G–Formula, Inverse Probability of Treatment Weighting and Optimal Sequential Treatments

Vanessa Didelez Department of Mathematics University of Bristol

Durham, July 2008

Overview

- Motivating examples
- Identifiability: stability and optimal strategies
- Illustrating g-computation
- Inverse probability weighting (IPTW)
- Comparison and conclusions

Example 1: Hospital Acquired Infection

Population: Patients in intensive care.

Response variable: Duration of stay in intensive care. \Rightarrow 'Survival' type of response.

Fixed covariates: Age, sex etc.

Time dependent covariates: Time of hospital acquired infection, organ function (score).

Question: Effect of 'preventing infection' on duration in intensive care.

Example 1: Hospital Acquired Infection

Causal question: What if we can prevent infection (higher standards of hygene etc.) for future patients, so that *no one* develops this infection?

Problem: In the data, time of infection (if at all) may depend on patient's recovery process and general health.

 \Rightarrow Cannot compare patients who *happen* not to have an infection with situation where infection is prevented for *everyone*.

Causal inference: Assume that certain aspects of the data are stable so that they are still valid under an intervention that prevents this infection.

Example 2: Chemotherapy for Cancer Patients

Population: Patients with operable breast cancer.

Response variable: Absence of residual malignant cells at surgery. \Rightarrow One binary outcome measured at end of study period.

Fixed covariates: Age, tumour size at start etc.

Time dependent covariates: Tumour size, number of chemotherapy cycles.

Question: Effect of the number of cycles on presence of tumour.

Example 2: Chemotherapy for Cancer Patients

Causal question: If we *prescribe* a certain number of chemotherapy cycles to future patients will this have a different effect than prescribing a lower (higher) number?

Problem: In the data, number (and timing) of chemotherapy cycles vary and may depend on patient history, patient's wish to terminate, toxic response, death, negative palpation result...

 \Rightarrow Patients who *happen* to have had e.g. four cycles cannot be compared with situation where *everyone* is prescribed four cycles.

Causal inference: Assume that certain aspects of the data are stable so that they are still valid under an intervention of prescribing no. of cycles.

Data Situation

 A_1,\ldots,A_N "action" variables ightarrow can be 'manipulated'

 L_1, \ldots, L_N covariates \rightarrow (available) background information

 $Y = L_{N+1}$ response variable

all measured over time, L_i before A_i

 $\mathbf{A}^{\langle i} = (A_1, \ldots, A_{i-1})$ past up to before *i*; $\mathbf{A}^{\leq i}$, $\mathbf{A}^{\geq i}$ etc. similarly

Strategies

Strategy $\mathbf{s} = (s_1, \dots, s_N)$ set of functions assigning an action $a_i = s_i(\mathbf{a}^{< i}, \mathbf{l}^{\le i})$ to each history $(\mathbf{a}^{< i}, \mathbf{l}^{\le i})$

If s_i constant for $(\mathbf{a}^{< i}, \mathbf{l}^{\le i})$, i = 1, ..., N, then **unconditional strategy**

Otherwise conditional/dynamic strategy.

Causal Inference

Three issues:

- 1) What is the **causal target** of inference?
- effect of unconditional strategy;
- effect of *conditional* strategy;
- finding *optimal* strategy?

2) Under what **assumption** can we learn anything at all from observed data about our causal target of inference?

 \Rightarrow they are slighly different depending on taget.

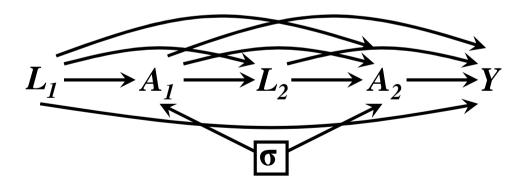
- 3) What **methods** should we use? For sequential treatments:
- G-computation
- Inverse probability of treatment weighting (IPTW)
- (G-estimation)

Identifiability

Wanted: $p(y; \mathbf{s})$ (or as before $E(k(Y); \mathbf{s})$) from observables. Have seen that **simple stability** is sufficient to identify this.

$$L_i \perp \sigma | (\mathbf{A}^{< i}, \mathbf{L}^{< i}) \quad \text{for all } i = 1, \dots, N+1$$

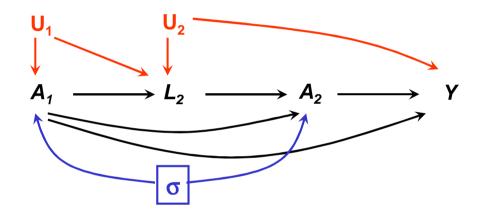
Or graphically:



(References: Robins (1986), Dawid & Didelez (2005))

Examples

Example 3: (from earlier)



Simple stability violated: $L_2 \not \perp \sigma \mid A_1$ and $Y \not \perp \sigma \mid (A_1, A_2, L_2)$

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A, L, U, Y, and define 'new' joint distributions $p_i(a, l, u, y) =$

$$p(\mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}, \mathbf{u}^{\leq i}; o) \times p(\mathbf{a}^{>i}, \mathbf{l}^{>i}, \mathbf{u}^{>i}, y | \mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}, \mathbf{u}^{\leq i}; \mathbf{s})$$

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A, L, U, Y, and define 'new' joint distributions $p_i(a, l, u, y) =$

$$\underbrace{p(\mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}, \mathbf{u}^{\leq i}; \mathbf{o})}_{\text{obs. for } \leq i} \times p(\mathbf{a}^{>i}, \mathbf{l}^{>i}, \mathbf{u}^{>i}, y | \mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}, \mathbf{u}^{\leq i}; \mathbf{s})$$

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A, L, U, Y, and define 'new' joint distributions $p_i(a, l, u, y) =$

$$p(\mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}, \mathbf{u}^{\leq i}; o) \times \underbrace{p(\mathbf{a}^{>i}, \mathbf{l}^{>i}, \mathbf{u}^{>i}, y | \mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}, \mathbf{u}^{\leq i}; \mathbf{s})}_{\text{strategy for } > i}$$

For given strategy ${\bf s}$ can relax conditions for identifiability.

Assume extended stability holds wrt. A, L, U, Y, and define 'new' joint distributions $p_i(a, l, u, y) =$

$$p(\mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}, \mathbf{u}^{\leq i}; o) \times p(\mathbf{a}^{>i}, \mathbf{l}^{>i}, \mathbf{u}^{>i}, y | \mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}, \mathbf{u}^{\leq i}; \mathbf{s})$$

Theorem 1: sufficient condition for identifiability of s is

$$p_{i-1}(y|\mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}) = p_i(y|\mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}), \qquad i = 1, \dots, N.$$

(Dawid & Didelez, 2005)

Simple stability implies the above.

Comments

Theorem 1, in words:

once we know a_i and the observable past variables, the distribution of Y does not depend on how a_i was generated, when $\mathbf{a}^{\leq i}$ is observational and $\mathbf{a}^{\geq i}$ follows the strategy.

Note:

Essentially same as Pearl & Robins (1995) for unconditional strategies.

Graphical check: draw graphs D_i with

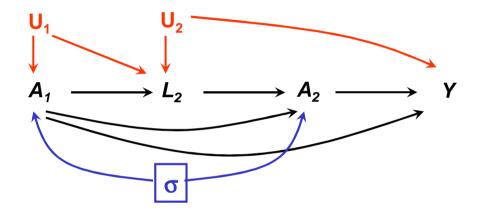
—
$$\operatorname{pa}_{D_i}(A_k) = \operatorname{pa}_o(A_k)$$
 for $k < i$

- $pa_{D_i}(A_k) = pa_s(A_k)$ as under strategy for k > i
- $\operatorname{pa}_{D_i}(A_i) = \operatorname{pa}_s(A_i) \cup \operatorname{pa}_o(A_i) \cup \sigma.$

 \Rightarrow check separation $Y \perp \!\!\!\perp \sigma | (\mathbf{A}^{\leq i}, \mathbf{L}^{\leq i})$ in D_i , $i = 1, \ldots, N$

Example 3 ctd.

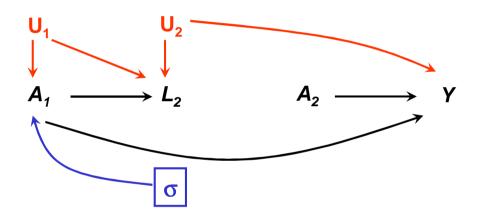
Assumed underlying structure (note: $L_1 = \emptyset$ here)

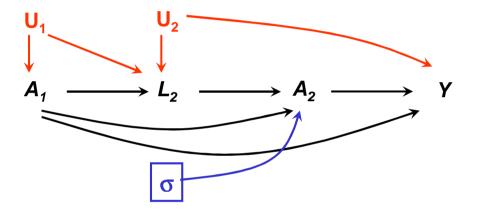


Now: also assume that s_2 is unconditional, i.e. choice of action A_2 in our strategy does not depend on past observations.

Example 3 ctd.

Then D_1 and D_2 are given by



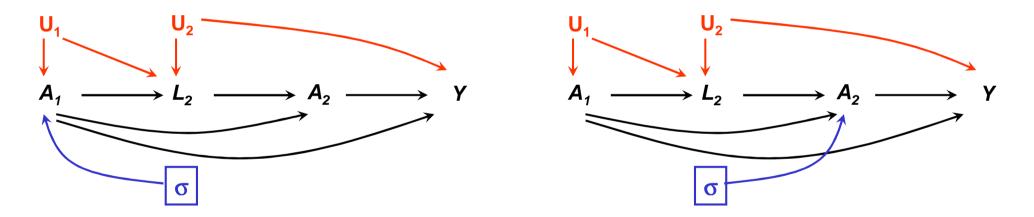


Can see that $Y \perp \!\!\!\perp \sigma | A_1$ in D_1

and $Y \perp \!\!\!\perp \sigma | (A_1, A_2, L_2)$ in D_2 .

Example 3 ctd.

However, if s_2 is conditional, i.e. A_2 depends on past observations in our strategy, then D_1 and D_2 are given by



Now $Y \not \perp \sigma | A_1$ in D_1 .

This suggests that the 'relaxed' conditions are not so 'relaxed' for conditional interventions.

Optimal Treatment Strategy

Really, what we want to find is the *optimal* treatment strategy.

 \Rightarrow will typically be *conditional* strategy.

 \Rightarrow have to investigate whether all relevant conditional strategies are identified from data.

 \Rightarrow have to allow a_i to depend on whole observed past $(\mathbf{a}^{\leq i}, \mathbf{l}^{\leq i})$.

Result

Assumption 1: $pa_s(A_i) \subset pa_o(A_i)$ for all i = 1, ..., N.

Assumption 2: each L_1, \ldots, L_N is an ancestor of Y in D_0 (under strategy s), $i = 1, \ldots, N$.

Theorem 2: With these assumptions, if the graphical check of Theorem 1 succeeds then we also have simple stability. (Dawid & Didelez, 2008)

Optimal strategies: Assumption 2 satisfied because

- actions A_i must be allowed to depend on past $\mathbf{L}^{\leq i}$
- and A_i ancestors of Y.

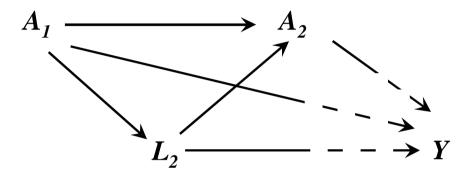
G–Computation

Assuming simple stability (or Theorem 1).

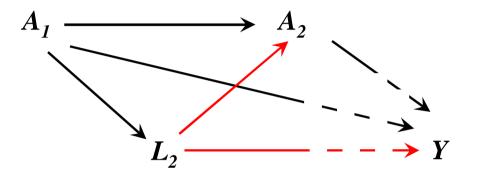
If s is (non-random) strategy fixing actions at $\mathbf{a}^{\leq N}$ then

$$p(y; \mathbf{s}) = \sum_{\mathbf{l} \leq N} p(y | \mathbf{l}^{\leq N}, \mathbf{a}^{\leq N}; \mathbf{o}) \prod_{i=1}^{N} p(l_i | \mathbf{l}^{< i}, \mathbf{a}^{< i}; \mathbf{o})$$

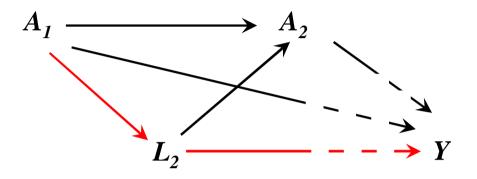
Why? A bit of intuition (assuming s is unconditional)...



Simple scenario with $L_1 = \emptyset$ and only two actions.

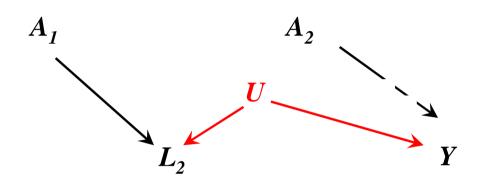


- L_2 'confounder' for A_2 and Y.
- \Rightarrow have to condition on L_2 .



- L_2 'mediator' for A_1 on Y.
- \Rightarrow must not condition on $L_2!$

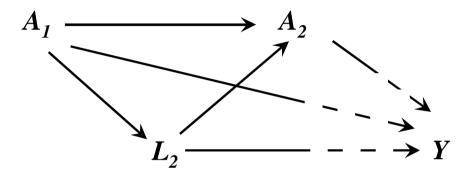
 \Rightarrow coefficients in regression $p(y|a_1,a_2,l_2;o)$ not suitable for causal effect.



Also, conditioning on L_2 could induce selection effect.

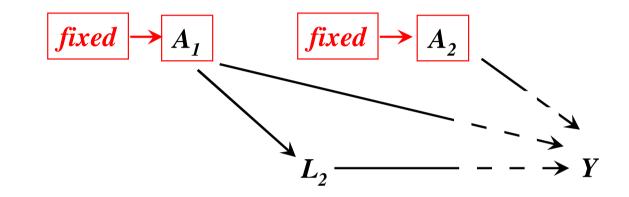
 \Rightarrow must not condition on $L_2!$

 \Rightarrow coefficients in regression $p(y|a_1, a_2, l_2; o)$ not suitable for causal effect.



Under observational regime:

 $p(y|a_1, a_2, l_2; \mathbf{o}) = p(y|a_1, a_2, l_2; \mathbf{o}) \underbrace{p(a_2|a_1, l_2; \mathbf{o})}_{\text{chosen by 'nature'}} \underbrace{p(l_2|a_1; \mathbf{o})}_{\text{chosen by 'nature'}} \underbrace{p(a_1; \mathbf{o})}_{\text{$



Under **intervention**:

Actions A_1 , A_2 not random anymore, but fixed.

 \Rightarrow not generated by $p(a_1; o)$ and $p(a_2|a_1, l_2; o)$ anymore.

$$\Rightarrow p(y, l_2; \mathbf{s}) = p(y|\mathbf{a_1}, \mathbf{a_2}, l_2; \mathbf{o}) p(l_2|\mathbf{a_1}; \mathbf{o})$$

Stability (or Theo. 1) ensures remaining factors stay the same.

G–Computation

Integrate / sum out covariates $\mathbf{l}^{\leq N}$ to obtain $p(y; \mathbf{s})$

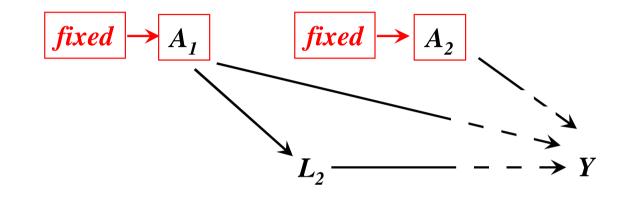
$$p(y; \mathbf{s}) = \sum_{\mathbf{l} \leq N} p(y | \mathbf{l}^{\leq N}, \mathbf{a}^{\leq N}; \mathbf{o}) \prod_{i=1}^{N} p(l_i | \mathbf{l}^{< i}, \mathbf{a}^{< i}; \mathbf{o})$$

So, estimate $p(y|\mathbf{l}^{\leq N}, \mathbf{a}^{\leq N}; o)$ and $p(l_i|\mathbf{l}^{< i}, \mathbf{a}^{< i}; o)$ from data. \Rightarrow plug in and done!

Note: for realistic settings will need to *model* these conditional distributions; misspecification may "multiply".

Alternative: inverse probability of treatment weighting.

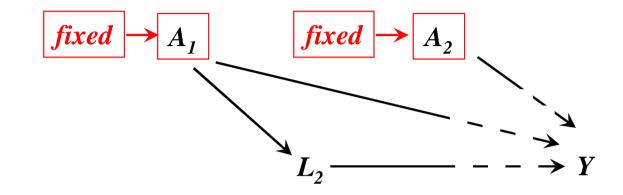
Reminder



Under **intervention**:

$$p(y, l_2; \mathbf{s}) = p(y|a_1, a_2, l_2; o) p(l_2|a_1; o)$$

Inverse Probability of Treatment Weighting



Under **intervention**:

$$p(y, l_2; \mathbf{s}) = p(y|a_1, a_2, l_2; o) p(l_2|a_1; o)$$

Same as

$$\dots = \frac{p(y, \boldsymbol{a_1}, \boldsymbol{a_2}, l_2; \boldsymbol{o})}{p(\boldsymbol{a_1}; \boldsymbol{o})p(\boldsymbol{a_2}|\boldsymbol{a_1}, l_2; \boldsymbol{o})} \longleftarrow \text{ IPTW}$$

IPTW — More Generally

Assuming stability (or Theo. 1), and unconditional strategy ${\bf s}$

$$\begin{split} p(Y;\mathbf{s}) &\longleftarrow \text{ intervention distribution} \\ &= \sum_{\mathbf{l} \leq N} p(y | \mathbf{l}^{\leq N}, \mathbf{a}^{\leq N}; o) \prod_{i=1}^{N} p(l_i | \mathbf{l}^{\leq i}, \mathbf{a}^{\leq i}; o) \longleftarrow \text{ G-comp.} \\ &= \sum_{\mathbf{l} \leq N} \frac{p(y, \mathbf{l}^{\leq N}, \mathbf{a}^{\leq N}; o)}{\prod_{i=1}^{N} p(a_i | \mathbf{l}^{\leq i}, \mathbf{a}^{\leq i}; o)} \longleftarrow \text{ IPTW} \end{split}$$

where a_1, \ldots, a_K are fixed according to intervention strategy $\sigma = s$. Not obvious how to *use* IPTW yet.

IPTW — Even More Generally

Define a probability measure P^* as

$$p^*(y, \mathbf{l}^{\leq N}, \mathbf{a}^{\leq N}) = p(y, \mathbf{l}^{\leq N}, \mathbf{a}^{\leq N}; o) \underbrace{\frac{\prod_i \tilde{p}(a_i | \mathbf{a}^{< i})}{\prod_i p(a_i | \mathbf{l}^{\leq i}, \mathbf{a}^{< i}; o)}}_{\prod_i p(a_i | \mathbf{l}^{\leq i}, \mathbf{a}^{< i}; o)}$$

where \tilde{P} is an arbitrary joint distribution for $\mathbf{A}^{\leq N}$.

Then we can show

- under P^* : $A_i \perp\!\!\perp \mathbf{L}^{\leq i} \mid \mathbf{A}^{< i}$ for all i
- and $p^*(\mathbf{a}^{\leq i}) = \tilde{p}(\mathbf{a}^{\leq i})$ for all i

IPTW: Marginal Structural Models (MSMs)

A MSM (Robins, 1999) is a model for $E(Y; \mathbf{s}) = \mu(\mathbf{a}^{\leq N}; \beta)$ e.g. logistic regression etc.

Note: parameters β have immediate causal interpretation.

With P^* as before, we have

$$E(Y;\mathbf{s}) = E^*(Y|\mathbf{A}^{\leq N} = \mathbf{a}^{\leq N})$$

if $\sigma = \mathbf{s}$ is strategy fixing $\mathbf{A}^{\leq N}$ at $\mathbf{a}^{\leq N}$.

Estimating Equations

Hence, we obtain

$$E^*\{\phi(\mathbf{A}^{\leq N})(Y - \mu(\mathbf{A}^{\leq N};\beta))\} = 0$$

i.e. unbiased estimating equations under P^* .

But this is the same as

$$E^*\{\phi(\mathbf{A}^{\leq N})(Y - \mu(\mathbf{A}^{\leq N};\beta))\} = E\left\{\frac{\phi(\mathbf{A}^{\leq N})(Y - \mu(\mathbf{A}^{\leq N};\beta))}{W(\mathbf{L}^{\leq N},\mathbf{A}^{\leq N})};o\right\}$$

i.e. *weighted* estimating equations are unbiased under observational regime.

'Survival' Outcome

Example: Duration of stay in intensive care.

If response is such a survival / duration, don't want to model $E(Y; \mathbf{s})$ but instead hazard rate $\lambda(t; \mathbf{s})$ under strategy $\sigma = \mathbf{s}$.

- \Rightarrow Same principle, but with time varying weights.
- \Rightarrow Weights must be conditional on 'survived so far'.

Comparison

G–computation:

- Need models for $p(y|\mathbf{l}^{\leq N}, \mathbf{a}^{\leq N}; o)$ and $p(l_i|\mathbf{l}^{< i}, \mathbf{a}^{< i}; o) \forall i$.
- Under misspecification might not even include the null hypothesis of no causal effect.
- No simple relation between parameters of above conditional distributions and causal effect.
- Apart from that, very general method.

Comparison

IPTW:

- Need models for $E(Y; \mathbf{s})$ and $p(a_i | \mathbf{l}^{\leq i}, \mathbf{a}^{< i}; o)$ for all i.
- By parameterising $E(Y; \mathbf{s}) = \mu(\mathbf{a}^{\leq N}; \beta)$ we obtain a causally interpretable parameter.
- Can easily be carried out by slight modification of popular regression methods.
- Cannot (easily) deal with interactions between L_i and A_i on Y and hence has problems with conditional strategies.

Conclusion

- Conditions for identifiability of a strategy may depend on type of strategy.
 If we want to find an optimal strategy, just check simple stability.
- Note: have not talked about *how* to find an optimal strategy; not easy!
- Unconditional strategies can be estimated with IPTW as an alternative to g-computation.
- Further method, g-estimation: based on counterfactuals can we reformulate that?
- In applications need to scrutinise carefully assumption allowing to link observational and interventional regimes.