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Table 1: Alcohol intake, hypertension and obesity (Knuiman and Speed, 1988)

Alcohol intake (drinks/day)
Obesity Hypertension 0 1-2 3-5 > 5

Yes 5 9 8 10Low No 40 36 33 24
Yes 6 9 11 14Average No 33 23 35 30
Yes 9 12 19 19High No 24 25 28 29



The data

Sample data consists of counts of (multivariate) categorical variables, recorded
for each unit in the sample.

Units i = 1, . . . , n are classified by variables j = 1, . . . , p, where variable j has
mj categories.

Categorical response vectors yi = (yi1, yi2, ..., yip) are observed.

The contingency table y, derived from {yi, i = 1, . . . , n} has m =
∏p

1 mj cells,
with cell counts

y =
n∑
i=1

p⊗
j=1

y′ij

where [y′ij ]k = I[yij = k], k = 1, . . . ,mj .



The unrestricted model

For any unit i, the marginal distribution of y (n = 1) can be expressed in
unconstrained form as

p(y) =
m∏
k=1

πyk

k = exp

{
m∑
k=1

θkyk − n log

(
m∑
k=1

exp θk

)}
(1)

where π = (π1, . . . , πm) is a vector of cell probabilities and θ = (θ1, . . . , θm) is
a corresponding multivariate logit

θk = log πk −
m∑
`=1

a` log π`

where
∑
a` = 1, a` ≥ 0. Typically a` = I[` = 1] or a` = I[` = m] (reference

cell logit) though a` = 1/m (centred logit) can sometimes be more useful.

Typically, we assume that individual classifications yi are conditionally inde-
pendent given a common θ, in which case (1) holds for n > 1. Distribution of
y is a multivariate natural exponential family.



Conjugate inference for the unrestricted model

A Bayesian conjugate prior for cell probabilities π of the unrestricted model
is Dirichlet(α), that is

p(π) ∝
m∏
k=1

παk−1
k

or equivalently, for θ,

p(θ) ∝ exp

{
m∑
k=1

θkαk − α+ log

(
m∑
k=1

exp θk

)}
(2)

Correspondence of (2) and (1) makes this the Diaconis-Ylvisaker conjugate
prior.

[Alternatives include priors based on multivariate normal distribution for θ;
some advantages, some drawbacks]



Incorporating structure with parsimonious models

General log-linear models
θ = Xβ

for some n× r X satisfying the constraint on θ

Log-linear interaction models for contingency tables

Imply specific forms for X (with or without hierarchy constraints)

(Undirected) graphical models

Hierarchical models specified purely by conditional independence properties
(constraints)
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C

B



Conjugate inference for the general log-linear model

p(y) ∝ exp

{
r∑

k=1

βktk − n log

(
m∑
k=1

exp[Xβ]k

)}
(3)

where t = XTy.

The Diaconis-Ylvisaker conjugate prior for β is

p(β) ∝ exp

{
r∑

k=1

βksk − α log

(
m∑
k=1

exp[Xβ]k

)}
(4)

where s and α are hyperparameters.

Massam, Liu and Dobra (2008) investigate this structure in detail for hierar-
chical log-linear models, and provide lots of interesting results.
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Conditional Dirichlet distributions and compatibility (Grigsby, 2001)

Suppose we derive a prior for a general log-linear model by taking a Dirichlet
for the unconstrained model and conditioning (on the log-linear scale).

Then, essentially trivially, we arrive at

p(β) ∝ exp

{
r∑

k=1

βksk − α log

(
m∑
k=1

exp[Xβ]k

)}
(4)

as before.

Hence, these conjugate priors are compatible (in a conditional sense; see Dawid
and Lauritzen, 2001).

Conditioning on the linear (θ) scale ensures here that a proper initial prior
leads to a proper prior on the submodel. See also Gûnel and Dickey (1974).



Hyper-Dirichlet equivalence

MLD, Leucari, Grigsby show that, for a decomposable undirected graphical
model, the conjugate prior (4) is equivalent to a hyper-Dirichlet (Dawid and
Lauritzen, 1993).

Grigsby proof

Based on a perfect ordering, and standard decomposition

p(yi) =
p∏
j=1

pj(yij |yi,pa(j))

where πj(`pa(j)) = {pj(k|`pa(j)), k = 1, . . .mj} is a mj-vector of probabilities
for each distinct combination `pa(j) of levels of pa(j).



With this parameterisation, natural (closed under sampling) prior family is

πj(`pa(j)) ∼ Dirichlet(αj,`pa(j)) (5)

independently, for each variable j and each parent combination `pa(j).

This is the product Dirichlet described by Cowell et al (1999), which here is
equivalent to the hyper-Dirichlet for particular choices of {αj,`pa(j)} (directed
hyper-Dirichlet).

Use this distribution within the (conditional) logit parameterisation

θj(k, `pa(j)) = log pj(k, |`pa(j))− log pj(1|`pa(j))

Then the (directed) hyper-Dirichlet and conditional Dirichlet densities are
functionally equivalent (‘likelihood-like’).

Remains to prove that Jacobian = 1; achieved via identifying a correspondence
between {θj(k, `pa(j))} and log-linear parameters β for which derivative matrix
is upper triangular with unit diagonal.



‘Non-hyper’ product Dirichlet priors for perfect DAG models

Is there any role for using independent

πj(`pa(j)) ∼ Dirichlet(αj,`pa(j)) (5)

with non-consistent {αj,`pa(j)}?

Potentially, unattractive as typically such a prior family will not be closed
under changes of (non-trivial) decomposition. For example for a pair of binary
variables

⊥⊥{π1 ∼ Beta(α1),π2(1) ∼ Beta(α21), π2(2) ∼ Beta(α22)}
6⇒ ⊥⊥{π2 ∼ Beta(α2), π1(1) ∼ Beta(α11), π1(2) ∼ Beta(α12)}

However, for certain decomposable models, for particular decompositions, the
Jeffreys prior has this form.



Jeffreys prior

Recall Jeffreys rule for constructing a default prior distribution

f(π) ∝ |I(π)|1/2,

invariant under reparameterisation.

For a decomposable undirected graphical model, parameterised via a perfect
DAG and {πj(`pa(j))}, the Jeffreys prior is

f(π) ∝

∏
j

∏
`pa(j)

∑
`pa(j)

∏
j′

pj′(`j′ |`pa(j′))


mj−1

2

∏
j

∏
`{j}∪pa(j)

pj(`j |`pa(j))−
1
2

(6)

Jeffreys prior simplifies to product Dirichlet, when the summation in (6) can
be simplified to a single product term for every j, `pa(j).



Jeffreys prior simplification

The Jeffreys prior simplifies to product Dirichlet for any ‘grandparent-free’
perfect ordering.

Such an ordering is only possible for decomposable graphs whose junction tree
has a common separator between nodes.
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For (a) the Jeffreys prior simplifies to independent symmetric Dirichlet(α1)
distributions with

αC = (mA +mB − 3)/2, αA,`C = αB,`C = 1/2 for all `C



Inference and computation

For Dirichlet-equivalent priors, parameteric inference and marginal likelihood
computation (for model determination) are easy.

For other priors we have discussed, numerical methods are required, and for
non-decomposable conjugates and non-Dirichlet Jeffreys, prior normalising
constants must be computed for marginal likelihoods.

(Markov chain) Monte Carlo methods or numerical integration based on Laplace’s
method work well.

For conditional (generalized hyper) Dirichlet for nondecomposable models,
Laplace can be computed simply in standard software with log-linear model
fitting, and basic matrix functionality.

However, beware of Laplace’s method for prior normalising constant.



Convergence of Laplace’s method for prior normalising constant

(a) A + B [2] (c) ABC [8]
(b) AB+BC [5] (d) ABC [27]

Can be improved by bridge sampling from prior and a normal ‘approximation’
(time-consuming, but can build a catalogue)



Alternative computation?

For model determination and conditional Dirichlet priors, it may be possible
to exploit the Savage-Dickey density ratio.

Recall that, for comparing models M1 : y ∼ p1(y|θ, φ) and M0 : y ∼ p0(y|φ)
where p0(y|φ) = p1(y|θ0, φ), we have the Bayes factor

p0(y)
p1(y)

=
p1(θ0|y)
p1(θ0)

provided that
p0(φ) = p1(φ|θ0).

This constraint is exactly the same as used in deriving the conditional Dirich-
let, so for example models ABC and AB+AC+BC can be compared by gen-
erating the missing interaction parameter (log-contrast) under the Dirichlet
prior and posterior for ABC, and calculating the ratio of two density estimates
at zero.

How feasible is this generally?



Posterior model probabilities for Table 1

Model Posterior probability Posterior probability (ordinal)

OH +AH 0.036 0.725
A+OH 0.643 0.091
AOH 0.000 0.084

OH +OA 0.000 0.053
O +AH 0.017 0.027
OA+AH 0.000 0.013
O +A+H 0.304 0.005
H +OA 0.000 0.002



Ordinal probit models – multivariate (Chib and Greenberg, 1998)

zi ∼ N(β,Σm) is a latent continuous variable
yij = c if αj,c−1 < zi ≤ αj,c, (αj,0 = −∞, αj,mj =∞)

Prior is
β ∼ MV Normal
αj,c ∼ Indept Uniform subject to ordering constraint
Σm ∼ distribution consistent with any constraints

Identifiability constraints – σii = 1, αj,1 = 0, j = 1, . . . , p.



An alternative parameterisation

Constrain αj,1 = −αj,mj−1 = Φ−1
(

1
mj

)
, j = 1, . . . , p.

Then Σ is unconstrained and can be given a (hyper) Inverse Wishart prior.
Conditionals are then straightforward to sample.

Not possible if any ki = 2 (binary variable).

Instead, consider the Cholesky decomposition

Σ−1 = ΦTΦ

where Φ is upper triangular.



The elements of Φ appear in the decomposition

zip ∼ βp +N

(
0,

1
φ2
pp

)
zi,p−1|zip ∼ βp−1 −

φp−1,p

φp−1,p−1
(zip − βp) +N

(
0,

1
φ2
p−1,p−1

)
...

...

zi1|zi2, . . . , zip ∼ β1 −
φ1p

φ11
(zip − βp)− . . .−

φ12

φ11
(zi2 − β2) +N

(
0,

1
φ2

11

)

For binary (and other) variables we can constrain λj ≡ φ−1
jj = 1.

remaining λj ≡ φ−1
jj ∼ Gamma

ψj ≡ (φj,j+1, . . . , φjp)φ−1
jj |φjj ∼ MV Normal

[Equivalence with (hyper) inverse Wishart; Roverato (2002)]



Graphical models

Gaussian DAG models for z (‘graphical’ ordinal probit models for y) can be
specified by setting certain ψjk = 0, for an appropriate ordering.

Undirected graphical models can be specified using an equivalent DAG

Conditional conjugacy allows straightforward MCMC computation

Model determination for DAG models given an ordering uses Reversible Jump
MCMC with transitions between models which differ by a single edge (see also
Fronk, 2002)

Model determination for undirected graphical models requires order switching.

Propose to transpose two neighbouring variables in the current ordering, with
associated deterministic parameter transformation (RJMCMC allows this)

Prior must compensate for the fact that not all models are available under the
same number of orderings (Order counting in the ‘model jump’ step; Chandran
et al, 2003).



Table 2: Colouring of blackbirds (Anderson and Pemberton, 1985)

Orbital Ring
Lower Mandible Upper Mandible 1 2 3

1 40 19 0
1 2 0 0 0

3 0 1 0

1 1 6 0
2 2 1 2 1

3 0 1 0

1 1 2 0
3 2 0 1 1

3 0 6 7

1 = mostly black, 2 = intermediate, 3 = mostly yellow



Predictive logarithmic scores for Table 2

Conditional independence Ordinal models Non-ordinal models
structure

None −178.4 −197.7
L⊥⊥O|U −177.8 −186.3
U⊥⊥O|L −178.3 −188.2

model-averaged −178.4 −190.7

S =
90∑
i=1

log p(yi|y\i)

where y\i represents the data y with yi removed

Posterior model probabilities are 0.279 (unstructured), 0.427 (L⊥⊥O|U) and
0.293 (U⊥⊥O|L).


