D-Brane Potentials in the Warped Resolved Conifold & Natural Inflation

Zachary Kenton

Queen Mary University of London

Based on arXiv:1409.1221 by ZK and Steven Thomas Young Theorists' Forum, Annual High Energy Physics Conference 17/12/2014

Effective Field Theory

Two approaches:

- Bottom Up:
 - Begin only with light fields
 - Parametrize ignorance of heavier fields
- Top Down:
 - Begin with full UV theory
 - Derive low energy theory by integrating out heavier fields

Outline

- 🚺 Bottom Up: Inflation as an Effective Field Theory
- Top Down: Inflation from String Theory
- Summary

Outline

- Bottom Up: Inflation as an Effective Field Theory
- Top Down: Inflation from String Theory
 - Overview
 - Flux Compactifications
 - Calabi-Yau Manifolds
- Summary

Inflation

FRW metric

$$ds^{2} = -dt^{2} + a(t)^{2} dx^{i} dx^{j} \delta_{ij}$$
$$H = \frac{\dot{a}}{a}$$

Inflation

FRW metric

$$ds^{2} = -dt^{2} + a(t)^{2} dx^{i} dx^{j} \delta_{ij}$$
$$H = \frac{\dot{a}}{a}$$

Definition of inflation:

$$-\dot{H}\ll H^2$$

Stretching Quantum Fluctuations

- At least two light fields: inflaton and graviton
- Light fields have quantum fluctuations during inflation
- Inflation stretches these to classical observable scales

Simplest: Single Field, Slow Roll

- Simplest: single slowly rolling scalar field φ.
- Need a flat potential to get $-\dot{H} \ll H^2$.
- Fluctuations $\delta \phi$

Scalar Power Spectrum: $P_s(k) \sim \langle |\delta \phi_k|^2 \rangle$

$$(k) \sim \langle |\delta \phi_k|^2 \rangle$$

Gravitational Waves

Tensor Power Spectrum: $P_t(k) \sim \langle |\mathbf{h_k}|^2 \rangle$

Detectable $r \Rightarrow$ Large Field Inflation

Tensor-to-scalar ratio r

$$r \equiv \frac{P_t(k)}{P_s(k)} \sim \frac{\langle |h_k|^2 \rangle}{\langle |\delta \phi_k|^2 \rangle}$$

$$\approx 0.16 \text{ from BICEP2?}$$

Lyth bound implies Large Field Inflation for detectable r

$$\frac{\Delta\phi}{M_p} \gtrsim \left(\frac{r}{0.01}\right)^{1/2} \Rightarrow \Delta\phi \gtrsim M_p.$$

[Lyth,1996]

Large Field Inflation as an EFT

- ullet UV Theory of gravity requires extra fields of mass $\Lambda < M_p$
- How do these fields couple to the inflaton?
- Parametrize ignorance by EFT potential

$$V(\phi) = V_{\mathsf{S.R.}}(\phi) + \phi^4 \sum_n c_n \left(\frac{\phi}{\Lambda}\right)^n$$

Large Field Inflation as an EFT

- ullet UV Theory of gravity requires extra fields of mass $\Lambda < M_p$
- How do these fields couple to the inflaton?
- Parametrize ignorance by EFT potential

$$V(\phi) = V_{\mathsf{S.R.}}(\phi) + \phi^4 \sum_n c_n \left(\frac{\phi}{\Lambda}\right)^n$$

• Disaster for large-field inflation $\Delta \phi \gtrsim M_p$

- Maybe symmetry disallows these coupling terms
- Shift symmetry $\phi \rightarrow \phi + {\rm const.}$
- Natural Inflation: class of models with potential

$$V(\phi) = V_0^4 \left[1 + \cos\left(\frac{\phi}{f}\right) \right]$$

- Detectable r: $V_0 \sim M_{GUT}, \quad f \sim M_p$
- Hard to achieve $f \sim M_p$ from stringy models, like axion inflation
- ZK & ST achieve these parameters in a brane model.

Outline

- Bottom Up: Inflation as an Effective Field Theory
- Top Down: Inflation from String Theory
 - Overview
 - Flux Compactifications
 - Calabi-Yau Manifolds
- Summary

Outline

- Bottom Up: Inflation as an Effective Field Theory
- Top Down: Inflation from String Theory
 - Overview
 - Flux Compactifications
 - Calabi-Yau Manifolds

Summary

Shopping List

- Open String: Brane Inflation
 - Type of brane: e.g. Dp-brane or NS5 or M5.
 - Warped
 - Unwarped
 - Relativistic (DBI)
 - Single or multiple
 - Wrapped brane?
 - Flux on brane?
 - Direction of motion
- Closed String: Moduli Inflation
 - Complex-structure moduli
 - Kähler moduli
 - p-form axions

Shopping List

- Open String: Brane Inflation
 - Type of brane: e.g. Dp-brane or NS5 or M5. D5
 - Warped
 - Unwarped
 - Relativistic (DBI)
 - Single or multiple
 - Wrapped brane?
 - Flux on brane?
 - Direction of motion: angular
- Closed String: Moduli Inflation
 - Complex-structure moduli
 - Kähler moduli
 - p-form axions

Embed D-brane

- Identify the coordinates of a probe D-brane moving in the extra dimensions with scalar fields.
- One of these coordinates $y^m(t)$ could be an inflaton.
- D-brane feels a potential V(y) coming from the DBI & CS action for a brane in a SUGRA Flux Compactification background.

Outline

- Bottom Up: Inflation as an Effective Field Theory
- Top Down: Inflation from String Theory
 - Overview
 - Flux Compactifications
 - Calabi-Yau Manifolds
- Summary

Flux Compactifications: IIB Action

$$\begin{split} S_{\text{IIB}} &= -\frac{1}{2\kappa_{10}^2} \int_{M_{10}} d^{10}X \sqrt{|g|} \left(R - \frac{|\partial \tau|^2}{2(\text{Im}\tau)^2} - \frac{|G_3|^2}{2\text{Im}\tau} - \frac{|\tilde{F}_5|^2}{4 \cdot 5!} \right) \\ &- \frac{1}{2\kappa_{10}^2} \frac{1}{4i} \int_{M_{10}} \frac{C_4 \wedge G_3 \wedge \overline{G}_3}{\text{Im}\tau} + S_{\text{branes}} \end{split}$$

Flux Compactifications: IIB Action

$$\begin{split} S_{\text{IIB}} &= -\frac{1}{2\kappa_{10}^2} \int_{M_{10}} d^{10} X \sqrt{|g|} \left(R - \frac{|\partial \tau|^2}{2 (\text{Im} \tau)^2} - \frac{|G_3|^2}{2 \text{Im} \tau} - \frac{|\tilde{F}_5|^2}{4 \cdot 5!} \right) \\ &- \frac{1}{2\kappa_{10}^2} \frac{1}{4i} \int_{M_{10}} \frac{C_4 \wedge G_3 \wedge \overline{G}_3}{\text{Im} \tau} + S_{\text{branes}} \end{split}$$

Form fields:

$$\tilde{F}_5 \equiv F_5 - \frac{1}{2}C_2 \wedge H_3 + \frac{1}{2}B_2 \wedge F_3,$$
 $G_3 \equiv F_3 - \tau H_3$

where

$$F_5 = dC_4,$$
 $F_3 = dC_2,$ $H_3 = dB_2$ $au = C_0 + ie^{-\Phi}$ axiodilaton

Flux Compactifications: Ansatz

Ansatz: Warped Spacetime, parametrized by warp factor $\mathcal{H}(y)$

$$ds^2 = \underbrace{\mathcal{H}^{-1/2}(y)}_{\text{warping}} \underbrace{g_{\mu\nu}^{\text{FRW}} dx^\mu dx^\nu}_{\text{4D FRW}} + \mathcal{H}^{1/2}(y) \underbrace{g_{mn}^{\text{CY}} dy^m dy^n}_{\text{6D Calabi-Yau}}$$

Flux Compactifications: Ansatz

Ansatz: Warped Spacetime, parametrized by warp factor $\mathcal{H}(y)$

$$ds^2 = \underbrace{\mathcal{H}^{-1/2}(y)}_{\text{warping}} \underbrace{g_{\mu\nu}^{\text{FRW}} dx^\mu dx^\nu}_{\text{4D FRW}} + \mathcal{H}^{1/2}(y) \underbrace{g_{mn}^{\text{CY}} dy^m dy^n}_{\text{6D Calabi-Yau}}$$

Ansatz: Flux, parametrized by $\alpha(y)$

$$C_4 = \alpha(y) \sqrt{g^{\mathsf{FRW}}} dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3.$$

Flux Compactifications: Solution

Equation of motion is then

$$\begin{split} \nabla_{CY}^2 \Phi_- &= \frac{\mathcal{H}^{-2}(y)}{6 \text{Im} \tau} |G_-|^2 + \mathcal{H}(y) |\partial \Phi_-|^2 + \underbrace{\text{branes}}_{\geq 0} \\ \text{where } \Phi_- &\equiv \mathcal{H}^{-1}(y) - \alpha(y), \qquad G_- \equiv \star_6 G_3 - i G_3. \end{split}$$

Flux Compactifications: Solution

Equation of motion is then

$$\begin{split} \nabla_{\mathit{CY}}^2 \Phi_- &= \frac{\mathcal{H}^{-2}(y)}{6 \text{Im} \tau} |G_-|^2 + \mathcal{H}(y) |\partial \Phi_-|^2 + \underbrace{\text{branes}}_{\geq 0} \\ \text{where } \Phi_- &\equiv \mathcal{H}^{-1}(y) - \alpha(y), \qquad G_- \equiv \star_6 G_3 - i G_3. \end{split}$$

ISD Solution:

$$\Phi_-=0, \qquad G_-=0.$$

Brane feels a potential related to Φ_-

$$V_{D3}(y) = T_3 \Phi_{-}(y)$$

$$V_{D5}(y) = \underbrace{\varphi(y)}_{\sim 0} + \lambda \Phi_{-}(y)$$

Outline

- Bottom Up: Inflation as an Effective Field Theory
- Top Down: Inflation from String Theory
 - Overview
 - Flux Compactifications
 - Calabi-Yau Manifolds
- Summary

Calabi-Yau Manifolds

- Why Calabi-Yau? Preserve 1/4 of the supercharges.
- 3-complex dimensions $(z^a, \overline{z^a})$, i.e. as 6-real dimensions y^m .

Calabi-Yau Manifolds

- Why Calabi-Yau? Preserve 1/4 of the supercharges.
- 3-complex dimensions $(z^a, \overline{z}^{\overline{a}})$, i.e. as 6-real dimensions y^m .
- Ricci flat: $R_{mn} = 0$
- Kähler: The Kähler form $J\equiv ig_{a\overline{b}}dz^a\wedge d\overline{z}^{\overline{b}}$ is closed dJ=0.

Calabi-Yau Manifolds

- Why Calabi-Yau? Preserve 1/4 of the supercharges.
- 3-complex dimensions $(z^a, \overline{z}^{\overline{a}})$, i.e. as 6-real dimensions y^m .
- Ricci flat: $R_{mn} = 0$
- Kähler: The Kähler form $J\equiv ig_{a\overline{b}}dz^a\wedge d\overline{z}^{\overline{b}}$ is closed dJ=0.
- We don't know the explicit metric on any compact Calabi-Yau.

The Resolved Conifold

- The Resolved Conifold is Ricci Flat and Kähler
- But noncompact
- We know the metric explicitly

- At base looks like a cone over an $S^3 \times S^2$ base, with angles $\{\theta_i\}$
- At tip smoothed out, not conical
- Warped Resolved Conifold: Warp factor H sourced by a stack of N ≫ 1 D3-branes at tip of Resolved Conifold.

Gluing the Resolved Conifold & Potentials

$$\nabla_{RC}^{2}\Phi_{-} = \frac{\mathcal{H}^{-2}(y)}{6 \text{Im} \tau} |G_{-}|^{2} + \mathcal{H}(y) |\partial \Phi_{-}|^{2}$$

Gluing the Resolved Conifold & Potentials

$$\nabla_{RC}^{2}\Phi_{-} = \frac{\mathcal{H}^{-2}(y)}{6\text{Im}\tau}|G_{-}|^{2} + \mathcal{H}(y)|\partial\Phi_{-}|^{2}$$

We compactify by gluing the Resolved Conifold to a bulk CY

- Gluing induces perturbations $\Phi_- = \mathcal{O}(\delta), G_- = \mathcal{O}(\delta), \delta \ll 1$
- ullet Potential then satisfies Laplace on RC to leading order in δ

$$\nabla_{RC}^2 \Phi_- = 0$$

Can solve this exactly for Resolved Conifold. One solution is

$$\Phi_{-} \propto \cos \theta$$

Natural Inflation from a brane in the RC

- \bullet θ coordinate but not canonical scalar field
- Canonical field $\Theta = f\theta$.

$$V = V_0^4 \cos \theta = V_0^4 \cos \left(\frac{\Theta}{f}\right)$$

- BICEP2 needs: $V_0 \approx M_{GUT}, \quad f \approx 5M_p$
- ullet V_0 and f depend on choice of brane

D3-brane

• D3 is simplest, but can't achieve these values for V_0 and f.

$$\begin{split} S_{D3} &= -T_3 \int_{M_4} d^4 \xi \sqrt{P_4[g_{MN}]} + T_3 \int_{M_4} P_4[C_4] \\ &\Rightarrow \mathcal{L} \approx \frac{1}{2} T_3 g^{RC}_{mn} \dot{y}_m \dot{y}_n - T_3 \Phi_-(y) \qquad \text{(slowly moving brane)} \\ &\approx \frac{1}{2} T_3 u^2 \dot{\theta}^2 - T_3 \Phi_-(\theta) \qquad \text{(motion in } \theta \text{ direction)} \\ &\approx \frac{1}{2} \dot{\Theta}^2 - T_3 \Phi_-(\Theta/f) \qquad \text{for } f = u \sqrt{T_3} \end{split}$$

D3-brane

Can $f = u\sqrt{T_3}$ ever be $\mathcal{O}(M_p)$?

- Planck mass is only computable if we have a long throat $R \gtrsim L$, giving $M_p \gtrsim \sqrt{N}R$, for $N \gg 1$ from the warping.
- Expect $L \sim u$ when glue RC to bulk, natural lengthscale should be about the same in gluing region.
- So should have that $M_p \sim \sqrt{N}R \gg R \gtrsim L \sim u$, i.e. $M_p \gg u$
- So we can't get $f \sim M_p$ for a D3

D5-brane

- D5 can be wrapped p times around 2-cycle Σ₂ in compact dimensions
- Turn on F₂ flux on the probe brane quantized by q
- Have the D5 near the tip at $r = r_{\rm min} \sim u/50$

$$\mathcal{L} \approx \frac{1}{2} 4\pi p T_5 \left(\frac{u}{r_{\text{min}}}\right)^2 l_s^2 \sqrt{4\pi g_s N} u^2 \dot{\theta}^2 - 12\pi^2 l_s^2 p q T_5 \Phi_-(\theta)$$

$$\approx \frac{1}{2} \dot{\Theta}^2 - M_{\text{GUT}}^4 \cos(\Theta/f) \qquad \text{(choose } q \text{ to get } M_{\text{GUT}})$$

$$\text{for } \Theta = f\theta, \qquad f^2 = 4\pi p T_5 \left(\frac{u}{r_{\text{min}}}\right)^2 l_s^2 \sqrt{4\pi g_s N} u^2$$

$$\text{Use } p \sim \left(\frac{r_{\text{min}}}{u}\right)^2 \sqrt{N} \qquad \text{to set } f \sim M_p \sim \sqrt{N}R$$

• Can show p is not so large that backreaction is a problem.

Outline

- Bottom Up: Inflation as an Effective Field Theory
- Top Down: Inflation from String Theory
 - Overview
 - Flux Compactifications
 - Calabi-Yau Manifolds
- Summary

Summary

- Bottom Up: Inflation as an EFT
 - Observable $r \Rightarrow$ Large Field Inflation
 - Large Field Inflation is sensitive to UV completion of gravity.
- Top Down: Inflation from String Theory
 - Can get Natural Inflation from string theory model
 - We used a wrapped D5-brane with flux at tip of the warped RC.

The End

Thank you

Special thanks to my supervisor Prof. Steven Thomas

Too Good to be True?

- Bulk can have many moduli massless scalar fields which can couple to the inflaton.
- Moduli stabilization achieved for the Deformed Conifold cousin of the Resolved Conifold. [Giddings, Kachru, Polchinski, 2002]
- However, no analytic solution to Laplace on DC can't probe the tip.
- Would be good to stabilize moduli using the RC future work!
- Alternative is to have multiple throats. [Chen, 2005]

Many Throats?

Maybe there are multiple throats?

