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Topics

◮ Parameter estimation for discrete probability tables.

◮ Structural learning of discrete Bayesian networks.

◮ Learning structure from large datasets exploiting pairwise
marginals

◮ Testing (conditional) independence of continuous random
variables for learning structure of continuous Bayesian
networks.
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◮ Parameter estimation for discrete probability tables.

◮ Structural learning of discrete Bayesian networks.

◮ Learning structure from large datasets exploiting pairwise
marginals

◮ Testing (conditional) independence of continuous random
variables for learning structure of continuous Bayesian
networks.

Pretty much a non-Bayesian talk, more engineering.



Parameter estimation for discrete BNs

Basic to learning the structure of a discrete Bayesian network is
some method for estimating marginal or conditional probability
tables, for use in (a) score based methods or (b) conditional
independence test methods.

◮ Usual to have a complete dataset

◮ Here relax to incomplete data, assuming Missing At Random
(MAR)

◮ Specifically advocate use method in AISTATS ’99 paper,
based on maximum entropy.



Estimate joint distribution of two binary variables X and Y from
incomplete dataset.
Introduce random variables: X ∗ ∈ (x∗

0 ≡?, x∗
1 ≡ x1, x

∗
2 ≡ x2) and

Y ∗ ∈ (y∗
0 ≡?, y∗

1 ≡ y1, y
∗
2 ≡ y2).

In terms of these variables, the dataset is complete.

Y =? Y = y1 Y = y2

X =? n00 n01 n02

X = x1 n10 n11 n12

X = x2 n20 n21 n22



Set pij ,kl := P(xi , yj , x
∗
k , y∗

l ).
Under MAR assumption, we have non-linear constraints:

pij ,00 = P(xi , yj)P(x∗
0 , y∗

0 )

pij ,i0 = P(yj | xi )P(x∗
i , y∗

0 )

pij ,0j = P(xi | yj)P(x∗
0 , y∗

j ).

Maximize entropy the joint distribution P(X ,Y ,X ∗,Y ∗), subject
to constraints, by iteration. Then marginalize to get the desired
estimate of P(X ,Y ).
Equivalent to EM algorithm.



Local EM Estimation

In a BN, I estimate the conditional table of a node given parents
using only the data on the family (hence local EM): Estimate the
joint, marginalize to parents, then condition.

◮ Use previous iteration scheme with two or more variables if
data incomplete.

◮ Fast compared to full EM, and usually quite accurate.

◮ Estimates can be used as starting point for full EM estimation
in BN.



Equivalence of scoring and conditional independence tests

(UAI 2001).

In learning BN structure:

◮ Assume complete data (discrete).

◮ Assume node ordering.

◮ No latent variables.

Then: Incremental structure learning based on

◮ conditional independence tests using cross-entropy, and

◮ score based search using maximum likelihood

are equivalent.



Nested models g ⊂ g ‘ differing in parent set in one node Xi :
pa(Xi : g ′) ⊃ pa(Xi : g). Log-likelihood difference of models:

log
L(p̂g ′)

L(p̂g )
=

∑

xi ,pa(xi :g ′)

n(xi , pa(Xi : g ′)) log
n(xi , pa(xi : g ′))/n(pa(xi : g ′))

n(xi , pa(xi : g))/n(pa(xi : g))

Equal to conditional independence (conditional cross-entropy)
test-statistic after scaling:

1

N
log

L(p̂g ′)

L(p̂g )
=

∑

xi ,pa(xi :g ′)

p̂(xi , pa(xi : g ′)) log
p̂(xi | pa(xi : g ′))

p̂(xi | pa(xi : g))
,

So I use the conditional independence testing approach.



Learning structure from large datasets

◮ Main computational bottle-neck is traversing dataset to
estimate joint probabilities for CI tests (uses up to 98% of
processing time).

◮ Look at ways to reduce this using bivariate probability tables.

◮ Finding Chow-Liu tree requires using only marginal and
pairwise tables.



Learning structure from large datasets

◮ Main computational bottle-neck is traversing dataset to
estimate joint probabilities for CI tests (uses up to 98% of
processing time).

◮ Look at ways to reduce this using bivariate probability tables.

◮ Finding Chow-Liu tree requires using only marginal and
pairwise tables.

Question Does anyone know of an example of a connected
Bayesian network whose induced Chow-Liu tree is not a subgraph
of the network?



A simple lemma

Lemma
Let A, B and C denote three mutually disjoint sets of discrete
random variables, having joint probability distribution P(A,B ,C ).
Let IXY denote the Kullback–Leibler divergence

IXY =
∑

x ,y

p(x , y) log
p(x , y)

p(x)p(y)

where X and Y are disjoint sets of discrete random variables.
Then, if A and C are conditionally independent given B:

IAC ≤ IAB + IBC .



A simple lemma

Lemma
Let A, B and C denote three mutually disjoint sets of discrete
random variables, having joint probability distribution P(A,B ,C ).
Let IXY denote the Kullback–Leibler divergence

IXY =
∑

x ,y

p(x , y) log
p(x , y)

p(x)p(y)

where X and Y are disjoint sets of discrete random variables.
Then, if A and C are conditionally independent given B:

IAC ≤ IAB + IBC .

Note: Only requires bivariate tables for singleton sets.



A simple lemma

Lemma
Let A, B and C denote three mutually disjoint sets of discrete
random variables, having joint probability distribution P(A,B ,C ).
Let IXY denote the Kullback–Leibler divergence

IXY =
∑

x ,y

p(x , y) log
p(x , y)

p(x)p(y)

where X and Y are disjoint sets of discrete random variables.
Then, if A and C are conditionally independent given B:

IAC ≤ IAB + IBC .

Note: Only requires bivariate tables for singleton sets.
In fact: (Pearl, 8.15) IAC ≤ min(IAB , IBC ).
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Under assumptions of previous lemma:
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where IB =
∑

b p(b) log p(b).
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More lemmas

Under assumptions of previous lemma:

Lemma

IAC ≤ min(IAB , IBC ) and IAB + IBC ≤ IAC − IB

where IB =
∑

b p(b) log p(b).

Lemma

ǏAC ≤ ǏAB + ǏBC

where

ǏXY =
∑

x ,y

p(x)p(y) log
p(x)p(y)

p(x , y)

Conjecture ǏAC ≤ min(ǏAB , ǏBC ).



IPF estimation

Suppose during incremental BN building X has parent set Y , and
we wish to check if X⊥⊥Z |Y for singleton Z.
Could estimate P(X ,Y ,Z ) from data, but this could have
problems:

◮ Slow to do this many times.

◮ Table counts could get quite sparse, so estimate of
P(X ,Y ,Z ) unreliable

Approximate solution: use IPF (iterative proportional fitting) using
bivariate tables to estimate P(X ,Y ,Z ).
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Suppose during incremental BN building X has parent set Y , and
we wish to check if X⊥⊥Z |Y for singleton Z.
Could estimate P(X ,Y ,Z ) from data, but this could have
problems:

◮ Slow to do this many times.

◮ Table counts could get quite sparse, so estimate of
P(X ,Y ,Z ) unreliable

Approximate solution: use IPF (iterative proportional fitting) using
bivariate tables to estimate P(X ,Y ,Z ).

Lemma
If A, B and C are discrete random variables, and A⊥⊥B |C, then
IPF using bivariate marginals gives the correct joint table
P(A,B ,C ) (starting from uniform joint table).



Advantages of IPF estimation

◮ Bivariate marginals usually estimated and cached during the
initial BN model search stage.

◮ For ’typical’ problems, could expect that estimates should be
reasonable: in terms of log-linear models, higher-order
interactions have smaller influence on joint distribution
‘typically’ in natural world.

◮ Avoids bottleneck problem, no need to traverse the dataset
again.

◮ Fast - can also combine with local-EM for estimates using
incomplete data.



Advantages of IPF estimation

◮ Bivariate marginals usually estimated and cached during the
initial BN model search stage.

◮ For ’typical’ problems, could expect that estimates should be
reasonable: in terms of log-linear models, higher-order
interactions have smaller influence on joint distribution
‘typically’ in natural world.

◮ Avoids bottleneck problem, no need to traverse the dataset
again.

◮ Fast - can also combine with local-EM for estimates using
incomplete data.

This seems to work moderately well (at least on a few small
examples) though I don’t have extensive results to back this up.
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non-parametric test.
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size N.
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Learning continuous BN’s from data

Interested in not making distributional assumptions:
non-parametric test.
Assume X , Y and Z are continuous. Have a complete dataset,
size N. For test of X⊥⊥Y use

P(x1 < X < x2 and y1 < Y < y2) = P(x1 < X < x2)P(y1 < Y < y2).

For test of X⊥⊥Y |Z use

P(x1 < X < x2, y1 < Y < y2, z1 < Z < z2)

≈
P(x1 < X < x2, z1 < Z < z2)P(y1 < Y < y2, z1 < Z < z2)

P(z1 < Z < z2)

Estimate various probabilities using frequency counts of data. Use
Pearson goodness-of-fit statistic to assess independence
/conditional independence.



Independence test

For test of X⊥⊥Y , standard Pearson goodness-of-fit test would
partition (X ,Y ) region with rectangular grid.

◮ How many grid lines?

◮ Where to place the grid-lines?

◮ For smaller dataset, grid may be too coarse to be useful.
◮ Even more so when extending to conditional independence test.



Suggested solution: Median partitioning

Consider test of X⊥⊥Y . Instead of making a rectangular grid, make
a random plane partitioning using the following recursive method:

1. Randomly choose X or Y .



Suggested solution: Median partitioning

Consider test of X⊥⊥Y . Instead of making a rectangular grid, make
a random plane partitioning using the following recursive method:

1. Randomly choose X or Y .

2. Partition dataset into two parts, according to median of
chosen variable.



Suggested solution: Median partitioning

Consider test of X⊥⊥Y . Instead of making a rectangular grid, make
a random plane partitioning using the following recursive method:

1. Randomly choose X or Y .

2. Partition dataset into two parts, according to median of
chosen variable.

3. Repeat Steps 1 and 2 on the data subsets, recursively, until
datasets are smaller than some number of observations (25
say).



Illustration



Illustration

For each rectangular region i , can:

◮ Find observed counts oi

◮ Estimate expected counts ei based on independence
assumption.

◮ Find correlation ci between X -Y values.



These can be cumulated over all regions to give:

◮ Goodness of fit statistic: χ2 =
∑I

i=1(oi − ei )
2/ei .

◮ What distribution does it follow? Probably χ2 (Wilks’
theorem) but what degree of freedom? Fractal dimension?

◮ Estimate of IXY : (1/N)
∑I

i=1 oi log(oi/ei )
◮ Note: If independence holds, then χ2 ≈ 2NIXY .

◮ Root-mean-square correlation
√

∑I
i=1 c2

i /I .

◮ Could also look at
∑I

i=1 abs(ci )/I



These can be cumulated over all regions to give:

◮ Goodness of fit statistic: χ2 =
∑I

i=1(oi − ei )
2/ei .

◮ What distribution does it follow? Probably χ2 (Wilks’
theorem) but what degree of freedom? Fractal dimension?

◮ Estimate of IXY : (1/N)
∑I

i=1 oi log(oi/ei )
◮ Note: If independence holds, then χ2 ≈ 2NIXY .

◮ Root-mean-square correlation
√

∑I
i=1 c2

i /I .

◮ Could also look at
∑I

i=1 abs(ci )/I

By repeating the partitioning process, distributions of these three
quantities may be built up.



Example 1: Independent data
Data size N = 200. Correlation in data 0.0585099.

Number cells χ2 IXY χ2/(2NIXY ) RMS-corr

16 4.16627 0.0098185 1.06082 0.277886
16 7.21718 0.0181548 0.99384 0.244964
16 5.81515 0.0143282 1.01463 0.227799
16 4.20133 0.0101659 1.03319 0.313294
16 6.88750 0.0161347 1.06719 0.255480
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Example 2
Data size N = 201. Correlation in data 3.0088e-06.

Number cells χ2 IXY χ2/(2NIXY ) RMS-corr

16 30.8015 0.074389 1.03000 0.790612
16 72.1086 0.151718 1.18229 0.995518
16 50.4350 0.100801 1.24463 0.995501
16 138.447 0.290167 1.18689 0.995514
16 134.818 0.244971 1.36901 0.911523
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Example 3: X⊥⊥Y |Z
Data size N = 20, 000. X − Y Correlation in data 0.8078973.

Number cells χ2 IXY |Z χ2/(2NIXY |Z ) RMS-corr

1024 515.526 0.0125959 1.02320 0.240660
1024 442.617 0.0108970 1.01545 0.229239
1024 476.859 0.0117177 1.01739 0.221301
1024 535.646 0.0129877 1.03107 0.233340
1024 492.561 0.0119363 1.03165 0.234522
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Postscript

Following the talk, F. Matus gave me a class of Bayesian networks
for which an induced Chow-Liu tree is not a subgraph of the
skeleton of the Bayesian network, of which this is an example.
Let A and B be independent binary random variables with states
{0, 1} and uniform distribution p(0) = p(1) = 0.5 on each variable.
Let X and Y also be binary random variables with states {0, 1}.
Make A and B parents of X , with conditional probability table
given by p(x |a, b) = 1 if x = a + b mod 2, and zero otherwise.
Also make A and B parents of Y with the same logical
dependence.
Then all variables in the four node network are pairwise
independent, and hence have zero cross-entropy, except for the pair
(X ,Y ) which are logically dependent and therefor have non-zero
cross entropy: however there is no direct edge between X and Y .
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