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Overview

• Motivating examples

• Identifiability: stability and optimal strategies

• Illustrating g–computation

• Inverse probability weighting (IPTW)

• Comparison and conclusions



Example 1: Hospital Acquired Infection

Population: Patients in intensive care.

Response variable: Duration of stay in intensive care.

⇒ ‘Survival’ type of response.

Fixed covariates: Age, sex etc.

Time dependent covariates: Time of hospital acquired infection,

organ function (score).

Question: Effect of ‘preventing infection’ on duration in intensive care.
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Example 1: Hospital Acquired Infection

Causal question: What if we can prevent infection (higher standards of

hygene etc.) for future patients, so that no one develops this infection?

Problem: In the data, time of infection (if at all) may depend on

patient’s recovery process and general health.

⇒ Cannot compare patients who happen not to have an infection with

situation where infection is prevented for everyone.

Causal inference: Assume that certain aspects of the data are stable

so that they are still valid under an intervention that prevents this

infection.
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Example 2: Chemotherapy for Cancer Patients

Population: Patients with operable breast cancer.

Response variable: Absence of residual malignant cells at surgery.

⇒ One binary outcome measured at end of study period.

Fixed covariates: Age, tumour size at start etc.

Time dependent covariates: Tumour size, number of chemotherapy

cycles.

Question: Effect of the number of cycles on presence of tumour.
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Example 2: Chemotherapy for Cancer Patients

Causal question: If we prescribe a certain number of chemotherapy

cycles to future patients will this have a different effect than prescribing

a lower (higher) number?

Problem: In the data, number (and timing) of chemotherapy cycles

vary and may depend on patient history, patient’s wish to terminate,

toxic response, death, negative palpation result...

⇒ Patients who happen to have had e.g. four cycles cannot be compared

with situation where everyone is prescribed four cycles.

Causal inference: Assume that certain aspects of the data are stable

so that they are still valid under an intervention of prescribing no. of

cycles.
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Data Situation

A1, . . . , AN “action” variables → can be ‘manipulated’

L1, . . . , LN covariates → (available) background information

Y = LN+1 response variable

all measured over time, Li before Ai

A
<i = (A1, . . . , Ai−1) past up to before i; A

≤i, A
>i etc. similarly
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Strategies

Strategy s = (s1, . . . , sN) set of functions assigning an action

ai = si(a
<i, l≤i) to each history (a<i, l≤i)

If si constant for (a<i, l≤i), i = 1, . . . , N , then unconditional strategy

Otherwise conditional/dynamic strategy.
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Causal Inference

Three issues:

1) What is the causal target of inference?

— effect of unconditional strategy;

— effect of conditional strategy;

— finding optimal strategy?

2) Under what assumption can we learn anything at all from observed

data about our causal target of inference?

⇒ they are slighlty different depending on taget.

3) What methods should we use? For sequential treatments:

— G–computation

— Inverse probability of treatment weighting (IPTW)

— (G–estimation)
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Identifiability

Wanted: p(y; s) (or as before E(k(Y ); s)) from observables.

Have seen that simple stability is sufficient to identify this.

Li⊥⊥σ|(A<i,L<i) for all i = 1, . . . , N + 1

Or graphically:

YL1 L2A1 A2

(References: Robins (1986), Dawid & Didelez (2005))
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Examples

Example 3: (from earlier)

A1 L2 A2 Y

U1 U2

σσσσ

Simple stability violated: L2⊥⊥/ σ | A1 and Y⊥⊥/ σ | (A1, A2, L2)
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A,L,U, Y , and define ‘new’ joint

distributions pi(a, l,u, y) =

p(a≤i, l≤i,u≤i; o)× p(a>i, l>i,u>i, y|a≤i, l≤i,u≤i; s)
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A,L,U, Y , and define ‘new’ joint

distributions pi(a, l,u, y) =

p(a≤i, l≤i,u≤i; o)
︸ ︷︷ ︸

obs. for ≤ i

×p(a>i, l>i,u>i, y|a≤i, l≤i,u≤i; s)
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A,L,U, Y , and define ‘new’ joint

distributions pi(a, l,u, y) =

p(a≤i, l≤i,u≤i; o)× p(a>i, l>i,u>i, y|a≤i, l≤i,u≤i; s)
︸ ︷︷ ︸

strategy for > i
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A,L,U, Y , and define ‘new’ joint

distributions pi(a, l,u, y) =

p(a≤i, l≤i,u≤i; o)× p(a>i, l>i,u>i, y|a≤i, l≤i,u≤i; s)

Theorem 1: sufficient condition for identifiability of s is

pi−1(y|a
≤i, l≤i) = pi(y|a

≤i, l≤i), i = 1, . . . , N.

(Dawid & Didelez, 2005)

Simple stability implies the above.
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Comments

Theorem 1, in words:

once we know ai and the observable past variables, the distribution of

Y does not depend on how ai was generated, when a
<i is observational

and a
>i follows the strategy.

Note:

Essentially same as Pearl & Robins (1995) for unconditional strategies.

Graphical check: draw graphs Di with

— paDi
(Ak) =pao(Ak) for k < i

— paDi
(Ak) =pas(Ak) as under strategy for k > i

— paDi
(Ai) =pas(Ai)∪pao(Ai) ∪ σ.

⇒ check separation Y⊥⊥σ|(A≤i,L≤i) in Di, i = 1, . . . , N
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Example 3 ctd.

Assumed underlying structure (note: L1 = ∅ here)

A1 L2 A2 Y

U1 U2

σσσσ

Now: also assume that s2 is unconditional, i.e. choice of action A2 in

our strategy does not depend on past observations.
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Example 3 ctd.

Then D1 and D2 are given by

A1 L2 A2 Y

U1 U2

σσσσ

A1 L2 A2 Y

U1 U2

σσσσ

Can see that Y⊥⊥σ|A1 in D1 and Y⊥⊥σ|(A1, A2, L2) in D2.
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Example 3 ctd.

However, if s2 is conditional, i.e. A2 depends on past observations in

our strategy, then D1 and D2 are given by

A1 L2 A2 Y

U1 U2

σσσσ

A1 L2 A2 Y

U1 U2

σσσσ

Now Y⊥⊥/ σ|A1 in D1.

This suggests that the ‘relaxed’ conditions are not so ‘relaxed’ for

conditional interventions.
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Optimal Treatment Strategy

Really, what we want to find is the optimal treatment strategy.

⇒ will typically be conditional strategy.

⇒ have to investigate whether all relevant conditional strategies are

identified from data.

⇒ have to allow ai to depend on whole observed past (a<i, l≤i).
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Result

Assumption 1: pas(Ai) ⊂pao(Ai) for all i = 1, . . . , N .

Assumption 2: each L1, . . . , LN is an ancestor of Y in D0 (under

strategy s), i = 1, . . . , N .

Theorem 2: With these assumptions, if the graphical check of Theorem

1 succeeds then we also have simple stability. (Dawid & Didelez, 2008)

Optimal strategies: Assumption 2 satisfied because

— actions Ai must be allowed to depend on past L
≤i

— and Ai ancestors of Y .
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G–Computation

Assuming simple stability (or Theorem 1).

If s is (non–random) strategy fixing actions at a
≤N then

p(y; s) =
∑

l≤N

p(y|l≤N ,a≤N ; o)
N∏

i=1

p(li|l
<i,a<i; o)

Why? A bit of intuition (assuming s is unconditional)...
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Illustration

YL2

A1 A2

Simple scenario with L1 = ∅ and only two actions.
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Illustration

YL2

A1 A2

L2 ‘confounder’ for A2 and Y .

⇒ have to condition on L2.
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Illustration

YL2

A1 A2

L2 ‘mediator’ for A1 on Y .

⇒ must not condition on L2!

⇒ coefficients in regression p(y|a1, a2, l2; o) not suitable for causal

effect.
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Illustration

Y

A1 A2

L2

U

Also, conditioning on L2 could induce selection effect.

⇒ must not condition on L2!

⇒ coefficients in regression p(y|a1, a2, l2; o) not suitable for causal

effect.
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Illustration

YL2

A1 A2

Under observational regime:

p(y, a1, a2, l2; o) =

p(y|a1, a2, l2; o) p(a2|a1, l2; o)
︸ ︷︷ ︸

chosen by ‘nature’

p(l2|a1; o) p(a1; o)
︸ ︷︷ ︸

chosen by ‘nature’
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Illustration

YL2

A1 A2fixed fixed

Under intervention:

Actions A1, A2 not random anymore, but fixed.

⇒ not generated by p(a1; o) and p(a2|a1, l2; o) anymore.

⇒ p(y, l2; s) = p(y|a1, a2, l2; o)p(l2|a1; o)

Stability (or Theo. 1) ensures remaining factors stay the same.
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G–Computation

Integrate / sum out covariates l
≤N to obtain p(y; s)

p(y; s) =
∑

l≤N

p(y|l≤N ,a≤N ; o)

N∏

i=1

p(li|l
<i,a<i; o)

So, estimate p(y|l≤N ,a≤N ; o) and p(li|l
<i,a<i; o) from data.

⇒ plug in and done!

Note: for realistic settings will need to model these conditional

distributions; misspecification may “multiply”.

Alternative: inverse probability of treatment weighting.
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Reminder

YL2

A1 A2fixed fixed

Under intervention:

p(y, l2; s) = p(y|a1, a2, l2; o)p(l2|a1; o)

30



Inverse Probability of Treatment Weighting

YL2

A1 A2fixed fixed

Under intervention:

p(y, l2; s) = p(y|a1, a2, l2; o)p(l2|a1; o)

Same as

. . . =
p(y, a1, a2, l2; o)

p(a1; o)p(a2|a1, l2; o)
←− IPTW
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IPTW — More Generally

Assuming stability (or Theo. 1), and unconditional strategy s

p(Y ; s)←− intervention distribution

=
∑

l≤N

p(y|l≤N ,a≤N ; o)

N∏

i=1

p(li|l
<i,a<i; o)←− G–comp.

=
∑

l≤N

p(y, l≤N ,a≤N ; o)
∏N

i=1 p(ai|l≤i,a<i; o)
←− IPTW

where a1, . . . , aK are fixed according to intervention strategy σ = s.

Not obvious how to use IPTW yet.
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IPTW — Even More Generally

Define a probability measure P ∗ as

p∗(y, l≤N ,a≤N) = p(y, l≤N ,a≤N ; o)

weights W (l≤N ,a≤N)−1

︷ ︸︸ ︷∏

i p̃(ai|a
<i)

∏

i p(ai|l≤i,a<i; o)

where P̃ is an arbitrary joint distribution for A
≤N .

Then we can show

– under P ∗: Ai⊥⊥L
≤i | A<i for all i

– and p∗(a≤i) = p̃(a≤i) for all i
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IPTW: Marginal Structural Models (MSMs)

A MSM (Robins, 1999) is a model for E(Y ; s) = µ(a≤N ;β) e.g. logistic

regression etc.

Note: parameters β have immediate causal interpretation.

With P ∗ as before, we have

E(Y ; s) = E∗(Y |A≤N = a
≤N)

if σ = s is strategy fixing A
≤N at a

≤N .
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Estimating Equations

Hence, we obtain

E∗{φ(A≤N)(Y − µ(A≤N ;β))} = 0

i.e. unbiased estimating equations under P ∗.

But this is the same as

E∗{φ(A≤N)(Y − µ(A≤N ;β))} = E

{
φ(A≤N)(Y − µ(A≤N ;β))

W (L≤N ,A≤N)
; o

}

i.e. weighted estimating equations are unbiased under observational

regime.
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‘Survival’ Outcome

Example: Duration of stay in intensive care.

If response is such a survival / duration, don’t want to model E(Y ; s)

but instead hazard rate λ(t; s) under strategy σ = s.

⇒ Same principle, but with time varying weights.

⇒ Weights must be conditional on ‘survived so far’.
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Comparison

G–computation:

• Need models for p(y|l≤N ,a≤N ; o) and p(li|l
<i,a<i; o) ∀ i.

• Under misspecification might not even include the null hypothesis of

no causal effect.

• No simple relation between parameters of above conditional

distributions and causal effect.

• Apart from that, very general method.
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Comparison

IPTW:

• Need models for E(Y ; s) and p(ai|l
≤i,a<i; o) for all i.

• By parameterising E(Y ; s) = µ(a≤N ;β) we obtain a causally

interpretable parameter.

• Can easily be carried out by slight modification of popular regression

methods.

• Cannot (easily) deal with interactions between Li and Ai on Y and

hence has problems with conditional strategies.
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Conclusion

• Conditions for identifiability of a strategy may depend on type of

strategy.

If we want to find an optimal strategy, just check simple stability.

• Note: have not talked about how to find an optimal strategy; not

easy!

• Unconditional strategies can be estimated with IPTW as an alternative

to g–computation.

• Further method, g–estimation: based on counterfactuals — can we

reformulate that?

• In applications need to scrutinise carefully assumption allowing to link

observational and interventional regimes.
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