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Comments

m A way of looking at some nonperturbative features of YM tlyeanostly in
2+1 dimensions
m This talk is a set of comments on gquestions related to the gass
— Hamiltonian approach, vacuum wave function
— A gauge-invariant mass term
— General comments about configuration space ferl Yang-Mills
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Matrix variables, volume element

m Choosed; = 0, this leavesd;, + = 1, 2. Gauge transformations act as

Al =gA;g' — digg™*

Wave functions argauge-invarian{This is equivalent to imposing
Gauss law)

m Choose complex coordinates= =1 — izs, z = x1 + ix9
A=A, = 2(A) +i4), A=1(A; —iAy)
m Parametrized as
A=—-0M M™! A=M1oMT

B G=SUN) = McSL(N,C)=SU(N)® (GenerallyG — G°)
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Matrix variables, volume element (cont’d.)

m Under a gauge transformation
A—Al=gAigt—0igg = M- M =g M

m [ = MT"M is gauge-invariant

m Calculation of volume element of the configuration space
ds® = / d*x Tr(§ASA)
— /Tr (M 16 MY (—DD)Y(6MM™)]

dsgr(n.c) = / Te(MT'6MT 6MM™1)

dpa = det(—DD) du(M, M)

Haar measure for SL(N, C)
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Matrix variables, volume element (cont’d.)

m We can split theS L( NV, C) volume element as

du(M,M") = du(H) _dp(U)

Haar for SL(N,C)/ SU(N) Haar for SU(N)

m The volume element is now

dpa = det(=DD) du(H) dp(U)
m For the gauge-invariant configuration space

du(C) = det(—DD) du(H)
= du(H) exp |2 ca Syow(H)]

m S,.w(H) Is the Wess-Zumino-Witten (WZW) action,

Swzw(H) L / Tr(0HOH ') — % / Tr(H 'dH)?

- 27 27
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The inner product and current

m The inner product is now given as

(112) = / Ap(H) exp (2 i Swsu(H)| T 0,

®m The Wilson loop operator is given by

W(C)=TrPe $4 =TrPexp (;%J)
A

J="20HH"

7

All gauge-invariant quantities can be made frdm
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Construction of H

m The Hamiltonian is given by

e?
- — [ E“E° — [ B*B¢
2 / i 262

7

N~

= + Vv
m The kinetic term is simplified via the chain rule

e? 52
TY=_ v
2 ), 0A(x)0A(x)
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Construction of ‘H (cont'd.)

m w'(u) needs regularization
62 J%(u
» 0Ab(x 5Ab
= (¢ cA/27r> M}, (x >Tr[tmz>mg<y, ]

=m J°

Yy—x

m = ec, /27 (This is the basic mass scale of the theory.)

m The Kkinetic energy is thus given by

0 5?
T: - Qa )
" U‘] 570 / S TN
CA 5ab . ifabct]c(v)

w2 (u —v)?

Qap(u,v) =

+ O(e)

uUu—v

Can be rechecked, particularly the tefrﬂ by self-adjointness df".

0J7?
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Back to the Hamiltonian H and vacuum wave function

m The potential energy is easy to simplify

V = ! B*B® = / 0.J 0.J :

2e2 mea

m The regularization folf” and forV have to agree (in the choice of the
parameten) so thatH transforms correctly under Lorentz boosts.

m The summed-up result is

P = - [W; /wa( ) K(z,y) 0J%(y)

)
€ CA

+ fabe / J(x)J () J(2) f(x,y, 2) + ...
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Vacuum wave function (cont’'d.)

The vacuum wave function leads to a value for string tensibitkvagrees

well with lattice simulations.

The highk limit agrees with perturbation theory.

There are a couple of independent checks of this wave functio

One is based on Lorentz invariance, another is as follows.
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Vacuum wave function: A different argument

m Absorbexp(2c¢a.S., .. ) from the inner product into the wave function by
U = ¢~ caSwzw(H)H The Hamiltonian acting of is

H — G_CASwzw(H) H G_CASwzw(H)

m ConsiderH = e!"%" ~ 1 +t%p® + - --, a smallp limit appropriate for a
(resummed) perturbation theory. The new Hamiltonian is

_1 52 2 2
H—§/[ 502 T O +m)gb—|—---]

whered, (k) = \/cakk/(2mm) ¢ (k).

m The vacuum wave function is

(I)O ~ exp [—% /¢a\/m2 — VZ ¢a]

LMS-Durham = 11/22



Vacuum wave function: A different argument (cont’d.)

m Transforming back ta,

m+¢?j12—v2] (50g0a)+...]

m The full wave function must be a functional gf The only form consistent
with the above is

Uy & exp [——A (00p) [

272 = 1 =
Uy = exp [_620?4/0J () [m+\/m2—V2Ly 0J (y) + - -

sinceJ = (ca/m)0p + O(p?).
m This indicates the robustness of the Gaussian tennyirsince this
argument only presumes

1. EXxistence of a regulator, so that the transformafroa> ® can be
carried out

2. The two-dimensional anomaly calculation
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Mass term in resummed perturbation theory
m SinceT =m[[J& + [Q%55],
T J=mJ*

m Including the potential energy,

(T + V) J"Wy = VE2 +m? J Uy +---

J¢ is a “gauge-invariant” definition of a gluon.

= This is brought out more clearly by = ¢=¢4Sw=w(H) &

2
=g [ |-+ T 4wtk

2 52

m At the propagator level, we must get

1
L2 _ 2
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Mass term (cont’d.)

This must appear iresummed perturbation theory, because = e?c,4 /2.

1 1 1 1

A strategy for seeing this explicitly.

Write the action as

SYM — SYM + ,UQSma,ss — l,MQSma,ss

Smass 1S @ gauge-invariant mass term for the YM field= 1 eventually.

Use the first two terms to calculaketo, say, one-loop order. It has the form
I' = SYM + ,U2Smass + F(l) — 1 ,U2Smass + -
=0

This gives an equation determinipg
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Mass term (cont’d.)

Different choices of5,,,,s correspond to resummations of different sets of

diagrams.

What do we choose fa%,,,,.5?

For many choices, for example,

Siass = /Tr [F

1
(=D?)

|

the calculated (") has threshold singularities &t = 0. Zero mass

particles must reappear in external lines by unitarity.

There is one mass term for which this is avoided. It is ke ., (H ) we can

write in 3 dimensions. Define complex null vectots n; in 3

dimensions with

S
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Mass term (cont’d.)

m Now define
%n -V =0,

S|
I
|
|

DN |—

m \We can now construct

Smass(A) = / dQ dzT Sy (RTR)

whereR is defined by A = —ORR~!, A= R'"'0R'.
z! is the direction orthogonal to, 7.
m This has many of the properties of the WZW action.
— |t becomes the usual,,.,, in two dimensions
— It has full 3d Euclidean invariance
— Allows for a certain holomorphic splitting, PW property
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Mass term (cont’d.)

= The calculation leads to a long expressionfoY with no threshold
singularities and a value for ~ 1.2m.

m The mass term can be written as

Trlog(—DD)
(u-v)(u- )

whereD = %UADAA/?_}A,, D = %UADAA/I_LA, and

Sgss = /d,u A(u,v)

g — u-du u-du v-dv - dv
T Py
Au,v) = (u-v)(@-v)o(v(n-e)u)d(un-e)v)
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YM(3+1) configuration space

= The configuration spaae = .4/G. (gauge orbit space) in two spatial
dimensions has the volume element

dp(C) = du(H) exp (2 ca Swzw(H)]
Swew(H) = % / Tr(OHOH ™) — é / Tr(H 'dH)?

m This leads to a “finite” volume fo€,

/du(C) < 00

(Some regularization needed; the point is the contrast Alilian
theory for whichc4 = 0.)

m There are configurations which are separated by an infirstanie
(spikes). This result shows that they have zero transveessune.
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YM(3+1) configuration space (cont'd.)

m This property is crucial for mass gap becadsg., (H) provides a cut-off

for low momentum modes.

Can one have a similar result fad gauge fields, relevant far M3, ?

We focus on the volume measure, defining it as

dp(C)za = vi?{lg]*) exp [—/%}

M —oo

whereM is a parameter with the dimensions of mass.

The right hand side: Euclidean functional integral of@ + 1) — 3

dimensional Yang-Mills theory.

We can evaluate the rhs by Hamiltonian techniques-nl dimensions,

using(0|e=*7*|0).

We use Euclidean evolution operator, and further co since the third

direction has infinite extent.
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YM(3+1) configuration space (cont'd.)

m This gives

/du(C)sd:/v(E;l(Ag]*) P [_/%]

= (0] e=" [0)

M — o0

B, M — o0

— [ dueyea w5 ws
= We know the largel/ (= e3,) limit of the 2d wave function, so

/d,u(C)gd = {2 — dim. YM partition function for e3;, = M?c4/2m}

= {WZW partition function as M — oo}

< 0
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YM(3+1) configuration space (cont'd.)

m The volume of the configuration space for 3d YM is “finite”. Hosnt
possible?

m Define the distance and energy functionals as
L*(A, B) = Inf, / d’x Tr(A? — B)?, E(A) = / d’x F? /4p
m Consider orbits ofd; () andAES) = sA;(sz). Then
L2(AL)) = ! L%(A), E(AB)) =5 E(A)

S

m As s — 0, we scale up distancesdh yet there is no cut-off imposed &
since it goes to zeradrland.

m How do we square this with du(C) < oo ?
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YM(3+1) configuration space (cont'd.)

The solution has to do with dynamical generation of mass imfdsions.

In strong coupling, this is related to the generation of niasise
Hamiltonian analysis.

Also seen by resummation in a 3d-covariant approach; ogiate out
modes of high momenta to get an RG change

/F2/4M:>/F2/4M+ 1% Spmass,  p (1.2c4/2m) M

Smass(A®)) = (1/s) S, (A); this explains why smak values are cut-off

and we get/ du < .
Eventually, we expecfz— = 57 + 3

ew

Can one understand better how sw6h, s can arise from twistor space?
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