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Inference for the saturated Gaussian model

N ={N,(0,%), L€ P}

where P is the cone of positive definite matrices.
Let 7Z,,..., Z, be a sample from N,(0, X).

® The MLE of nX isnX = U = .7, Z; Z} with

U ~ Wr(g,Z)

® The conjugate prior on Q = ¥~ ! is the Wishart

Q~ We(a,0)
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The Wishart distribution

Recall 7, = {W,(a,Y), ¥ € P} is the NEF generated by

r—1
2

T 1ps (dx), with @ >

te(dr) = (det )™

and the density of the W, (a,Y) IS

(det )~ 1

Wr(a, B)(dr) = 57— exp —3 (x, 7Y pa(da)

while the density of Y = X! is the inverse Wishart

(det 32)~@ 1, 4

_Z S (det )~ % 1p.(d
I (o) exp 2<y , 27 7) (dety) p+(dy)

IW, (o, 35 dy) =
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Graphical models: decomposable graphs

Let G = (V, F) be a graph: V' Is the set of vertices and F the
set of edges.

(; Is said to be decomposable if it does not contain a cycle
of length greater than or equal to 4 without a chord.

3 4
° °

1 2
Example e — e —
Ch =11,2},Cy = {2,3},C3 = {3, 4} are the cliques
Sy = {2}, 53 = {3} are the separators.
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Perfect ordering of the cliques

A graph is decomposable if and only if there Is a perfect
ordering of its cliques.

1 2 3 1
o — o — o ®

but C1, C3, Cy IS not perfect.
We use the notation

H,;, = U;-:le, S; = C; N (U;lej) R, = C; \ S; = C; \ H;_ 1.

history separator residual

Here for the perfect order Cy, (5, C},

H, = Ch, Hy = C1UCy, So = CoNC = {2}, H3 = C3N(C1UCY), S

Durham July 2008 — p. 7



The Markov property w.r.t. G decomposable

We write ¢ ~ j to indicate ¢ and j are linked.

A distribution is said to be Markov with respect to the graph
If

X; L Xj’XV\{i,j} whenever i % 7.
For a perfect order of the cliques, (1, ..., C., we have the
following conditional independence relations

Xp, L Xo, [ Xsy, —ooyooo X, L Xg, | Xs,,

2

General notation, for ¥ symmetric

28, = Dici>, MR, = 2], 2R;,S: = 2li>
SRieS: = S — SjisScis Sei] = Siije

<1>
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The Gaussian model Markov w.r.t. G

Let (', ..., C) be a perfect order of the cliques.

The normal density factorizes as (see DL93, Th. 2.6)

k
]\/v)((()7 Z) _ 11=1 N(O, ZCZ) _ lleec N(O, ZC’)
[, N©0,%s) IlsesN(0,%s)

The parameter is the collection (X, C' € C)

We have a reduction of the parameter space.
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1 2 3
An example e — e — @

The conditional covariance between X3 and X; given X5 IS

zero, that Is
—1
0312 = 031 — 03209 021 = (
o1 012 01202_1023
and therefore i — 021 g9 0‘23
0’3202_1021 032 o3

The parameter is

o1 012 %

L = o21 02 023 | = (2(12), E(23)) = (2(12), 03205 ', 03-2)-
% 0392 03

w1 w19 0

while () = 2_1 = w1 w9 w23 because Xz' i Xj|XV\{i,j} < Wij = 0.

0 w392 w3
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The cones FPg and Q¢

e The cone Q¢

(c:={Incomplete matrices =z with missing entries z;;,
(z,7) ¢ £ and suchthatx4 > 0for A CV complete}.

e The cone Pg
Pg:={y € P* such thaty;; =0 whenever (i,j) ¢ E}.

When & is decomposable, any x In Q¢ can be unigquely
completed as @ € P* such that for all (i, ) € F

Tij = Zi’/,;j and 771 ¢ Pa
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The bijection between Py and ()¢

Let = denotes the projection of P onto incomplete matrices.

The mapping

v y=@) TePg—ar=ply) =71y €Qq,

defines a bijection between P, and Q.

Notation:

for (x,y) € Qg x Pg, tr(xy) = Z ziiyi; = tr(2y) .
(i,j)ER
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Inference for X in N

No ={N(0,%)| Q=5"€ Pg} = {N(0,%), T € Qa}.
o Y liesin Q.
o Oliesin Fp.

e The Wishart is defined on P™: not the right cone!.

Question 1: What is the distribution of the MLE of X € ()7

Question 2: Which prior should we put on X or what would
the induced prioron Q = 21 € P, be?

The answer is given in DL93!!!
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The hyper Wishart for the MLE of 2.

The model N is strong meta Markov:

Nx(0,X) = Ng,(0,2¢, ; X¢y)
k

H NR¢|S7;(ZR¢,512§Z-1$S¢7 2iR;eS; ; XR ‘xsz)
1=2

Yoy, (Sp=Ysi, Yp).i=2,...,k are functionally
iIndependent.

The marginal model for X 4, for any A C V complete, is an
NEF.

DL (93) show that, then,

the distribution of the MLE of X € Q)¢ Is weak hyper Markov.

Therefore...... Dutham Juy 2008 - p. 15



The hyper Wishart, (cont’'d)

The density of the hyper Wishart is therefore

k
11,=1 We, (pa 0C; xC@)
k
11i=2 Ws; (pv 08S; 3751)

Wqe(p,o;dx) o 1o (¢)dx

p— Cig—l
_ |xC’Z|

B FCZ' (p) |UC¢ ‘p

e {Tci96,) thatis

p_ C’i+1

2
s 1o, (x)dx

k
VVQG(paa;df) X eXp-_<$’6f4>duj:1’xC&

k
112=1 |£ES7;

We note that

1. itis an NEF with only one shape parameter p = %

2. the expression of W, (p, o; dz) does not depend on the

—chosenperfectorderoftheclques————————————
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The general Wy, as an NEF on ()¢

We want several shape parameters rather than just p.
The Wy, (a, 3,0) family of of distributions (LM 07):

k
WQG(av B, 0)5 d:l?) X 2

Is the NEF generated by

k
He(a, Bix)pa(dy) = —=

The Wy, (5, 0), the hyper Wishart, is a special case of the
WQG(O{,ﬁ,@) for Cvi:%, ﬁi:%, h=5"1
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The DY conjugate prior distribution for >

The hyper inverse Wishart distribution (DL93) on Q¢: a
conjugate prior for X (in fact induced by the DY prior on ).

S4+ci—1 645 —1 ke, |m T3 T 5
+ ¢4 : o ,0;dr) o iz 26 ] e (# 1’9>1Qa(x)dx

2 L _O0+si =1 s

HIW (

Same problem: only one shape parameter

The Inverse of the hyper inverse Wishart has density

6+CZ 1+Ci+1
2

5—|—S,L 1 s —|—1 € <y70>1PG (y)dy

k _
11;=1 |33(J ( )|

k _
11;=2 |$S ( )|

6—2

= |y|2 e W 1p, (y)dy.

WPG (57 0; dy) X

The Wp_(4,0;dy) Is a .....natural exponential family.
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The general Wp, as a NEF on /g

The Wp_.(«a, 3, D) family of of distributions (LM 07)

c—|—1

k -
1 |
Wpe(a, 8,0);dy) o Lizy l26,) , Sﬁle ~W1 p, (y)dy,
izo |z, ()|
Is the NEF generated by
k Gt
C(det xo (y))¥ T2
Holo, B x(w)valdy) = =t TG g,
=2 (det LS, (y))ﬁz—i_T

The Wp_.(6,6;dy), inverse of the HIW, Is a special case of
the Wp,(a,3,0) for ;= —244=1 3 = &=l
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The IWp.(c, 3,0) as a prior

The inverse Wp, Is the IWp_(«, 3, 0), defined on Q¢

IWps((a, B), 8; dX)

1L b
Fll(aa 5) |(952

C,I:—l—l

S
2

| k
i i—1 120,

w L
Bi k
11:=2 ‘ZSZ

Bi _ 53+l
2 2

’ €_<i_1’9> ]_

Qe (2)dY

Clearly if Z; ~ N(0,%) € N and we write U = S, Z; 7t
n

1] N0, 5;dZ) IWp, (e, B), 6; dX)

1=1
k (o n_c,L-—l—l
J’L:]_ |ZC’L 2 2
X
k Z )
17=2 ‘ Sil 2 2

The I'Wp_ Is a conjugate prior for X € Q.

k
. o —1
——e & U, (dn) [ ] dz;
1=1
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The parameter sets for the WQG and WpG

Foro € Qg and 0 € g, let

A={<a,ﬁ> -/ 6<x"}1>HG(&,ﬁ;x)ﬂG(dx)ZFI(&,ﬁ)Hg(Oz,ﬁsv)}

G

and

Bz{(&,ﬁ) -/ e<y’9>HG<a,ﬁ;¢<y>uG<dy>=ru<a,ﬁ>HG<a,ﬁ;e>}

where I';(a, 8) and I';7(a, 3) are functions of («, ) only,

We define
® the Wy, (a, B,0;dx) for (o, B8) € A, 0 € Q¢
® the Wp.(«a, 3,0;dy) for (o, 3) € B, 0 € Qq.
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The hyper Markov property

Recall that
e the IWWp, is a conjugate prior for ¥ € Q¢ in Ng

o the HIW is the DY conjugate prior for ¥ € Qg in Ng

¢ k

NX(07 Z) — NXcl (Ov ZC’l) H NXRZ.|X51. (ERi,Sr@Eg}xSm ERi.Si)
1=2

e the HIW Is strong hyper Markov, i.e., under the HIW
ZCU 1L (Z[Z>Z;@1>7 Z[z]) =2,k
To show the hyper Markov property, we change variables

Y eQor Co, BpsEsis,Bp) i =2,...,k)

<1>7
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The normalizing constant for the Wp,

We work in ().

k
H6_<($[J>x<9> 9[J>‘9<g>) [_]1(37[3>5’7<;> 93>‘9231'>)9<J'>>

j=2
H ‘Qfs‘ZiEJ(P,S)(Oéi—%)—l/(S)(ﬁ(S)_m%l)
Ses

k
: C;—V S S -
[ [ |zs[*ees S Blaze, T] d@yse)s)day.

Ses j=2
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The strong Hyper Markov property

o Forthe HIW,ie., when q; = 2+4=1 3, = szl

The terms in red disappear!

And we obtain the normalizing constant and the strong
hyper Markov property,

e Forthe general Wp_, the terms do not disappear
unless we choose («, ) carefully.

This choice depends upon the chosen perfect order of the cliques, P:
For («, 3) € Bp, we obtain

1. the normalizing constant Hg(«, 3;0)'17(a, 5)
2. the strong directed hyper Markov property.
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The set Bp

For a given perfect order P of the cliques, Bp Is the set of

(cx
1.

, #) such that

> jeaps(i+ 3(e; — 55) —v(S)B(S) = 0 for all §
different from S5;

|

Qo
1S
|

. —O] —

2(cg—sq—1)>0foralg=2,...,kand
%(61—82—1)>0
51 —s2+1) —7 n

ZjEJ(P,Sg)( — P2+ =5 82)

a set of linear constraints that reduces the number of free
parametersto £+ 1. (9, a4, 1=1,....k

b DO UpBp
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The strong directed hyper Markov property

If Q ~ Wp,(a,5,0),1.e. ¥ =pY)~ IWp_.(a,3,0) with
(o, B) € Bp and 0 € Qq, then

S2s1201 ~ Nier—so)xs (012552 025 @ 3pp).)
Ct — S
_|_ ! 2 2 +/72)79<2>)

(1
X~ We—s, (—ag, Opp), 1 =1,k

1 1 -
Z[J>E<]>‘Z ~ Nigj—s)xs; (050 2 9<,7> Dap)), J=2,

Z<2> ~ inQ(

and
{(2[12>7 2[1])7 2i<2>, (E[ Z<;>7 E[]] )7] =2,..., k} (3)

are mutually independent.

I . ; ) o
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An improper member of the ]WpG family

Let o = 2% and let ¢ be its Choleski parametrization:
= (o} oozt =2 k
¢ (0-[1].70[12>70-<2>7O_[j].70_[]>0-<]>7.] I )

Since the the hyper Wishart is an NEF, we can use the
method of Data and Ghosh (1995) to obtain the reference
prior for the parameter ¢ € Q¢ as

1+l -k _Cj+1
o ‘O-Cl 2 1__.j:2 ‘O-Cj‘ 2
n (0) X citea o sotl ook cj—s;  sjtl
|052 2 2 _.—[j:3 |OSj| 2 2

It Is an improper [Wp.(«a, 3,0; z) distribution with

Cl1 + Co Cj — Sj

Oéj:()ajzla"'aka 62: 9 _8276]': 9

=3,

No need to choose hyperparameters here



The Wy, . I1s weak hyper Markov

If X ~ Wo.(c,3,0) with (o, 8) € Ap and o € Q¢ ,
then

S2

33[1] ™~ wC1—82(a1_§70[1]-)

1
37[12>‘~77<2> ~ N(Cl—SQ)XSQ ((7[12>7 2% 5 & (7[1]-)
L<2> ~~ Wsy (041 + 09, 0<2>)

—1
~ Niej—s;)xs; (0150215, 2 T2 5 ® 071.)

5
5,0[]-],),] :2,...,]{

[J>f’3<g>|ﬂ7<3>

il ij—Sj(O‘j_

The distribution of ;- x_;. depends upon z;-.

<]>
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Expected values

For the estimation of the covariance X,

using the IWp_ as a prior, we will need

EWp,)"t and E(IWp,).

These are explicit expressions.

No need for MCMC computations.
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The inverse of E(Wp.),i.e. E(Q2]S)~

[E(02S)]
_ {E(WPG( _n 5] _n 0+ (nS))]
|| & : n
= 5 |2 (e = )@+ (0~ 30(8; — O +(nS)g))°
| j=1 J=2

explicit analytic expression: no recourse to MCMC




The E(/Wp,,) computed layer by layer

Leté =604+ nS

£<2> {<2>
E(X<2>) = c1—s s = &
—(a1 4+ 952 4 y9) — 22 (o + A+ )

explicit analytic expression: computed sequentially
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The E(/Wp,,) computed layer by layer

Leté =604+ nS

E(X<2>) = c<2>

§C1\S2,95
—(a1 4+ 4 + 72)

E(Xc\S,,5,)

explicit analytic expression: computed sequentially
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The E(/Wp,,) computed layer by layer

Let{ =0+ nS
£oos §<2>
E(X = -
( <2>) _(a1_|_ C1;32 _|_72)_82—2+1 —(a1+61T+1+’72)
501\32,52

E(Xc\Ss,55) c
1\52,52 —(a1 + 12-|-1 + ~2)

SEIE s ECN\Ss.50 €255 E50.01\S
E(Xcl\SQ) = 1] ) <1— 2( 2 ) + 1\52,525<2> 2,C1\S2

—(ay + a=52td ar + S+ ) —(a1 + A +42)

explicit analytic expression: computed sequentially
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The E(/Wp,,) computed layer by layer
Leté =0 +nS

20X {<2> §<2>
( <2>) — c1—s S - c
—(o1 + G52 4 ) — 22 (o + D 4 9)

§C1\ 82,55
—(a1 4+ 4 + 72)

E(Xc\S,,5,)

1
E(XC \S ) o 5[1] 1 — S2 _|_ é-le\S2aS2£<2>€SQ,C’l\SQ
L — (a1 + A=524L) 2(a1 + A+ 42) —(a1 + A +42)
E(XRjysj) — £[3>€231>E(X<.7>)7 j:277k

explicit analytic expression: computed sequentially
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The E(/Wp,,) computed layer by layer
Leté =0 +nS

§<2> §<2>
E(X<2>) — c1—Ss s - ¢
—(a1 + D522 ) — 28 (ay + A )

§C1\ 82,55
—(a1 4+ 4 + 72)

E(Xc\S,,5,)

5[1] S2 501\52 5252%>£52 C1\S2
E(XC S ) — c1—S 1 o C _|_ , C ’
152 — (a1 + A=524L) 2(a1 + A+ 42) —(a1 + A +42)
E(XRj,Sj) — £[3>€231>E(X<3>)7 ]:277k
E(XR) = W (14 52l B2
_(aj + 2J ) 2

explicit analytic expression: computed sequentially
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The loss functions

Loss functions for X and (2

LiE) =tr(EE ) —log(|SE7H) =1 Le(D) =tr(E — )2
Li(Q) = tr(QQY) —log(|QQ7 ) = La() = tr(Q — Q)2

Can we use them as is? It is important to note that

- - - > 3
cec Ses oee 1Xe] T gec |25

Ly(3) = Y4 jen(Eij — Sij)’

Similarly L1 (), L»(Q) only use the non zero entries of O
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Our estimators

The Bayes estimators under Ly, L, and the IWp_ on

> € Q¢ (equivalently the Wp. on 2 € Pg)

Parameter of interest L1 L2
) iLl — [E(Q|S)]_1 iLz — E(E‘S)
Q O, = [E(E[S))™ | Qp, = E(Q|S)
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The risk functions

Duality: The relationship between our Bayes estimators Is
as follows

Yp, = W(:QLQ:_l)

m(100,]7")

The risk functions We assess the quality of our estimators
using risk comparison for:

2L,

RL@'(ZL'L') — E[LZ(iLmZ)L 1=1,2
RLi(QLi) — E[(LZ(QLNQ)L 7’:172
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The prior, loss functions and estimators

We will use three different priors for X

® The IWp.(a, 3,60) with k& + 1 free shape parameters

o The HIW (4,0) prior with 1 free shape parameter: a
special case of the ITWp,

#® The reference prior: an objective prior

and two loss functions L1 and L», and four estimators

E(Q

E(X

S) and its inverse

S) and its inverse

L(Q

(2

S).

S).

—1

—1

and the M LE and the M LEg, that is the mle under the

graphical model.

So, we have a total of eight estimators that we are going to

study and compare.
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Our approach: Bayesian graphical models

Bayesian graphical models combines the two approaches

e The graphical model is used as a tool for
regularization

e The prior give us flexibility in the estimator

Traditional choice of priors

e The conjugate prior which is the Wishart W,.(6, 0) with
one shape parameter § and the scale parameter 6

e Various priors which give more flexibility for the
parameters, (inverse gammas on the diagonal and
Independent normals on the triangular elements of the
Choleski) but then you

lose conjugacy- - - problematic for computations in

nigh-dimensional problems.
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"Two Cliques'

Y Q)

15

10

201

301

40

50

60|

80

9N0F

100

20 40 60 80 100

Simple Example with 2 Cliques

p = 100, and n = 75, 100, 500, 1000, C1=70 and C2=40
Scale Hyperparameter : § = I or 6 s.t. prior expected value
of e Qqgis i

Goal: Explore the flexibility of the IWpg
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"Two Cliques" study - Risk compari:

n =75 n = 100 n = 500 n =10
R1(Q2) R1 (%) R1(Q2) R1(%) R1(Q2) R1(%) R1(Q2)
Reference 212.7 66.61 60.71 40.93 7.02 6.66 3.33
HIW (3,1) 98.76 59.28 80.72 43.41 7.76 7.18 3.54
IWp,(1/2¢;, D) 29.99 25.18 24.53 24.49 6.37 6.21 3.27
IWp,(1/2¢;,1) 207.4 67.88 116.7 49.78 8.69 7.80 3.76
IWp, (1/4c;, D) red22.18 red 17.96 | red18.57 red15.87 | red5.67 red5.43 | red3.03 1
IWp,, (1/4¢;, 1) 165.5 63.10 96.14 46.20 8.14 7.43 3.67
IWp,(1/10¢;, D) 35.71 31.99 31.59 27.02 6.77 6.41 3.32
IWp,(1/10c¢;, I) 141.7 60.23 89.67 45.03 7.98 7.32 3.59
MLEg 813.9 70.72 154.6 43.51 8.13 6.79 3.62
MLE - - 7.3x108 102.5 14.45 10.85 6.00
Risk Reduc. vs MLEg red97% red 75% red88% red64% red30% red20% | red16%
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"Two Cliques" study - Scree Plots

250

2007

=
o1
o

Eigenvalues
|_\
o
o

S50+

Top eigenvalues of X

= WY W o —— — . —~ —— —— —— — ———— — . — . ——
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Call-center data: Fitting a Graphical model

Dataset also analyzed by Huang et al. (2006) and Bickel
and Levina(2006)

Records from a call-center of a major financial institution

Phone call from 7:00am till midnight during 2002 (on week
days only)

Recording period of 10-minute intervals during 17 hours

Number of calls in each period N;;, 7 =1,2,..239 and
5 =1,2,..,102 was recorded.

Standard transformation z;; = (N;; + )2 applied to make
data closer to Normal

First 205 data points as training data and remaining 34 as
test data
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Call-center data: Fitting a Graphical model

Aim: Choose the “best" graphical model for the data,
among models with banded inverse covariance matrices.

Criterion 1: K-fold cross-validation error (K = 10).
We predict the second half of day given first half for the test
data set after training our estimators on the training data set

B z() [ [ X1 2
S EC) N ==
T {2 201 239

The best linear predictor for xZ(Q) from %(1) IS

5’3@(2) = [ + 22121_1(515§1) — 1)
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Call-center data: Fitting a Graphical model..

Criteria 2: Bayesian model selection

Maximizing posterior probabilities for the model: we choose
G with maximum posterior probability i.e.

P(Grly) o p(y|Gr)p(Gr)

where
P(y|G) — / NS0 IWeg (0, 8,8 Sx) dSi

...with some abuse of notation.

In fact P(y, G) 1s equal to the ratio of normalizing constants
for the prior and posterior distributions and these are known
explicitly for the IWp,..
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Differential banding

20 20

401

40t

60} 60l

80} g0l

100% 100+

20 40 60 80 100 20 40 60 80 100

Differential banding illustration
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Prediction error

15

st Error

—— MLE
— MLE, (k=4)

== Ly IWp, (k= 4)

—— L, [Wp, Diff (k; = 14, ky = 1, r = 55)

05"

| | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
Time Point

Forecast error for selected banded and “differentially
banded” models
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Outline

# The Gaussian model

# The graphical Gaussian model Ng
® The Wy, and Wp, Wisharts

#® The hyper Markov property

® The expected values of Wy, and IWp,

® Decision theoretic estimation of X

» Another Wishart?
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The MLE for missing data

Question: Is the Wy, the distribution of the MLE of X?

f The notation
Zt — (ZLZ;Z%?ZZD
7! = (74, 7)), i=2,3,4

1
4 /\ 3 Z; I1sa p; x 1vector

The data
Z17°°°7Zn7 (Zl)17°°°7(Zl)n17 Zil)"'azinia 2227374
ni

n mn;
Vo= ZiZ5, Vi=> (Z0);(Z)}, Vi=) Zi;Zs5, i =2,3,4
g—1 =1

i—]
J

= <
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The MLE for missing data: notation

i
vo = (Voim, I,m=1,... k), v; = ( v il ) 0=1,2,3,4

Viil  Viis
U011 V01i [ voi1 + Vi1 Vo1 T+ Vil 934
U(Oi) — , Wy = N s U= 4,9,
Voi1l  V0is Voil + Vi1l Vois T Vigi
_ . R Sl SN /
pit = (voir + vi21)(vo11 + vi11)” "~ = pi;
wi.1 = Vi + viga — pi1(vo11 + vitl)pii
k

S1 = V11 + V1 + E Vi1l -
i=2
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The MLE: Sun and Sun 07

2

4 )l\ s Based on the incomplete data as given above,

the maximum likelihood estimate 3 of & € Q¢ is given by
the elements of its Choleski decomposition as follows

A 81
211 = —
mi
2 &1 I
Y12y = XXy =pi, 1=2,.000,k
— ws;.1 .
27;7;.1 — ,ZZQ,...,:ZC
m;

We want the joint distribution of (s, p;, w;.1,i = 2,3, 4)
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The Wy, for our graph

Woela, B,0; ds1, dpin,wia, i=,2,3,4) (4)
ntn1+Y % ony  pra 1 _
< |s1 B eXp_§<5172111>
1 _ _ _
X H 51]7 <(,0@'1 — Sa ), St (e — Za X ) s1)

ntn;—p; pitl 1 _
XH’wZ’.l‘ 2 2 exp—§<w@1,2“1>
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The MLE:the ingredients

[ voir voi2 vo1s voia )

V021 U022 * x n n o_
’w():ﬂ'(?}o): NWQG(—,—,Z 1)
V031 X V033 X 2 2
\ V041 * x V044
1 n—+mn :
vl ~~ Wpl(_7 Z11)7 Wy ~ p1-|-pi(—za Z’( ))7 L= 27 374

2

Recall vy, v1,v;,7 = 2, 3,4 are independent
BUT

the w;’s are NOT independent. They have vy1; In common.
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A few Jacobilans later

f(Slapiawil)i =2,.. 7k)

n+n1+2,]f: (n;+pi)  p1+1 1 _
x |s1] o E €Xp—§<3172111>
k o E 1
n p n p P
x [ By — do = > ulF 7 Tl F
D 1=2 1=2

(/021 — &i1), §; .11 (pi1 — 5@1)t0(lo + li)at

ntn;—p; p;+1 1 _
X dl Hdl@- X H lwia| ™2 2 exp—§(wz-.1, Zzll>

where s; = oo?, o is a lower triangular matrix.
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Another Wishart?

Nearly the W . but not the W !
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