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Well-known fact:

Complex submanifolds of Kähler manifolds minimize
volume in their homology class and, in particular,
are minimal.

Questions:

Can a holomorphic curve be deformed so as to keep
it minimal but not holomorphic?

If yes, is stability of the holomorphic curve as a
minimal surface preserved by the deformation?



Theorem (C. Arezzo, - )

Let f : (Σγ, µ) → Cn/Λ be a full holomorphic
immersion of a Riemann surface of genus γ > 4. If

1

2
n(n + 1) > 3γ − 3 > 3n− 3

then f can be deformed as a conformal minimal
immersion ft : (Σ, µ) → R2n/Λt into a flat torus
R2n/Λt which is not holomorphic with respect to
any orthogonal complex structure on the torus.

If the Riemann surface (Σγ, µ) is hyperelliptic, then
ft will be unstable for t 6= 0. (An old result of - .)

If (Σγ, µ) is not hyperelliptic and f is the
Abel-Jacobi embedding, then ft will be stable (and
nonholomorphic).



Key ingredients of proof:

(i) Weierstrass representation of conformal minimal
immersions into a flat torus.

(ii) Characterisation of Weierstrass representation of
holomorphic curves.

(iii) Dimension of the kernel of the map from the
symmetric square of the space of holomorphic
differentials in the Weierstrass representation to
the space of holomorphic quadratic differentials.

(iv) Complex version of the second variation formula
and Birkhoff-Grothendieck decomposition of
holomorphic vector bundles over the two-sphere.

(v) An exact sequence argument to show that when
the Abel-Jacobi embedding of a nonhyperelliptic
Riemann surface of genus > 4 is viewed as a
minimal immersion then its Jacobi fields are just
the translations.



What about deformations of a holomorphic curve in
a flat torus of complex dimension 2 or 3?

Theorem ( - , E. Nedita)

Consider the following smoothly varying
1-parameter families:

• conformal structures µt on a surface Σ;

• lattices Λt of R4;

• conformal minimal immersions
ft : (Σ, µt) → R4/Λt.

If f0 is holomorphic with respect to some orthogonal
complex structure J0 then, for each t, there exists
an orthogonal complex structure Jt with respect to
which ft is holomorphic.



The proof is an easy consequence of the following
fact:

Let K and K⊥ denote respectively the Gauss
curvature and the curvature of the normal bundle of
a minimal immersion f : Σ → R4. Then

|K⊥| 6 (−K)

with equality if, and only if, f is holomorphic with
respect to an orthogonal complex structure on R4.

This proof also works for:

• a 1-parameter family of conformal minimal
immersions into a hyperkähler 4-manifold. (cf.
work with Wolfson on the (elaborate)
construction of stable nonholomorphic
two-spheres in some K-3 surfaces.)

• a 1-parameter family of conformal minimal
immersions of finite total curvature in R4. (cf.
old theorem of - .)



Alternative proof:

Given an immersion f : Σ → R4 define Jf on
f ∗(TR4) by anticlockwise rotation by 90◦ in the
tangent plane and anticlockwise rotation by 90◦ in
the normal plane.

The set of orthogonal complex structures on R4

compatible with a given orientation is a two-sphere.
If f is minimal then Jf : Σ → S2 is holomorphic.
. . . .

What about higher dimensions?



Recall Calabi’s notion of isotropicity for a minimal
immersion f : Σ → Rn:
f is isotropic to order l if

(∂j
zf · ∂k

zf ) = 0 ∀ j, k ∈ {1, . . . , l}.
Thus isotropicity to order 1 is equivalent to
conformality.

Proposition

A minimal immersion f : Σ → R2n is holomorphic
with respect to some orthogonal complex structure
on R2n if, and only if, f is isotropic to order n.



Theorem ( - , E. Nedita)

Consider the following smoothly varying
1-parameter families:

• conformal structures µt on a surface Σ;

• lattices Λt of R2n;

• conformal minimal immersions
ft : (Σ, µt) → R2n/Λt all of which are isotropic
to order n− 1.

If f0 is holomorphic with respect to some orthogonal
complex structure J0 then, for each t, there exists
an orthogonal complex structure Jt with respect to
which ft is holomorphic.

A similar statement holds for a family of
(n− 1)-isotropic minimal surfaces of finite total
curvature in R2n.



Lemma

Let f : Σ → R2n be minimal and isotropic to order
n− 1. Define

Jf : Σ → SO(2n)/U(n)

by 90◦ anticlockwise rotation in the osculating
planes and the orthogonal complement of their
span. Then Jf is holomorphic.

The theorem follows easily from the lemma.

Questions

• Does the condition of (n− 1)-isotropicity place
restrictions on the conformal structure of the
minimal surface, especially for large genus?

• Does the space of (n− 1)-isotropic minimal
surfaces have a nice description?



Theorem ( - , E. Nedita)

Let f : Σ → R2n/Λ be a stable minimal immersion
which is (n− 1) isotropic. Then f is holomorphic
with respect to . . . .

Similarly, if f : Σ → R2n is a stable minimal
immersion which is (n− 1) isotropic and if Σ is
parabolic in the conformal structure induced by f ,
then f is holomorphic with respect to . . . .

Proposition

Let f : Σ → R2n be an immersion whose normal
bundle ν admits a parallel complex structure Jν. Let
JΣ be anticlockwise rotation by 90◦ on TΣ and
define

J := JΣ ⊕ Jν.

Suppose that the second fundamental form maps
T 1,0

Σ to ν1,0
C . Then J is constant and f is

holomorphic with respect to J .

Of course, the converse holds.


