- \rightarrow $\Delta \chi^2$ for CMB data worsened

Section 5

Other Models

Ignoring WMAP Polarisation

Measuring σ_8

- $A_{\rm S}e^{-2\tau_{\rm R}}$ constrained by CMB anisotropies
- $\sigma_8 \propto \sqrt{A_{
 m S}}$ so $\sigma_8 \propto e^{ au_{
 m R}}$

Ignoring WMAP Polarisation

Measuring σ_8

- $A_S e^{-2\tau_R}$ constrained by CMB anisotropies
- $\sigma_8 \propto \sqrt{A_{
 m S}}$ so $\sigma_8 \propto e^{ au_{
 m R}}$

Measuring z_{rei}

- $ightharpoonup z_{
 m rei} \sim 11.13 \pm 1.08$ inferred from polarisation measurements
- $ightharpoonup z_{
 m rei} \sim 6.91 \pm 2.20$ when ignoring polarisation measurements
- Astrophysical phenomena prefer low \(\tau_{R} \)

Modified Primordial Power Spectrum

$$ho$$
 $lpha=0.32\pm0.11,~eta=5.96\pm0.70 {
m Mpc}$ and $\delta=1.24\pm0.11$ $(lpha=0.07\pm0.05)$

Modified Primordial Power Spectrum

$$ho$$
 $lpha=0.32\pm0.11,~eta=5.96\pm0.70 ext{Mpc}$ and $\delta=1.24\pm0.11$ $(lpha=0.07\pm0.05)$

► Fits incomplete 4K line removal

Tom Charnock (UoN) Tension between CMB and LSS

Summary

Parameterisation of ΛCDM

Data Sets

Tension

Neutrinos

Other Models

Tension between CMB and LSS

Bayesian Statistics

Evidence

- $ightharpoonup \Theta = E_2/E_1$
- ▶ $log(\Theta_{Active}) = -1.8$ and $log(\Theta_{Sterile}) = -2.67$

Tension between CMB and LSS