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Eventual solution

daily Sudoku puzzle (“fiendish”

Initial configuration
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Metropolis algorithm for solving Sudoku

Sample space: S = set of all 9 x 9 tables x with feasible 3 x 3 subtables.

number of like-like pairs among the rows and among the columns of x € S.

Target distribution : m(x) o exp{—pv(x)}, x €S,

where ( is a positive constant (6 = 3 recommended).

Hence, if Sudoku solutions exist, they are modes of 7(x), with v(x) = 0.

Algorithm : Initialize s.t. each subtable contains 1,...,9. Then continually

Choose one of the nine subtables at random.
Select two of its flexible elements at random.
Propose swapping the two elements.

Accept or reject the swap according to Metropolis ratio.

Terminate the algorithm when a solution v(x) = 0 is reached.




Feasible initial subtables
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Given partial configuration

Metropolis algorithm
Sample space :
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On the way ...




Gibbs sampler for generating large m x m Latin squares

Sample space: S = {all m xm arrays x : x;; € 1,2,...,m}.

number of like-like pairs among the rows and among the columns of x € S.

Target distribution : m(x) o exp{—pv(x)}, x €S,

where (3 is a positive constant.
Hence, Latin squares are modes of 7(x), with v(x) = 0.

Algorithm : Initialize table by completely random x € §. Then continually

Choose a single cell (i,j) completely at random.

Update its value z;; according to the full conditional at (i, j).
Terminate the algorithm at first table with v(x) = 0.

Eventual x sampled uniformly at random from m x m Latin squares?? NO !!




Constructing large Latin squares

64 x 64 Latin square




Constructing large Latin squares

128 x 128 Latin square




Corps identifier

Row (year) and column (corps) categorizations independent ?
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Frequentist goodness—of—fit tests

Goodness—of-fit tests often required, particularly at initial stage of data analysis.

Ho : observation x(!) consistent with fully specified distribution {7 (x):x € S}.

OK for nonparametric tests or via sufficient conditioning in exponential families.

E.g. logistic regression, multidimensional contingency tables, Markov random fields.

Observe value u(!) of any particular test statistic v = u(x) of scientific interest.

Suppose large values of u(!) suggest a conflict between data and model.

Then p—value for vV is Pr{u(X) > «M} under =.

NB. Fallacious Bayesian dismissal of frequentist p—values, c.f. Fisher (1922):

“More or less elaborate forms will be suitable according to the volume of the data”.

What if one cannot evaluate Pr{u(X)>u)} under 77




Exact Monte Carlo p—values Dwass (1957), Barnard (1963), B&D (1977)

Suppose can draw random sample x?, ... x("™) from .

Compare test statistic u(!) with corresponding u® . um)
If M) is kth largest among all m values, declare exact p-value k/m.

If ties between ranks occur, quote range or use randomized rule.
Typically choose m =99 or 999 or 9999.

Larger m = finer gradation, increased power, more consistency.

NB. Any choice of test statistic u is OK! Always exact.

Exact sequential Monte Carlo p—values Besag & Clifford (1991)

Substantially reduces expected sample size when Hg holds.




Ex. Hardy—Weinberg equilibrium for 13 alleles at a single locus ?
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Independence in folded square contingency tables (HWE)

Simple Monte Carlo test: Besag & Seheult (1983), Guo & Thompson (1992).

p; i =]
PI’(AZ):pz = PI’(A@XAJ') = i,jzl,...,m

2pip; 1<)

Pri) = e Tl Tleww™ = o T 1o
Z<j 1<j

1<] 1<J

where ti = (3317; +Xo; + ...+ 33“) + (CC“ -+ Lii+1 + ...+ Cljzm)

= t=(t1,t2,...,t,y) is sufficient statistic for p = (p1,p2,.--,Pm)-

n! Hz t;! Hz<j 2%ij
2n)! 1, 245!

t.! ”
Pr(t) = 17 I[Pt = Prxiy) =

where n = sample size =z,, = t, =2n.

Monte Carlo p—value = 0.305 from 999 samples, = 0.303 from 999999 samples.
MCMC approximate p—value (Lazzarone & Lange, 1997) = 0.316.




Independence in folded square contingency tables (HWE)

Data from Cavalli-Sforza & Bodmer (1971), Guo & Thompson (1992).
A;
Ay Ay A3 Ay Ay Ag A As  Ag

1236 120 18 982 32 2582 6
3 0O 55 1 132 0

0 7 0 20 0

249 12 1162 4
0
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0
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1312
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Monte Carlo p—value = 0.7154 from 9999 samples.
MCMC approximate p—value (Guo & Thompson, 1992) = 0.6955.

NB. Massive savings in both examples, using sequential Monte Carlo adaptation.




DNA sequence data Avery & Henderson (1999)

1572 bases : black = A, green = C, purple = G, yellow = T




Goodness of fit for Markov chains Bartlett (1951), Hoel (1954)

Observe sequence x(1) = (a:él), e a:%n))

Ho : sequence x) is consistent with a Markov chain.

él), is

Corresponding likelihood function, given x

L(p) = H sz}”,

where p;; is the (unknown) probability of one-step transition from state i to state j

and n;; is the observed number of such transitions.

The n;;’s are sufficient statistics for the p;;’s, and, conditioning on these values,

distribution is uniform on the space & generated by :1361) and the observed n;;’s.

Random samples, subject to required constraints, generated fast via Euler tours:

Aldous (1990), Kandel, Matias, Unger & Winkler (1996), Besag & Mondal (7).




DNA sequence data

Data and sample with same frequencies of pairs.
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Deviance = 55.66 on 36 d.fr. X?:0.019, MC :0.030, MCMC : 0.027




DNA sequence data

Data and sample with same frequencies of triples.
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Deviance = 150.31 on 144 d.fr. X?:0.342, MC :0.439, MCMC : 0.443




Presence / absence of a particular response over 12 months
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Binary data for 77 schizophrenics

Presence / absence of a particular response over 12 months.
Are data consistent with 77 individual Markov chains?

Deviance v. 2nd-order chains = 47.32 nominally on 154 d.fr.

but ordinary Monte Carlo and MCMC p—values = 0.03.

NB. Above MC tests fix number of 00’s, 01’s, 10’s & 11’s for each subject.

To test for single Markov chain, must fix overall 00’s, 01’s, 10’s & 11’s.




00’s, 01’s, 10’s & 11’s.

1011S preserving

MC p—value from random sampling = 0.03.
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Besag (1983), Besag & Clifford (1989)

Exact Markov chain Monte Carlo p—values

... but what if random sampling from {7(x):x € S} is not feasible?

e.g. Rasch model, hierarchical models for higher—dimensional contingency tables,

Markov random fields in spatial statistics, random graphs for social networks, ...
Can always construct Metropolis algorithms with 7 as stationary distribution.

Problems

1. Need to cope with burn—in for MCMC.

2. Need to cope with dependence in the MCMC.
3. MCMC may not be irreducible w.r.t. S.




Metropolis algorithm

Target distribution 7= {n(x):x € S}.
Consider any symmetric transition matrix R with elements R(x,x’)
P(x,x") := R(x,x") A(x,x’), x' #x €S,
where A(x,x’) := min {1, n(x")/7(x)}, x' #x €S,
with P(x,x) determined by subtraction. Then, for x’ # x,
m(x) P(x,x") = R(x,x’) min {r(x), 7(x)}
m(x') P(x',x) = R(x',x) min {n(x’), 7(x)}

so that P satisfies detailed balance w.r.t. 7!

R is the proposal matrix. If current state is x, then x’ is proposed as next
state with probability R(x,x’) and is accepted with acceptance probability

A(x,x), else x is retained as next state.




Exact Markov chain Monte Carlo p—values

Ho: X=(X1,...,X,) has known but very complex distribution 7(x).
Dataset x(1) = test statistic ) = u(x(1).
Reject Ho if uV) is extreme w.r.t. draws from 7.

Assume 7 cannot be simulated directly, so ordinary Monte Carlo is not available.

Need a fix ...

Construct transition matrix {P(x,x’)} that has 7 as stationary distribution.
Under H, corresponding Markov chain initiated by x(!) is stationary!!
However, successive observations are (highly) dependent.

Need another fix ...

Note that corresponding backwards transition matrix ) has (x’,x) element

Q(x',x) = 7(x) P(x,x") / m(x)

so  also maintains 7 and, if P is time reversible (e.g. Metropolis), @ = P.




Parallel runs

Use @Q to run chain backwards ¢ steps from data x() = x(0),

Use P to run chain forwards ¢ steps from x(©) m—1 times = x®, ..., x(™).
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Ho = xM), ..., x"™ are exchangeably from 7: and so are uV, ..., u("™.

Rank of v among u™, ..., u(™ provides an exact p—value for Ho.




Ex. Nesting sites of 110 Gray Gulls in Northern Chile

Ho : observed configuration x() is a realization of a Strauss process.




Short runs in conditional simulations for goodness—of-fit tests :

x(©) in the center, surrounded by x() in NW and x®, ..., x®,




Gray Gulls: a fast route around the nests!

. using Metropolis algorithm for simulated annealing.




Ex. Darwin’s finches

Sanderson (2000), Manly (1995)

Presence (1) or absence (0) of 13 species of finch on 17 Galapagos Islands.

E‘ERNANDIM:
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Island identifier

Define Fj; = number of islands on which species ¢ and j co—exist.

p—value 0.0001 for the Rasch model, based on overall co—occurrences.




Rasch model

x(1) is observed r x s binary table. Can be very large in educational testing.

e.g. xj; =1 or 0 is correct or incorrect response of candidate ¢ to item j.

e.g. x;; =1 or 0 is presence or absence of species ¢ in location j.

Most common statistical formulation for binary tables is Rasch model =-
z;;’s independent & odds of 1 to 0 in cell (7,j) are 6;;:1, where 0,; = ¢;¢p; =

Any binary table x has probability

R | RE ) R
HH 1+9 T ILIL A+ o4y

Conditioning on observed row and column totals :1:( ) & :1:( )

eliminates ¢;’s and 9;’s
= uniform distribution 7(x) on constrained space S.

Very nasty counting problem, no methods of random sampling, require MCMC,

Equivalent to testing for no 3-way interaction in a 2 X r X ¢ contingency table.




Proposals used in simulating the Rasch model

Margins are preserved by moves of the form :

Can prove irreducibility e.g. Jennison (1983).

E.g. choose two rows and two columns at random, propose corresponding swap
and accept swap if valid else retain existing configuration. OK Metropolis.

For more efficient alternatives, see Besag & Clifford (1989).

Can also modify moves to cater for structural zeros.




Bayesian inference for incomplete 2 x I x K tables

Geographical epidemiology for non—communicable disease
Zones (e.g. counties) i =1,...,1
Risk (e.g. ethnic) groups k=1,..., K
Known number at risk n;; in zone ¢, group k.
Unknown number of cases y;; among n;; at risk.

Known total number of cases y;, in each zone 1.
Excellent Poisson approximation for rare disease, else ...

Voting behaviour in two—party system Wakefield (2004)

Poisson approximation is no longer appropriate.

More informative version ...

Known total number of cases y,r in each group k77 Cressie & Chan (1989)




Bayesian inference for incomplete 2 x I x K tables Besag (2006)

Known numbers at risk n;
Risk group k

nikr ... Nk
237% N 179 X

Nrr: e Ngpr
Unknown numbers of cases

Risk group k

Y - Y2k

Yik' - Yik

Yrer .- YIkv




Assume that y;.’s are binomial with parameters n;; and p;x, say.

For a Bayesian justification, see Knorr—Held & Besag (1998).

Then the posterior—predictive distribution for the y;;’s and the p;;’s is

m(y,ply,..,n) = L(yl|y,.,p,n)7(p|y,,,n)
< L(y|y.,.,p,n)L(y,. |p,n)7(p|n)
< L(y,¥., |p,n)7(p|n),

in which the role of y,, is to constrain the y;.’s to sum to y;, for each .

The above factorization decouples the likelihood from the prior in the MCMC.

Propose (Yir, Yikr) — (Yirr + 75 yikrr — 1), with r uniformon 1,2, ..., ro.

Irreducible with Metropolis ratio for valid proposals satisfying constraints

T(Yirr +1Yikr =7 o) Yae (M — Y ) Yare ! (i — Yirrr)! exp (r&aprprr)

(Y yirr | ) (Y ) (i — g — 1) i — ) (i — yige + 1)1

where & = In (P /i) — 0 (pigr /Qirr) and qie = 1 — pig.




Bayesian inference for less incomplete 2 x [ x K tables

Unknown numbers of cases y;; : v;., y,x known

Risk group k Total

Yy - Y1k - Y2k ... UY1K Y1+

Yirxn oo Yirkr oo Yirk” oo YK Yi’ +

yi”l e yi”k’ e yi”k” e yi”K
Yri Y1k Y1k YIK

Total Yi1 ce Yk ce Yikr . YLK

PI’OpOSG (Qi’k’, yi’k”7 %“k’, yi”k”) — (yi/k’ —|— 7"7 yi’k” — 7"7 yi”k’ — 7"7 yi”k” —|— 7")

Irreducible with Metropolis ratio ...




Three—dimensional contingency tables

Smoking and Lung Cancer in China : 8x2x2 (Agresti, 1996)

Lung Cancer? Odds Ratio

Y N

BEIJING Smoker?
SHANGHAI Smoker?
SHENYANG Smoker?
NANJINK Smoker?
HARBIN

ZHENGZHOU

TAIYUAN Smoker?

NANCHANG Smoker?

Y
N
Y
N
Y
N
Y
N
Y
N
Y
N
Y
N
Y
N




Test for no 3—way interaction in a 3—dimensional table

In multinomial sampling, with sample size n, the probability of a table x is

Tyyy! H Tijk
TolX) =
0( ) H@jkxljk' zgk

iJk

where z,,, = n and the p;;;’s are the cell probabilities.

No 3-way interaction = p;jr = a;; bir c;1 and hence

x Xq i X
o) = e Tl T T

Hzgk Lijh: ij ik

so the sufficient statistics are z;;,, i\ x, x5 over all valid ¢, j, k.
Let & be the sample space induced by conditioning on the sufficient statistics.

s x,x €8,

m(x')  w(x'[x'eS) Ha:ijk!

m(x) = mx|xE€S) i)

ijk

which is especially easy to evaluate when |z ., — x;;x| is small for all 4, j, k.

iJk




Exact test for no 3—way interaction in a 3—dimensional table x(1)

1 @ (1)

. Sufficient statistics are z;;\, z;.%, T OVer all valid 1, 7, k.

. Construct the two cubes C of alternating +1’s s.t. sufficient statistics preserved.

C defines the set of proposals.
. Let x = x| the observed table.
. Choose 8 vertices to form a cuboid in current table x.
. Apply random draw from C to chosen vertices of x = new table x*.

. Set x = x* with probability min{1, 7(x*)/m(x)}, else retain x.

. Return to 4
NB. If x* has any negative entries, x* is rejected by 6.

OK except must fix exactness by parallel or forwards / backwards versions.




Testing homogeneity of odds ratios for smoking and lung cancer

Test of no three—way interaction:

Conventional p—value

MCMC exact p—value

Deviance = 5.20 on 7 d.fr.

Test based on Mantel-Haenszel estimate of common odds ratio:

Conventional p—value

MCMC exact p—value

Breslow—Day statistic = 5.20 on 7 d.fr.




General Metropolis algorithm for testing g—dimensional tables

To test appropriateness of a hierarchical model for a ¢—dimensional table:

. Identify sufficient statistics for corresponding model parameters.

. Construct collection C of ¢—d hypercubes of +1’s (and 0’s?) symmetrically
s.t. sufficient statistics are preserved: C defines the proposals.

. Set x = observed table.

. Choose 27 vertices of a g—d hypercube in current table x.

. Apply random draw from C to chosen vertices of x = new table x*.

. Set x = x* with probability min{1, 7(x*)/m(x)}, else retain x.

. Return to 4
NB. If x* has any negative entries, x* is rejected by 6.

OK except must fix exactness by parallel or forwards / backwards versions.




2° contingency table

Alcohol, Cigarette and Marijuana use by Gender and Race

from A. Agresti (1996), An Introduction to Categorical Data Analysis, Wiley.

Response variables: Alcohol (A), Cigarette (C) & Marijuana (M) use.

Explanatory variables: Gender (G) & Race (R).

Gender Female

Race Other

Marijuana? Y N

23 23

Y Smoker?
2 19

Alcohol?

N Smoker?

White
Y N

453 228
28 201

1 17
1




2° contingency table
Alcohol, Cigarette and Marijuana use by Gender and Race

Agresti’s model 6 allows pairwise interactions {AC, AM, AG, AR, CM, GM, GR}

C R

/ pairwise interactions graph

G

Conventional p—value

MCMC exact p—value

Deviance = 19.91 on 19 d.fr.




Alcohol, Cigarette and Marijuana use by Gender and Race

Agresti’s model 7 allows {AC, AM, AG, AR, CM, GR} 2° contingency table

C R

/ pairwise interactions graph

G

Conventional p—value

MCMC exact p—value

Deviance = 28.81 on 20 d.fr.

NB. Model 7, adding 1 to all observations :

Conventional p—value

MCMC exact p—value

Deviance = 33.82 on 20 d.fr.




2° contingency table

Alcohol, Cigarette and Marijuana use by Gender and Race

JB’s model 77 is the graphical (conditional independence) model {ACM, AGR }

C R

/ conditional dependence graph

G

[ Conventional p—value 0.09

Deviance = 26.33 on 18 d.fr. MCMC exact p—value 0.08

| Simple MC exact p-value 0.08

NB. Proposal list contains 5621641 2° hypercube configurations of +1’s & 0’s.




MCMC in an extended space S’ for g-dimensional tables

Consider any particular hierarchical model for an observed table x(1).
Let {tx(x):k € K} denote corresponding jointly sufficient statistics.
Let S denote the set of non—negative tables x s.t. t,(x) = t,(x1)), k € K.

Algorithms based on +1 hypercubes and limited to & are rarely irreducible.

Suppose relax non—negativity: e.g. allow a single negative element.

Define ST to be the corresponding space and extend m(x) to

T(x) o< exp{In(x)} / H Tkl x € ST,

Tijkl =0

where A >0 and n(x) = }_,;; min (0, z;;x;) penalizes negative @iju’s.

NB1. Behaviour of 7'(x) is almost seamless between S and ST\S.
NB2. Proposals not in ST are always rejected in Metropolis but .. .

... can be avoided using an appropriate Hastings correction.




Solving Diaconis and Sturmfels’ 4 x 4 X 6 example

Suppose x(I) is the 4 x 4 x 6 table

The 3-d hypercubes are z and —z, where z has elements

(2000, 2001, 2010, 20115 21005 21015 2110, 2111) = (+1,—1,—=1,+1,—1,+1,4+1,—1)

Conditioning on the sufficient statistics, S has two states, x(!) and

If states are restricted to S, the increments +z do not permit any moves.
However, +z increments connect the states if negative entries are allowed.

E.g. with A = 3, each of the two states appears about 18% of the time.




Markov random fields for binary data

m(x) o exp{ E T + E Qi TiT i + E Qi TiT Tk + ...+ Q12 nT1T2 . ..
1<J 1<j<k

where «;; ;=0 unless (i,7,...,0) is a cliquo.

Homogeneity assumptions produce schemes of the form

exp {01t1(x) + ...+ 0,t,(x)}

T(x;0) = (0)

where 61,...,0, are parameters, c¢(0) is a normalizing constant and

t1(x),...,ty(x) are sums of products—over—cliquos of the z;’s.

t1(x),...,ty(x) are jointly sufficient statistics for 6,,...,6,.




13 boys, 11 girls.

Social network for class of 24 school kids
X;; =1 if ¢ claims j is a friend, else X;; = 0.
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Social networks
Individuals : i, 3, k, ...
Ordered pairs (“sites”) : (i,5) for i #j .
Relations :  X;; =1 if ¢ is “tied” to j.
X;; =0 if ¢ is not tied to j.

X ={Xi},

Markov property of Frank & Strauss, 1986

Pr(xzi;|...) = Pr(wij|zji, Tik, Thi, Tjk, Tij, kK F#1,7)

e.g. Xjo is conditionally independent of Xgy4

= cliques (i.e. maximal cliquos) :

Type I: {(,5), (G,i), (i,k), (k,3), G, k), (ks 7)Y i, 4, k distinct
Type I1: {(4,7), (G,0), (i,k), (k,7), (i,0), (1,4), ... i ko 1,

distinct




Markov property

Neighbors of yellow site (i,j) in blue.

J



Type I clique

Clique {(i,5), (j,9), (i, k), (k,3), (G, k), (k,§)} in yellow.




Type II clique

1

Clique in yellow.




Wasserman & Pattison (1996) models for school kids

Definitions

27;, j Tij “choice”

D i j TijTji “mutuality”

D ijk TigTikTik “transitivity”

Zi,j,k Li;TikThi “cyclicity”

> Tij “expansiveness” of i
“attractiveness” of 1
“2—-in—stars”
“2—out—stars”

“2-mixed—stars”

Differential “choice” also available (“block” models): e.g. girl-girl (GG)




Homogeneous and block—homogeneous models

Model 2: choice + mutuality (2 parameters)

Model 3: choice + mutuality 4 transitivity (3)

Model 4: choice + mutuality + cyclicity (3)

Model 10: choice + mutuality + transitivity + cyclicity (4)

Model 30: BB + BG + GB + GG choice + mutuality + transitivity (6)

Model 30h: BB + BG 4+ GB + GG choice + mutuality + transitivity + cyclicity (7)

Individual-level models

Model 18: BB/GG + BG/GB choice + mutuality + expansiveness + attractiveness

Model 23: BB/GG + BG/GB choice + mut + trans + expansiveness + attractiveness




Exact goodness—of—fit tests for class of 24 school kids

Child ;

Child ¢ 13 boys
11 girls

24 school children : pixel (7, j) is blue if ¢ claims j is a friend.




Exact goodness—of—fit tests for 24 school kids
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Model 18 + 3 mutualities, with 51 parameters.
BB/GG + BG/GB choice + mutuality 4+ expansiveness + attractiveness.
100 of 1000 realizations with same 51 image statistics, of which one is the data.

Two—sided p—values 0.002 & 0.004 based on t3 (transitivity) & ts4 (cyclicity).
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