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1. Lines of curvature on surfaces

Fundamental forms in terms of curvature coordinates (κi = principal curvatures):

I = H2dx2 + K2dy2, II = κ1H2dx2 + κ2K2dy2

‘Gauß-Weingarten equations’ for the frame (X, Y , N):
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with

Hy = pK Kx = qH, H◦ = −κ1H, K◦ = −κ2K

These are compatible modulo the ‘Gauß-Mainardi-Codazzi equations’ for the coeffi-

cients H◦, K◦ and p, q:

py + qx + H◦K◦ = 0, H◦y = pK◦, K◦x = qH◦



2. The Combescure transformation

Combescure transforms:

rx = HX, ry = KY (surface)

Nx = H◦X, Ny = K◦Y (Gauß map)

r̃x = H̃X, r̃y = K̃Y , (Combescure transform)

where

H̃y = pK̃, K̃x = qH̃.
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Soliton-theoretic interpretation:

• X, Y : eigenfunctions [Note that Xy = qY , Y x = pX (2d AKNS!)]

• H, K, H◦, K◦, H̃, K̃: adjoint eigenfunctions

• r, N , r̃: ‘squared eigenfunctions’



3. Guichard surfaces (1900)

C. Guichard, Comptes Rendus de l’Académie des Sciences (1900):

“Il existe une surface (N′) ayant même image sphérique de ses lignes de courbure

que la surface (N) et telle que si R1 et R2 sont les rayons de courbure principaux

de (N), R′
1 et R′

2 les rayons correspondants de (N′), on ait

R1R
′
2 + R2R

′
1 = const.,

la constante n’étant pas nulle.”

In other words, the surfaces Σ and Σ′ are Combescure-related and constrained by

HK′ + H ′K = cH0K0

or, equivalently, by the ‘orthogonality’ condition
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4. O surfaces (Schief & Konopelchenko 2003)

Definition. A surface Σ constitutes an O surface if there exist n − 1 Combescure-
related surfaces Σk and a symmetric constant matrix Λ such that the orthogonality
condition
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Theorem. O surfaces are integrable!

• Lax pair = extended Gauß-Weingarten equations:
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• Bäcklund transformation = constrained Ribaucour transformation



Examples

Examples:

• n = 2: Surfaces of constant Gaußian and mean curvature; isothermic, minimal and

linear Weingarten surfaces

• n = 3: Guichard and Petot surfaces

In short: all (I think..) special O nets discussed by Eisenhart in his monograph Trans-

formations of surfaces and more!



5. The equilibrium equations of classical shell membrane theory

• Lamé and Clapeyron (1831): Symmetric loading of shells of revolution

• Lecornu (1880) and Beltrami (1882): Governing equations of membrane theory

• Love (1888; 1892, 1893): Theory of thin shells

• By now well-established branch of structural mechanics

Idea (see Novozhilov (1964)): Replace the three-dimensional

stress tensor σik of elasticity theory defined throughout a

thin shell by statically equivalent internal forces Tab, Na and

moments Mab acting on its mid-surface Σ.

Σ

Vanishing of total force and total moment −→ equilibrium equations

Definition of (shell) membranes: Mab = 0



6. Vanishing ‘shear stress’ and constant ‘normal loading’

Assumptions: • lines of principal stress = lines of curvature

• additional (external) constant normal loading: p̄ = const

Equilibrium equations:

T1x + (lnK)x(T1 − T2) = 0

T2y + (lnH)y(T2 − T1) = 0

κ1T1 + κ2T2 + p̄ = 0

Gauß-Mainardi-Codazzi equations:

κ2x + (lnK)x(κ2 − κ1) = 0

κ1y + (lnH)y(κ1 − κ2) = 0,
(

Kx

H

)

x
+

(

Hy

K

)

y
+ HKκ1κ2 = 0.

The above system is coupled and nonlinear. Only privileged membrane geometries are

possible.

Claim: The above system is integrable!



7. Classical and novel integrable reductions

• ‘Homogeneous’ stress distribution T1 = T2 = c = const:

H =
κ1 + κ2

2
= −

p̄

2c
(Young 1805; Laplace 1806; integrable)

Constant mean curvature/minimal surfaces (modelling thin films (‘soap bubbles’)).

• Identification T1 = cκ2, T2 = cκ1:

K = κ1κ2 = −
p̄

2c
(integrable)

Surfaces of constant Gaußian curvature governed by ωxx ± ωyy + sin(h)ω = 0.

• Superposition 2T1 = λκ2 + µ, 2T2 = λκ1 + µ:

λK + µH + p̄ = 0 (integrable)

Classical linear Weingarten surfaces.



8. A theorem (Rogers & Schief 2003)

Change of variables

H̃ = T2H, K̃ = T1K, H◦ = −κ1H, K◦ = −κ2K

so that

Hy = pK, Kx = qH (definitions of p, q)

H◦y = pK◦, K◦x = qH◦ (Mainardi-Codazzi eqs)

H̃y = pK̃, K̃x = qH̃ (2 equilibrium eqs)
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Theorem. A shell membrane Σ with vanishing ‘shear’ stress and constant purely normal
loading is in equilibrium if and only if there exists a Combescure transform Σ̃ such that
the orthogonality condition

HTΛK = 0 (3rd equilibrium eq)

is satisfied, where
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9. ‘Almost’ geometric characterisation

Any O surface admits the first integrals

HTΛH = −f(x), KTΛK = −g(y).

The latter may be used to eliminate the stresses T1 and T2 (i.e. H̃ and K̃).

Theorem. The geometry of the membranes (considered here) is characterised by the

constraint

g(y)

K2
κ2
1 +

f(x)

H2
κ2
2 = p̄(κ1 − κ2)

2 (1)

on the Gauß-Mainardi-Codazzi equations. The stress components T1 and T2 are

determined by

2κ2T1 + p̄ =
g(y)

K2
, 2κ1T2 + p̄ =

f(x)

H2

for any given admissible geometry and f(x), g(y).



10. Multiplicity of stress distributions

Problem: Under what circumstances does the geometry of a membrane determine

the stress distribution?

Theorem. For p̄ 6= 0, the geometry of a membrane determines the stress distribution

uniquely unless
[

ln

(

H0

K0

)]

xy

= 0.

In the latter case, there exists a one parameter (ε) family of stress components T1 and

T2 generated by the invariance

f(x) → f(x) + εA2(x), g(y) → g(y)− εB2(y)

of the constraint (1), where

H0

K0
=

A(x)

B(y)
.



11. Geometric characterisation

Since the metric of the spherical representation is given by

dN
2 = H2

◦ dx2 + K2
◦ dy2,

the spherical representation is conformally flat modulo an appro-

priate reparametrisation of the lines of curvature.

Corollary. For p̄ 6= 0, the geometry of a membrane determines

the stress distribution uniquely unless there exists a Combescure

transform Σm of the membrane which is minimal.
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Fact: The Gauß-Mainardi Codazzi equations and the constraint (1) reduce to

θxx + θyy = −e2θ (Liouville eq)

(e−θ)xy = −
f ′g′

4(f + g)2
e−θ (Moutard eq)

(H◦ = K◦ = eθ)



Examples

‘Separable’ solutions:

e−θ = a(x) + b(y) ⇔ f ′g′ = 0

This implies that

κ1xκ2y = 0

so that the membranes constitute particular canal surfaces. These include all Dupin

cyclides corresponding to

κ1x = κ2y = 0.

T1 T2



12. The compatibility condition

Compatibility condition for the existence of θ:

qxx + qyy = 0,

where

q = −
f ′g′

4(f + g)2
.

Solution:

f ′2 = c4f4 + c3f3 + c2f2 + c1f + c0,

g′2 = −c4g4 + c3g3 − c2g2 + c1g − c0

Problem: How does one find θ?

Key: Note that q may be regarded as the general solution of another Liouville equation,
namely

(ln q)xy = −8q.



13. Reformulation of the problem

Set z = x + iy. Solve

4θzz̄ = −e2θ (2)

i(∂2
z − ∂2

z̄ )e−θ = qe−θ (3)

i(∂2
z − ∂2

z̄ ) ln q = −8q (4)

Step 1: The solution of (2) is given by

eθ =
2

|Φ1|2 + |Φ2|2
,

where Φ1 and Φ2 are two solutions of the Schrödinger equation

Φ′′(z) + U(z)Φ(z) = 0

related by W(Φ1,Φ2) = 1.



continued ...

Step 2: Eliminate q between (3) and (4) and solve the ODE for U .

Result: U =
1

4
P(z) + c,

where P constitutes the Weierstrass P function obeying

P ′2 = 4P3 − g2P − g3.

Thus, it is required to solve the classical Lamé equation

Φ′′ − n(n + 1)PΦ = −cΦ

for

n = −
1

2
.



14. The Lamé equation

Origin: Separation of variables in Laplace’s equation (ellipsoidal harmonics)

Solutions:

• n ∈
�
: Lamé polynomials for any c

• 2n odd: ‘algebraic’ Lamé functions for particular values of c

• n = −
1

2
: ??????? Comments?

Remark (in hindsight):

The Moutard equation is the analogue of the linear equation obtained by Wangerin
(1875) in the case of the axi-symmetric Laplace equation!

The Liouville equation then selects all separable solutions!



15. Examples

• P =
1

z2
: Bessel functions

• P =
1

sin2 z
−

1

3
: Legendre functions


