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in simulations of the 21st century with the expected rise in greenhouse gases.
[This is due to a combination of effects which reduce the density of surface
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Many atmosphere-ocean models show a slowdown of thermohaline circulation

in simulations of the 21st century with the expected rise in greenhouse gases.
[This is due to a combination of effects which reduce the density of surface

waters, which makes it harder for them to sink.]

“ The weight of evidence makes it clear that climate change is a real and
present danger ... Yet those who think climate change just means Indian

summers in Manchester should be told that the chances of the Gulf stream -

the Atlantic thermohaline circulation that keeps Britain warm - shutting down

are now thought to be greater than 50%.”

[Burying carbon Leader Column Thursday February 3, 2005 The Guardian]

QUESTIONS

What does this statement mean?

What analysis could possibly be done to justify (or contradict) this conclusion?
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Large climate models take months to run on supercomputers. One of the

biggest computers in the world is the Earth Simulator in Japan, which is often
used for running climate models.
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One leading climate model at the moment is HadCM3, based at the UK Met

Office. One component of this model is HadAM3, the atmospheric module. In a
simple experiment to study the effect of CO2-doubling (Murphy et al, 2004,

Nature), this is coupled with simple mixed-layer ocean sea-ice models.
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One leading climate model at the moment is HadCM3, based at the UK Met

Office. One component of this model is HadAM3, the atmospheric module. In a
simple experiment to study the effect of CO2-doubling (Murphy et al, 2004,

Nature), this is coupled with simple mixed-layer ocean sea-ice models.

The climate model (HadSM3) has about 100 uncertain parameters, including:

1. Large scale cloud. Six parameters

2. Convection. Six parameters

3. Sea ice. Two parameters
4. Radiation. Four parameters

5. Dynamics. Four parameters

6. Land surface. Four parameters

7. Boundary layer. Four parameters

We have a few hundred evaluations of HadSM3, made over about three years.
These evaluations are a central resource for the UK Climate Impacts

Programme 2008 (UKCIP08), intended as a fairly definitive view about how

climate change will impact the UK, including climate uncertainty statements.
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• Basic ingredients:

x∗: system properties (unknown)

y: system behaviour (influenced by x∗)

z: partial observation of y (with error)

• Ideally, we would like to construct a deterministic model F , embodying the

laws of nature , which satisfies

y = F (x∗)

• In practice, however, the our actual model F is inadequate:

◦ F simplifies the physics;

◦ F approximates the solution of the physical equations

• This raises the basic question as to what does the imperfect F tell us about

the system values (x∗, y)?

• How about several different (imperfect) models for (x∗, y)?
• In particular, input and output very high dimensional and evaluating F (x)

for any x may be VERY expensive.
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Model
evaluations

Actual
system

System
observations

1. We start with a collection of model evaluations, and some system observations

2. We link the evaluations to the notion of a ‘best’ evaluation

3. We link the ‘best’ evaluation to the actual system

4. We incorporate measurement error into the observations

5. Our aim is to develop a unified Bayesian treatment of all these sources of
uncertainty, within a natural graphical framework.
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j

βij gij(x) + ui(x)

where B = {βij} are unknown scalars, gij are known deterministic functions

of x, and u(x) is a weakly stationary stochastic process.
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An emulator is a probabilistic belief specification for a deterministic function.

Our emulator for component i of F might be

fi(x) =
∑

j

βij gij(x) + ui(x)

where B = {βij} are unknown scalars, gij are known deterministic functions

of x, and u(x) is a weakly stationary stochastic process.
We fit the emulator, f = Bg(x) + u(x), given a collection of model

evaluations, using our favourite statistical tools - generalised least squares,

maximum likelihood, Bayes - with a generous helping of expert judgement.

Bg(x) represents global variation and u(x) represents local variation in F
When the input dimension is high, relative to the number of function evaluations

we can make, then most of what we may learn about the function comes
through the global component. For simplicity, we therefore often suppose that

our simulator judgements can be summarised by the global behaviour (as we

don’t learn much about local behaviour).
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F[n] // Fsuff
// f(x)

F[n] = (F (x1), F (x2), . . .) : evaluations of F at inputs x1, x2, . . .
Fsuff : the global information from F[n] which forms emulator f(x)
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Fh(x∗)

F[n] // Fsuff
// f(x)
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Fh(x∗) // yh // zh
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Fh(x∗) is informative for historical system values yh observed with error as zh

Fp(x
∗) is informative for system values yp to predict.

ǫh, ǫp: the corresponding discrepancy terms between model and system
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For large scale problems a full Bayes analysis is very hard because

(i) it is difficult to give a meaningful full prior probability specification over high
dimensional spaces;

(ii) the computations, for learning from data (observations and computer runs)

and choosing informative runs, may be technically difficult;

(iii) the likelihood surface is extremely complicated, and any full Bayes

calculation may be extremely non-robust.



Bayes linear approach

12 / 42

For large scale problems a full Bayes analysis is very hard because

(i) it is difficult to give a meaningful full prior probability specification over high
dimensional spaces;

(ii) the computations, for learning from data (observations and computer runs)

and choosing informative runs, may be technically difficult;

(iii) the likelihood surface is extremely complicated, and any full Bayes

calculation may be extremely non-robust.
However, the idea of the Bayesian approach, namely capturing our expert prior

judgements in stochastic form and modifying them by appropriate rules given

observations, is conceptually appropriate (and there is no obvious alternative).



Bayes linear approach

12 / 42

For large scale problems a full Bayes analysis is very hard because

(i) it is difficult to give a meaningful full prior probability specification over high
dimensional spaces;

(ii) the computations, for learning from data (observations and computer runs)

and choosing informative runs, may be technically difficult;

(iii) the likelihood surface is extremely complicated, and any full Bayes

calculation may be extremely non-robust.
However, the idea of the Bayesian approach, namely capturing our expert prior

judgements in stochastic form and modifying them by appropriate rules given

observations, is conceptually appropriate (and there is no obvious alternative).

The Bayes Linear approach is (relatively) simple in terms of belief specification

and analysis, as it is based only on the mean, variance and covariance

specification which, following de Finetti, we take as primitive.
For a full account, see

Michael Goldstein and David Wooff (2007) Bayes Linear Statistics: Theory and

Methods, Wiley.
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∑

i riCi of the elements of C. We

view 〈C〉 as a vector space.
Prior covariance is an inner product on 〈C〉. If C is the union of the elements

of the vectors B and D, then the adjusted expectation of Y ∈ 〈B〉 given D,

ED(X), is the orthogonal projection of Y into the linear subspace 〈D〉, and

adjusted variance, VarD(X), is the squared distance between Y and 〈D〉.
In the usual Bayes formalism, 〈C〉 is the collection of all random variables
defined over the outcome space. The inner product space is the Hilbert space

of square integrable functions over the outcome space, with respect to the prior

measure over the outcomes, with the covariance inner product.

Conditional expectation, given a sample, corresponds to orthogonal projection

into the subspace of all functions over the sample space.

Bayes linear analysis allows us to restrict prior specification and subsequent
projection into the largest subspace of this full space that we are able to specify

prior beliefs over.
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Ez[y] = E[y] + Cov(y, z)Var(z)−1(z − E[z]),
Varz[y] = Var(y) − Cov(y, z)Var(z)−1Cov(z, y)

Bayes linear analysis may be viewed as the appropriate analysis given a partial
specification based on expectation (with methodology for modelling,

interpretation and diagnostic analysis).

Temporal sure preference principle implies that your actual posterior

expectation, ET (B), at time T when you have observed D, satisfies the

relation

ET (B) = ED(B) + R,

where R has, a priori, zero expectation and is uncorrelated with D.
(If D represents a partition, then ED(B) = E(B|D), and E(R|D) = 0.)
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C separates A and B, denoted ⌊A ⊥⊥ B⌋ / C, if EC∪B(A) = EC(A)
Geometrically, ⌊A ⊥⊥ B⌋ / C if the orthogonal complements of A and B in C,

[A − EC(A)], [B − EC(B)] are orthogonal.

⌊A ⊥⊥ B⌋ / C is a generalised conditional independence property

Therefore, graphical models expressing such belief separations (geometrically -

the orthogonalities between subspaces) will have many of the same formal

properties as do probabilistic graphical models.
Notes
[1] Close relationship with Gaussian graphical models

[2] We may distinguish information about the projections from information about

the inner product.

[3] On a Bayes linear graphical model, we can introduce the actual posterior
expectations, ET (B), as well as the adjusted expectations, ED(B).
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History Matching is concerned with learning about best inputs, x∗, using

simulator evaluations and data, z. Using the emulator we obtain, for each input

choice x, the adjusted values of E(f(x)) and Var(f(x)). We rule out regions

of x space for which F (x) is judged to be a very poor match to observed z.

To achieve this, we calculate, for each output Fi(x), the implausibility:

I(i)(x) = |E(fi(x)) − zi|
2/Var(fi(x) − zi)

This calculation can be performed univariately, or over sub-vectors. The

implausibilities are then combined, such as by using IM (x) = maxi I(i)(x),

identifying regions of x with large IM (x) as unlikely to be good choices for x∗.
We iteratively refocus on the ‘non-implausible’ regions of the input space, by

further model runs and refitting our emulator over the sub-region and repeating

the analysis. This process is a form of iterative global search.
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History Matching is concerned with learning about best inputs, x∗, using

simulator evaluations and data, z. Using the emulator we obtain, for each input

choice x, the adjusted values of E(f(x)) and Var(f(x)). We rule out regions

of x space for which F (x) is judged to be a very poor match to observed z.

To achieve this, we calculate, for each output Fi(x), the implausibility:

I(i)(x) = |E(fi(x)) − zi|
2/Var(fi(x) − zi)

This calculation can be performed univariately, or over sub-vectors. The

implausibilities are then combined, such as by using IM (x) = maxi I(i)(x),

identifying regions of x with large IM (x) as unlikely to be good choices for x∗.
We iteratively refocus on the ‘non-implausible’ regions of the input space, by

further model runs and refitting our emulator over the sub-region and repeating

the analysis. This process is a form of iterative global search.

If all values of x are implausible, this is highly informative!
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xa // F[n](a,b)

xb

>>}}}}}}}}

  A
AA

AA
AA

A

xc // F[n](b,c)

Functional graphical models are causal models on the functional inputs.

Here the outputs divide into three sets xa, xb, xc.

Outputs F(a,b), depend only on xa, xb. Outputs F(b,c), depend only on xb, xc

Therefore, we can design a collection of n evaluations, F[n](a,b) and F[n](b,c)

independently given our design for xb (which is enormously helpful in reducing

dimensionality)
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xa // F[n](a,b) // fa,b(xa, xb)

xb

>>}}}}}}}}

  A
AA

AA
AA

A

xc // F[n](b,c) // fb,c(xb, xc)

Evaluations, F[n](a,b) and F[n](b,c) are inputs to

the corresponding emulators fa,b(xa, xb), fb,c(xb, xc)
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xa // F[n](a,b) // fa,b(xa, xb) // Fa,b(x
∗

a, x∗

b )

xb
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x∗

b

OO

��

x∗

c

zztttttttttt

xc // F[n](b,c) // fb,c(xb, xc) // Fb,c(x
∗

b , x
∗

c)

The emulators combine with the true values x∗ to generate judgements for

model runs at true inputs
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The link to data observations z allows us to assess our implausibility measures
over the input space, x, by local computation.
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xa // F[n](a,b) // fa,b(xa, xb) // Fa,b(x
∗

a, x∗

b )
// za,b
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::tttttttttt
x∗

b

OO

��

x∗

c

zztttttttttt

xc // F[n](b,c) // fb,c(xb, xc) // Fb,c(x
∗

b , x
∗

c) // zb,c

The link to data observations z allows us to assess our implausibility measures
over the input space, x, by local computation.

In the above diagram, we collect the implausibility measure to xb from

(i) the xa, xb pair, based on za,b

(ii) the xb, xc pair, based on zb,c

We then distribute the combined implausibility measure back to xa and xc.



Small samples

21 / 42

e

��
F[n] // Fsuff

// f(x) // F (x∗) // y

Often, we can only make a few evaluations of our computer simulator, so that

our evaluation F[n] is based on small value of n.



Small samples and fast approximations

22 / 42

e

��
F[n] // Fsuff

// f(x) // F (x∗) // y

F ′

[m]
// F ′

suff

OO

We may be able to make many evaluations, F ′

[m] of a simpler approximate

version of the model as a basis for the inference.
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F[n] // Fsuff
// f(x) // F (x∗)

!!D
DDD

DDD
D

ǫ

����
��

��
��

x∗

;;vvvvvvvvv
y

We link evaluations of our simulator F through our emulator to the system

values.
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F[n] // Fsuff
// f(x) // F (x∗)
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ǫ

����
��

��
��

x∗
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$$H
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y

F ′

[n]
// F ′

suff

OO

// f ′(x) // F ′(x∗)

==zzzzzzzzz
ǫ′

OO

^^<<<<<<<<

Now add the fast approximation F ′ to the graph.

But suppose that, last year, the fast approximation was the full model, for which

we had already drawn the corresponding version of this graph.
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F[n] // Fsuff
// f(x) // F (x∗)
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��

x∗

::uuuuuuuuu

$$H
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y

F ′

[n]
// F ′

suff

OO

// f ′(x) // F ′(x∗)

==zzzzzzzzz
ǫ′

OO

^^<<<<<<<<

Now add the fast approximation F ′ to the graph.

But suppose that, last year, the fast approximation was the full model, for which

we had already drawn the corresponding version of this graph.
Comment: you can’t get all of the conditional orthogonalities in the above

diagram without imposing unreasonable constraints on the system.
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The simplest (and therefore most popular) way to relate uncertainty about the

simulator and the system is the so-called “Best Input Approach”.

We proceed as though there exists a value x∗ independent of the function F
such that the value of F (x∗) summarises all of the information that the

simulator conveys about the system. This means that we consider the model

discrepancy, ǫ = y − F (x∗), to be independent of F, x∗.
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How does learning about F inform us about y?

The simplest (and therefore most popular) way to relate uncertainty about the

simulator and the system is the so-called “Best Input Approach”.

We proceed as though there exists a value x∗ independent of the function F
such that the value of F (x∗) summarises all of the information that the

simulator conveys about the system. This means that we consider the model

discrepancy, ǫ = y − F (x∗), to be independent of F, x∗.

This formulation raises serious questions.

In particular, does x∗ correspond to “true” system properties?

If so, why should they give best fit to our imperfect model?

If not, why should there even be any such “best” inputs, and what does it mean

to have expert judgements about x∗?

Further, surprising contradictions arise when we try to construct joint

specifications linking collections of models to the physical system in this way.
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What does a simulator F really tell us about a physical system y?

How do we combine the information about y from a collection of simulators?

Consider both our inputs x and the simulator F as abstractions/simplifications

of real physical quantities and processes (through approximations in physics,

solution methods, level of detail, limitations of current understanding) to a much

more realistic simulator F ∗, for which real, physical x∗ would be the best input,

in the sense that (y − F ∗(x∗)) would be judged independent of (x∗, F ∗).
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Why should we consider that there is a ‘best input’ x∗?

What does a simulator F really tell us about a physical system y?

How do we combine the information about y from a collection of simulators?

Consider both our inputs x and the simulator F as abstractions/simplifications

of real physical quantities and processes (through approximations in physics,

solution methods, level of detail, limitations of current understanding) to a much

more realistic simulator F ∗, for which real, physical x∗ would be the best input,

in the sense that (y − F ∗(x∗)) would be judged independent of (x∗, F ∗).

We call F ∗ the reified simulator (from reify: to treat an abstract concept as if it

was real).

Reifying principle
[1] Simulator F is informative for y, because F is informative for F ∗ and

F ∗(x∗) is informative for y.

[2] A collection of simulators F1, F2, ... is jointly informative for y, as the

simulators are jointly informative for F ∗.
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Our model F is informative for y because F is informative for reified model F ∗

Model, F

{{xx
xx

xx
xx

xx

��

‘Best’ input, x∗

��

Discrepancy

��

Measurement
error

��
Model

evaluations F ∗ // F ∗(x∗) // Actual
system

// System
observations

Comment: Statistical graphical models need reification too!
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f∗(x, w) = B∗g(x) + u∗(x) + u∗(x, w)

where we might model our judgements as B∗ = CB + Γ, correlate u(x) and

u∗(x), while u∗(x, w), with additional parameters, w, is uncorrelated with

remainder.
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Suppose that our emulator for F is

f(x) = Bg(x) + u(x)

Our simplest emulator for F ∗ might be

f∗(x, w) = B∗g(x) + u∗(x) + u∗(x, w)

where we might model our judgements as B∗ = CB + Γ, correlate u(x) and

u∗(x), while u∗(x, w), with additional parameters, w, is uncorrelated with

remainder.

Structured reification: systematic probabilistic modelling for all those aspects of

model deficiency whose effects we are prepared to consider explicitly.
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F[n] // Fsuff

F[n]: n evaluations of F at inputs x1, x2, . . .
Fsuff : the global information from F[n].
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F[n] // Fsuff
// F ∗

suff

F ∗

suff : corresponding global information for reified emulator f∗(x)
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F[n] // Fsuff

// F ∗

suff
// f∗(x) // F ∗(x∗) // y

True system properties x∗ with emulator f∗(x) influence beliefs for

F (x∗), which is informative for system values y, with discrepancy ǫ.
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x∗

��

ǫ

��
F[n] // Fsuff

// F ∗

suff
// f∗(x) // F ∗(x∗) // y

True system properties x∗ with emulator f∗(x) influence beliefs for

F (x∗), which is informative for system values y, with discrepancy ǫ.

Comment: All our calibration and forecasting methodology is unchanged - all
that has changed is our description of the joint covariance structure.
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[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

Evaluations of the simulator at each of m initial conditions

for historical components of simulator
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[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

// Fh:suff
// F ∗

h:suff
// f∗

h(x)

Global information Fh:suff (from second order exchangeability modelling).

passes to Reified global form and to reified emulator.
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e

��[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

// Fh:suff
// F ∗

h:suff
// f∗

h(x) // F ∗

h (x∗) // yh // z

ǫh

OO

x∗

OO

Link with x∗ to reified function, at true initial condition, linked to data z
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MME e

��[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

// Fh:suff
// F ∗

h:suff
// f∗

h(x) // F ∗

h (x∗) //

OO

yh // z

ǫh

OO

x∗

OO

Add observation of a related multi-model ensemble (MME) consisting of tuned

runs from related models (more exchangeability modelling).
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MME e

��[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

// Fh:suff
// F ∗

h:suff
// f∗

h(x) // F ∗

h (x∗) //

OO

yh // z

ǫh

OO

x∗

OO

F ′

h:[n](x) // F ′

h:suff

OO

Add a set of evaluations from a fast approximation
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MME e

��[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

// Fh:suff
// F ∗

h:suff
// f∗

h(x) // F ∗

h (x∗) //

OO

yh // z

ǫh

OO

x∗

OO

F ′

h:[n](x) // F ′

h:suff

OO

F ′

p:[n](x, d) // F ′

p:suff

OO

Add evaluations of fast simulator for outcomes to be predicted, with decision

choices d
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MME e

��[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

// Fh:suff
// F ∗

h:suff
//

��

f∗

h(x) // F ∗

h (x∗) //

OO

yh // z

ǫh

OO

x∗

OO

F ′

h:[n](x) // F ′

h:suff

OO

F ′

p:[n](x, d) // F ′

p:suff
//

OO

F ∗

p:suff

Link to reified global terms for quantities to be predicted
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MME e

��[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

// Fh:suff
// F ∗

h:suff
//

��

f∗

h(x) //

��

F ∗

h (x∗) //

OO

yh // z

ǫh

OO

x∗

OO

F ′

h:[n](x) // F ′

h:suff

OO

F ′

p:[n](x, d) // F ′

p:suff
//

OO

F ∗

p:suff
// f∗

p (x, d)

And to reified global emulator, based on inputs and decisions



A Reified influence diagram

40 / 42

MME e

��[

F 1
h:[n](x), . . . , Fm

h:[n](x)
]

// Fh:suff
// F ∗

h:suff
//

��

f∗

h(x) //

��

F ∗

h (x∗) //

OO

yh // z

ǫh

OO

��

x∗

OO

��

F ′

h:[n](x) // F ′

h:suff

OO

ǫp

��
F ′

p:[n](x, d) // F ′

p:suff
//

OO

F ∗

p:suff
// f∗

p (x, d) // F ∗

p (x∗, d∗) // yp

��
d∗

OO

C

And link, through true future values yp, to the overall utility cost C of making

decision choice d∗.
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helpful to have an overall framework to unify all the uncertainties arising from

Uncertain model parameters, outputs and discrepancies

Uncertain observations/initial conditions/forcing functions

Uncertain relationships between different modelling approaches

Uncertain effects of our attempts to influence the system
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helpful to have an overall framework to unify all the uncertainties arising from

Uncertain model parameters, outputs and discrepancies

Uncertain observations/initial conditions/forcing functions

Uncertain relationships between different modelling approaches

Uncertain effects of our attempts to influence the system
Bayes linear influence diagrams provide a conceptual/graphical framework for

unifying our qualitative and quantitative knowledge about all such uncertainties

within a structure which is both logical and tractable, so that we can focus on

science rather than technical/computational issues.

We need new methodology to construct the general language and tool kit

required for making this synthesis in principle, and a close joint effort between
statisticians and scientists to achieve the synthesis in practice.
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To assess best current judgements about complex systems, it is enormously

helpful to have an overall framework to unify all the uncertainties arising from

Uncertain model parameters, outputs and discrepancies

Uncertain observations/initial conditions/forcing functions

Uncertain relationships between different modelling approaches

Uncertain effects of our attempts to influence the system
Bayes linear influence diagrams provide a conceptual/graphical framework for

unifying our qualitative and quantitative knowledge about all such uncertainties

within a structure which is both logical and tractable, so that we can focus on

science rather than technical/computational issues.

We need new methodology to construct the general language and tool kit

required for making this synthesis in principle, and a close joint effort between
statisticians and scientists to achieve the synthesis in practice.

Such analysis poses serious challenges, but they are no harder than all of the

other modelling, computational and observational challenges involved with

studying large scale physical systems.
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And check out the website for the

Managing Uncertainty in Complex Models (MUCM) project

[A consortium of Aston, Durham, LSE, Sheffield and Southampton all hard at

work on developing technology for computer model uncertainty problems.]
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