Flexible Wishart distributions and their applications

Hélène Massam

York University

with co-authors, G. Letac, B. Rajaratnam, C. Carvalho

Outline

- The Gaussian model
- ullet The graphical Gaussian model \mathcal{N}_G
- The W_{Q_G} and W_{P_G} Wisharts
- The hyper Markov property
- ullet The expected values of W_{Q_G} and IW_{P_G}
- Decision theoretic estimation of Σ
- Another Wishart?

Inference for the saturated Gaussian model

$$\mathcal{N} = \{ N_r(0, \Sigma), \ \Sigma \in P^+ \}.$$

where P^+ is the cone of positive definite matrices. Let Z_1, \ldots, Z_n be a sample from $N_r(0, \Sigma)$.

• The MLE of $n\Sigma$ is $n\tilde{\Sigma} = U = \sum_{i=1}^n Z_i Z_i^t$ with

$$U \sim W_r(\frac{n}{2}, \Sigma)$$

• The conjugate prior on $\Omega = \Sigma^{-1}$ is the Wishart

$$\Omega \sim W_r(\alpha, \theta)$$

The Wishart distribution

Recall $\mathcal{F}_{\alpha} = \{W_r(\alpha, \Sigma), \Sigma \in P^+\}$ is the NEF generated by

$$\mu_{\alpha}(dx) = (\det x)^{\alpha - \frac{r+1}{2}} \mathbf{1}_{P^{+}}(dx), \text{ with } \alpha > \frac{r-1}{2}$$

and the density of the $W_r(\alpha, \Sigma)$ is

$$W_r(\alpha, \Sigma)(dx) = \frac{(\det \Sigma)^{-\alpha}}{\Gamma_r(\alpha)} \exp -\frac{1}{2} \langle x, \Sigma^{-1} \rangle \ \mu_\alpha(dx)$$

while the density of $Y = X^{-1}$ is the inverse Wishart

$$IW_r(\alpha, \Sigma; dy) = \frac{(\det \Sigma)^{-\alpha}}{\Gamma_r(\alpha)} \exp{-\frac{1}{2}\langle y^{-1}, \Sigma^{-1}\rangle} (\det y)^{-\alpha - \frac{r+1}{2}} \mathbf{1}_{P^+}(dy)$$

Note: Only one shape parameter α

Outline

- The Gaussian model
- The graphical Gaussian model
- ullet The W_{Q_G} and W_{P_G} Wisharts
- The hyper Markov property
- ullet The expected values of W_{Q_G} and IW_{P_G}
- Decision theoretic estimation of Σ
- Another Wishart?

Graphical models: decomposable graphs

Let G = (V, E) be a graph: V is the set of vertices and E the set of edges.

G is said to be decomposable if it does not contain a cycle of length greater than or equal to 4 without a chord.

Example
$$\stackrel{1}{\bullet} - \stackrel{2}{\bullet} - \stackrel{3}{\bullet} - \stackrel{4}{\bullet}$$

$$C_1 = \{1, 2\}, C_2 = \{2, 3\}, C_3 = \{3, 4\}$$
 are the cliques

$$S_2 = \{2\}, S_3 = \{3\}$$
 are the separators.

Perfect ordering of the cliques

A graph is decomposable if and only if there is a perfect ordering of its cliques.

but C_1, C_3, C_2 is not perfect.

We use the notation

$$H_i = \bigcup_{j=1}^i C_j, \ S_i = C_i \cap (\bigcup_{j=1}^{i-1} C_j) \ R_i = C_i \setminus S_i = C_i \setminus H_{i-1}.$$

history

separator

residual

Here for the perfect order C_1 , C_2 , C_3 ,

$$H_1 = C_1, \ H_2 = C_1 \cup C_2, \ S_2 = C_2 \cap C_1 = \{2\}, \ H_3 = C_3 \cap (C_1 \cup C_2), \ S_3$$

The Markov property w.r.t. G decomposable

We write $i \sim j$ to indicate i and j are linked.

A distribution is said to be Markov with respect to the graph if

$$X_i \perp X_j | X_{V \setminus \{i,j\}}$$
 whenever $i \not\sim j$.

For a perfect order of the cliques, C_1, \ldots, C_k , we have the following conditional independence relations

$$X_{R_2} \perp X_{C_1} | X_{S_2}, \dots, X_{R_k} \perp X_{H_{k-1}} | X_{S_k},$$

General notation, for Σ symmetric

$$\Sigma_{S_i} = \Sigma_{\langle i \rangle}, \quad \Sigma_{R_i} = \Sigma_{[i]}, \quad \Sigma_{R_i, S_i} = \Sigma_{[i \rangle},$$
$$\Sigma_{R_i \bullet S_i} = \Sigma_{[i]} - \Sigma_{[i \rangle} \Sigma_{\langle i \rangle}^{-1} \Sigma_{\langle i \rangle} = \Sigma_{[i] \bullet}$$

The Gaussian model Markov w.r.t. G

Let C_1, \ldots, C_k be a perfect order of the cliques.

The normal density factorizes as (see DL93, Th. 2.6)

$$N_X(0,\Sigma) = \frac{\prod_{i=1}^k N(0,\Sigma_{C_i})}{\prod_{i=2}^k N(0,\Sigma_{S_i})} = \frac{\prod_{C\in\mathcal{C}} N(0,\Sigma_C)}{\prod_{S\in\mathcal{S}} N(0,\Sigma_S)}$$

The parameter is the collection $(\Sigma_C, C \in \mathcal{C})$

We have a <u>reduction</u> of the parameter space.

An example

The conditional covariance between X_3 and X_1 given X_2 is zero, that is

$$\sigma_{31\bullet 2} = \sigma_{31} - \sigma_{32}\sigma_2^{-1}\sigma_{21} = 0$$

and therefore
$$\widehat{\Sigma} = \left(\begin{array}{cccc} \sigma_1 & \sigma_{12} & \sigma_{12}\sigma_2^{-1}\sigma_{23} \\ \sigma_{21} & \sigma_2 & \sigma_{23} \\ \sigma_{32}\sigma_2^{-1}\sigma_{21} & \sigma_{32} & \sigma_3 \end{array} \right)$$

The parameter is

$$\Sigma = \begin{pmatrix} \sigma_1 & \sigma_{12} & * \\ \sigma_{21} & \sigma_2 & \sigma_{23} \\ * & \sigma_{32} & \sigma_3 \end{pmatrix} = (\Sigma_{(12)}, \Sigma_{(23)}) = (\Sigma_{(12)}, \sigma_{32}\sigma_2^{-1}, \sigma_{3\cdot 2}).$$

$$\text{while } \Omega = \hat{\Sigma}^{-1} = \left(\begin{array}{ccc} \omega_1 & \omega_{12} & 0 \\ \omega_{21} & \omega_2 & \omega_{23} \\ 0 & \omega_{32} & \omega_3 \end{array} \right) \text{ because } X_i \perp X_j | X_{V \setminus \{i,j\}} \Longleftrightarrow \omega_{ij} = 0.$$

The cones P_G and Q_G

• The cone Q_G

 Q_G :={incomplete matrices x with missing entries x_{ij} , $(i,j) \notin E$ and such that $x_A > 0$ for $A \subseteq V$ complete}.

• The cone P_G

 $P_G:=\{y\in P^+ \text{ such that } y_{ij}=0 \text{ whenever } (i,j)\notin E\}.$

When G is decomposable, any x in Q_G can be uniquely completed as $\hat{x} \in P^+$ such that for all $(i, j) \in E$

$$x_{ij} = \hat{x}_{ij}$$
 and $\hat{x}^{-1} \in P_G$

The bijection between P_G and Q_G

Let π denotes the projection of P onto incomplete matrices.

The mapping

$$\varphi : y = (\widehat{x})^{-1} \in P_G \mapsto x = \varphi(y) = \pi(y^{-1}) \in Q_G$$

defines a bijection between P_G and Q_G .

Notation:

for
$$(x,y) \in Q_G \times P_G$$
, $\operatorname{tr}(xy) = \langle x,y \rangle = \sum_{(i,j) \in E} x_{ij} y_{ij} = \operatorname{tr}(\hat{x}y)$.

Inference for Σ in \mathcal{N}_G

$$\mathcal{N}_G = \{ N(0, \Sigma) | \ \Omega = \widehat{\Sigma}^{-1} \in P_G \} = \{ N(0, \Sigma), \ \Sigma \in Q_G \}.$$

- Σ lies in Q_G .
- Ω lies in P_G .
- The Wishart is defined on P^+ : not the right cone!.

Question 1: What is the distribution of the MLE of $\Sigma \in Q_G$?

Question 2: Which prior should we put on Σ or what would the induced prior on $\Omega = \hat{\Sigma}^{-1} \in P_G$ be?

The answer is given in DL93!!!

Outline

- The Gaussian model
- ullet The graphical Gaussian model \mathcal{N}_G
- ullet The W_{Q_G} and W_{P_G} Wisharts
- The hyper Markov property
- ullet The expected values of W_{Q_G} and IW_{P_G}
- Decision theoretic estimation of Σ
- Another Wishart?

The hyper Wishart for the MLE of Σ

The model \mathcal{N}_G is strong meta Markov:

$$N_X(0, \Sigma) = N_{C_1}(0, \Sigma_{C_1}; X_{C_1})$$

$$\prod_{i=2}^k N_{R_i|S_i}(\Sigma_{R_i, S_i} \Sigma_{S_i}^{-1} x_{S_i}, \Sigma_{R_i \bullet S_i}; X_{R_i} | x_{S_i})$$

 $\Sigma_{C_1}, \ (\Sigma_{[i>}\Sigma_{< i>}^{-1}, \ \Sigma_{[i]\cdot}), i=2,\ldots,k$ are functionally independent.

The marginal model for X_A , for any $A \subseteq V$ complete, is an NEF.

DL (93) show that, then,

the distribution of the MLE of $\Sigma \in Q_G$ is weak hyper Markov.

The hyper Wishart, (cont'd)

The density of the hyper Wishart is therefore

$$W_{Q_G}(p,\sigma;dx) \propto \frac{\prod_{i=1}^k w_{c_i}(p,\sigma_{C_i};x_{C_i})}{\prod_{i=2}^k w_{s_i}(p,\sigma_{S_i};x_{S_i})} \mathbf{1}_{Q_G}(x) dx$$

with
$$w_{c_i}(p, \sigma_{C_i}; x_{C_i}) = \frac{|x_{C_i}|^{p - \frac{c_i + 1}{2}}}{\Gamma_{c_i}(p)|\sigma_{C_i}|^p} e^{-\langle x_{C_i}, \sigma_{C_i}^{-1} \rangle}$$
, that is

$$W_{Q_G}(p,\sigma;dx) \propto \exp{-\langle x,\hat{\sigma}^{-1}\rangle} \frac{\prod_{i=1}^k |x_{C_i}|^{p-\frac{c_i+1}{2}}}{\prod_{2=1}^k |x_{S_i}|^{p-\frac{s_i+1}{2}}} \mathbf{1}_{Q_G}(x) dx$$

We note that

- 1. it is an NEF with only one shape parameter $p=\frac{n}{2}$
- 2. the expression of $W_{Q_G}(p, \sigma; dx)$ does not depend on the chosen perfect order of the cliques.

The general W_{Q_G} as an NEF on Q_G

We want several shape parameters rather than just p.

The $W_{Q_G}(\alpha, \beta, \sigma)$ family of of distributions (LM 07):

$$W_{Q_G}(\alpha, \beta, \sigma); dx) \propto \frac{\prod_{i=1}^k |x_{C_i}|^{\alpha_i - \frac{c_i + 1}{2}}}{\prod_{i=2}^k |x_{S_i}|^{\beta_i - \frac{s_i + 1}{2}}} e^{-\langle x, \hat{\sigma}^{-1} \rangle} \mathbf{1}_{Q_G}(x) dx,$$

is the NEF generated by

$$H_G(\alpha, \beta; x) \mu_G(dy) = \frac{\prod_{i=1}^k (\det x_{C_i})^{\alpha_i - \frac{c_i + 1}{2}}}{\prod_{i=2}^k (\det x_{S_i})^{\beta_i - \frac{s_i + 1}{2}}} dy$$

The $W_{Q_G}(\frac{n}{2},\sigma)$, the hyper Wishart, is a special case of the $W_{Q_G}(\alpha,\beta,\theta)$ for $\alpha_i=\frac{n}{2},\ \beta_i=\frac{n}{2},\ \theta=\hat{\sigma}^{-1}.$

The DY conjugate prior distribution for Σ

The hyper inverse Wishart distribution (DL93) on Q_G : a conjugate prior for Σ (in fact induced by the DY prior on Ω).

$$HIW(\frac{\delta + c_i - 1}{2}, \frac{\delta + s_i - 1}{2}, \theta; dx) \propto \frac{\prod_{i=1}^{k} |x_{C_i}|^{-\frac{\delta + c_i - 1}{2} - \frac{c_i + 1}{2}}}{\prod_{i=2}^{k} |x_{S_i}|^{-\frac{\delta + s_i - 1}{2} - \frac{s_i + 1}{2}}} e^{-\langle \hat{x}^{-1}, \theta \rangle} \mathbf{1}_{Q_G}(x) dx$$

Same problem: only one shape parameter

The inverse of the hyper inverse Wishart has density

$$W_{P_G}(\delta, \theta; dy) \propto \frac{\prod_{i=1}^{k} |x_{C_i}(y)|^{-\frac{\delta + c_i - 1}{2} + \frac{c_i + 1}{2}}}{\prod_{i=2}^{k} |x_{S_i}(y)|^{-\frac{\delta + s_i - 1}{2} + \frac{s_i + 1}{2}}} e^{-\langle y, \theta \rangle} \mathbf{1}_{P_G}(y) dy$$

$$= |y|^{\frac{\delta - 2}{2}} e^{-\langle y, \theta \rangle} \mathbf{1}_{P_G}(y) dy.$$

The $W_{P_G}(\delta, \theta; dy)$ is anatural exponential family.

The general $W_{P_{G}}$ as a NEF on P_{G}

The $W_{P_G}(\alpha, \beta, D)$ family of of distributions (LM 07)

$$W_{P_G}(\alpha, \beta, \theta); dy) \propto \frac{\prod_{i=1}^k |x_{C_i}(y)|^{\alpha_i + \frac{c_i + 1}{2}}}{\prod_{i=2}^k |x_{S_i}(y)|^{\beta_i + \frac{s_i + 1}{2}}} e^{-\langle y, \theta \rangle} \mathbf{1}_{P_G}(y) dy,$$

is the NEF generated by

$$H_G(\alpha, \beta; x(y))\nu_G(dy) = \frac{\prod_{i=1}^k (\det x_{C_i}(y))^{\alpha_i + \frac{c_i+1}{2}}}{\prod_{i=2}^k (\det x_{S_i}(y))^{\beta_i + \frac{s_i+1}{2}}} dy$$

The $W_{P_G}(\delta, \theta; dy)$, inverse of the HIW, is a special case of

the
$$W_{P_G}(\alpha, \beta, \theta)$$
 for $\alpha_i = -\frac{\delta + c_i - 1}{2}$, $\beta_i = -\frac{\delta + s_i - 1}{2}$.

The $IW_{P_G}(\alpha,\beta,\theta)$ as a prior

The inverse W_{P_G} is the $IW_{P_G}(\alpha, \beta, \theta)$, defined on Q_G

$$IW_{P_G}((\alpha,\beta),\theta;d\Sigma)$$

$$= \frac{1}{\Gamma_{II}(\alpha,\beta)} \frac{|\theta_{C_i}|^{\alpha_i}}{|\theta_{S_i}|^{\beta_i}} \times \frac{\prod_{i=1}^k |\Sigma_{C_i}|^{\frac{\alpha_i}{2} - \frac{c_i+1}{2}}}{\prod_{i=2}^k |\Sigma_{S_i}|^{\frac{\beta_i}{2} - \frac{s_i+1}{2}}} e^{-\langle \hat{\Sigma}^{-1}, \theta \rangle} \mathbf{1}_{Q_G}(\Sigma) d\Sigma$$

Clearly if $Z_i \sim N(0, \Sigma) \in \mathcal{N}_G$ and we write $U = \sum_{i=1}^n Z_i Z_i^t$ $\prod_{i=1}^n N(0, \Sigma; dZ_i) IW_{P_G}((\alpha, \beta), \theta; d\Sigma)$

$$\propto \frac{\prod_{i=1}^{k} |\Sigma_{C_{i}}|^{\frac{\alpha_{i}-n}{2} - \frac{c_{i}+1}{2}}}{\prod_{i=2}^{k} |\Sigma_{S_{i}}|^{\frac{\beta_{i}-n}{2} - \frac{s_{i}+1}{2}}} e^{-\langle \hat{\Sigma}^{-1}, \theta + U \rangle} \mathbf{1}_{Q_{G}}(d\Sigma) \prod_{i=1}^{k} dZ_{i}$$

The IW_{P_G} is a conjugate prior for $\Sigma \in Q_G$.

The parameter sets for the W_{Q_G} and W_{P_G}

For $\sigma \in Q_G$ and $\theta \in Q_G$, let

$$\mathcal{A} = \left\{ (\alpha, \beta) : \int_{Q_G} e^{-\langle x, \hat{\sigma}^{-1} \rangle} H_G(\alpha, \beta; x) \mu_G(dx) = \Gamma_I(\alpha, \beta) H_G(\alpha, \beta; \sigma) \right\}$$

and

$$\mathcal{B} = \left\{ (\alpha, \beta) : \int_{P_G} e^{-\langle y, \theta \rangle} H_G(\alpha, \beta; \varphi(y) \nu_G(dy) = \Gamma_{II}(\alpha, \beta) H_G(\alpha, \beta; \theta) \right\}$$

where $\Gamma_I(\alpha,\beta)$ and $\Gamma_{II}(\alpha,\beta)$ are functions of (α,β) only,

We define

- the $W_{Q_G}(\alpha, \beta, \sigma; dx)$ for $(\alpha, \beta) \in \mathcal{A}, \ \sigma \in Q_G$
- the $W_{P_G}(\alpha, \beta, \theta; dy)$ for $(\alpha, \beta) \in \mathcal{B}, \ \theta \in Q_G$.

Outline

- The Gaussian model
- ullet The graphical Gaussian model \mathcal{N}_G
- ullet The W_{Q_G} and W_{P_G} Wisharts
- The hyper Markov property
- ullet The expected values of W_{Q_G} and IW_{P_G}
- Decision theoretic estimation of Σ
- Another Wishart?

The hyper Markov property

Recall that

- the IW_{P_G} is a conjugate prior for $\Sigma \in Q_G$ in \mathcal{N}_G
- the HIW is the DY conjugate prior for $\Sigma \in Q_G$ in \mathcal{N}_G

$$N_X(0,\Sigma) = N_{X_{C_1}}(0,\Sigma_{C_1}) \prod_{i=2}^k N_{X_{R_i}|X_{S_i}}(\Sigma_{R_i,S_i}\Sigma_{S_i}^{-1}x_{S_i},\Sigma_{R_i\bullet S_i})$$

• the HIW is strong hyper Markov, i.e., under the HIW

$$\Sigma_{C_1}, \perp (\Sigma_{[i>}\Sigma_{}^{-1}, \Sigma_{[i]}), i = 2, \dots, k$$

To show the hyper Markov property, we change variables

$$\Sigma \in Q_G \mapsto (\Sigma_{C_1}, (\Sigma_{[i]}, \Sigma_{< i>}^{-1}, \Sigma_{[i]}), i = 2, \dots, k)$$

The normalizing constant for the W_{P_G}

We work in Q_G .

$$\int_{Q_{G}} e^{-\langle \theta, \hat{x}^{-1} \rangle} \frac{\prod_{j=1}^{k} |x_{C_{j}}|^{\alpha_{j} - \frac{c_{j}+1}{2}}}{\prod_{S \in \mathcal{S}} |x_{S}|^{\nu(S)(\beta(S) - \frac{|S|+1}{2})}} dx$$

$$= \int |x_{C_{1}}|^{\alpha_{1} - \frac{c_{1}+1}{2}} e^{-\langle x_{C_{1}}^{-1}, \theta_{C_{1}} \rangle} \prod_{j=2}^{k} |x_{[j]}|^{\alpha_{j} - \frac{c_{j}+1}{2}} e^{-\langle x_{[j]}^{-1}, \theta_{[j]} \rangle}$$

$$\prod_{j=2}^{k} e^{-\langle (x_{[j} > x_{ -\theta_{[j} > \theta_{), x_{[j]}^{-1}, (x_{[j} > x_{ -\theta_{[j} > \theta_{)\theta_{)}$$

$$\prod_{j=2}^{k} |x_{S}|^{\sum_{i \in J(P,S)} (\alpha_{i} - \frac{c_{i}+1}{2}) - \nu(S)(\beta(S) - \frac{|S|+1}{2})}$$

$$\prod_{S \in \mathcal{S}} |x_{S}|^{\sum_{i \in J(P,S)} c_{i} - \nu(S)|S|} dx_{C_{1}} \prod_{j=2}^{k} d(x_{[j} > x_{) dx_{[j]}.$$

The strong Hyper Markov property

• For the HIW, i.e., when $\alpha_i = \frac{\delta + c_i - 1}{2}, \beta_i = \frac{\delta + s_i - 1}{2}$

The terms in red disappear!

And we obtain the normalizing constant and the strong hyper Markov property,

• For the general W_{P_G} , the terms do not disappear unless we choose (α, β) carefully.

This choice depends upon the chosen perfect order of the cliques, P: For $(\alpha, \beta) \in B_P$, we obtain

- 1. the normalizing constant $H_G(\alpha, \beta; \theta)\Gamma_{II}(\alpha, \beta)$
- 2. the strong directed hyper Markov property.

The set B_P

For a given perfect order P of the cliques, B_P is the set of (α, β) such that

- 1. $\sum_{j \in J(P,S)} (\alpha_j + \frac{1}{2}(c_j s_j)) \nu(S)\beta(S) = 0$ for all S different from S_2 ;
- 2. $-\alpha_q \frac{1}{2}(c_q s_q 1) > 0$ for all q = 2, ..., k and $-\alpha_1 \frac{1}{2}(c_1 s_2 1) > 0$
- 3. $-\alpha_1 \frac{1}{2}(c_1 s_2 + 1) \gamma_2 > \frac{s_2 1}{2}$ where $\gamma_2 = \sum_{j \in J(P, S_2)} \left(\alpha_j \beta_2 + \frac{c_j s_2}{2}\right)$.

a set of linear constraints that reduces the number of free parameters to k + 1: β_2 , α_i , i = 1, ..., k

$$\mathcal{B} \supseteq \cup_P B_P$$

The strong directed hyper Markov property

If $\Omega \sim W_{P_G}(\alpha, \beta, \theta)$, i.e. $\Sigma = \varphi(Y) \sim IW_{P_G}(\alpha, \beta, \theta)$ with $(\alpha, \beta) \in B_P$ and $\theta \in Q_G$, then

$$\Sigma_{[12>}|\Sigma_{[1]}. \sim N_{(c_1-s_2)\times s_2}(\theta_{[12>}, 2 \theta_{<2>}^{-1} \otimes \Sigma_{[1]}.)$$

$$\Sigma_{<2>} \sim iw_{s_2}(-(\alpha_1 + \frac{c_1 - s_2}{2} + \gamma_2), \theta_{<2>})$$

$$\Sigma_{[i]}. \sim iw_{c_i-s_i}(-\alpha_i, \theta_{[i]}.), i = 1, \dots, k$$

$$\Sigma_{[j>}\Sigma_{}^{-1}|\Sigma_{[j]}. \sim N_{(c_j-s_j)\times s_j}(\theta_{[j>}\theta_{}^{-1}, 2 \theta_{}^{-1} \otimes x_{[j]}.), j = 2, \dots,$$

and

$$\{(\Sigma_{[12>}, \Sigma_{[1]\cdot}), \Sigma_{<2>}, (\Sigma_{[j>}\Sigma_{}^{-1}, \Sigma_{[j]\cdot}), j=2,\dots, k\}$$
 (3)

are mutually independent.

The IW_{P_G} is strong directed hyper Markov.

An improper member of the IW_{P_G} family

Let $\sigma = 2\Sigma$ and let ϕ be its Choleski parametrization:

$$\phi = (\sigma_{[1]}^{-1}, \sigma_{[12>}, \sigma_{<2>}, \sigma_{[j]}^{-1}, \sigma_{[j>}, \sigma_{}^{-1}, j = 2, \dots, k)$$

Since the hyper Wishart is an NEF, we can use the method of Data and Ghosh (1995) to obtain the reference prior for the parameter $\sigma \in Q_G$ as

$$\pi^{\sigma}(\sigma) \propto \frac{|\sigma_{C_1}|^{-\frac{c_1+1}{2}} \prod_{j=2}^{k} |\sigma_{C_j}|^{-\frac{c_j+1}{2}}}{|\sigma_{S_2}|^{\frac{c_1+c_2}{2}-s_2-\frac{s_2+1}{2}} \prod_{j=3}^{k} |\sigma_{S_j}|^{\frac{c_j-s_j}{2}-\frac{s_j+1}{2}}}$$

It is an improper $IW_{P_G}(\alpha, \beta, 0; x)$ distribution with

$$\alpha_j = 0, \ j = 1, \dots, k, \ \beta_2 = \frac{c_1 + c_2}{2} - s_2, \beta_j = \frac{c_j - s_j}{2}, \ j = 3, \dots, k$$

The W_{Q_G} is weak hyper Markov

If $X \sim W_{Q_G}(\alpha,\beta,\sigma)$ with $(\alpha,\beta) \in A_P$ and $\sigma \in Q_G$, then

$$x_{[1]} \sim w_{c_1-s_2}(\alpha_1 - \frac{s_2}{2}, \sigma_{[1]})$$

$$x_{[12>}|x_{<2>} \sim N_{(c_1-s_2)\times s_2}(\sigma_{[12>}, 2 x_{<2>}^{-1} \otimes \sigma_{[1]})$$

$$x_{<2>} \sim w_{s_2}(\alpha_1 + \delta_2, \sigma_{<2>})$$

$$x_{[j>}x_{}^{-1}|x_{} \sim N_{(c_j-s_j)\times s_j}(\sigma_{[j>}\sigma_{}^{-1}, 2 x_{}^{-1} \otimes \sigma_{[j]})$$

$$x_{[j]} \sim w_{c_j-s_j}(\alpha_j - \frac{s_j}{2}, \sigma_{[j]}), j = 2, \dots, k$$

The distribution of $x_{[j>}x_{< j>}^{-1}$ depends upon $x_{< j>}$.

Outline

- The Gaussian model
- ullet The graphical Gaussian model \mathcal{N}_G
- The W_{Q_G} and W_{P_G} Wisharts
- The hyper Markov property
- ullet The expected values of W_{Q_G} and IW_{P_G}
- Decision theoretic estimation of Σ
- Another Wishart?

Expected values

For the estimation of the covariance Σ , using the IW_{P_G} as a prior, we will need

$$E(W_{P_G})^{-1}$$
 and $E(IW_{P_G})$.

These are explicit expressions.

No need for MCMC computations.

The inverse of $E(W_{P_G})$, i.e. $E(\Omega|S)^{-1}$

$$[E(\Omega|S)]$$

$$= \left[E(W_{P_G}(\alpha_j - \frac{n}{2}, \beta_j - \frac{n}{2}, \theta + \kappa(nS)) \right]$$

$$= -\frac{1}{2} \left[\sum_{j=1}^{k} (\alpha_j - \frac{n}{2})(\theta + \kappa(nS))_{C_j}^{-1})^0 - \sum_{j=2}^{k} (\beta_j - \frac{n}{2})(\theta + \kappa(nS))_{S_j}^{-1})^0 \right]$$

explicit analytic expression: no recourse to MCMC

Let
$$\xi = \theta + nS$$

$$E(X_{<2>}) = \frac{\xi_{<2>}}{-(\alpha_1 + \frac{c_1 - s_2}{2} + \gamma_2) - \frac{s_2 + 1}{2}} = \frac{\xi_{<2>}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

Let
$$\xi = \theta + nS$$

$$E(X_{<2>}) = \frac{\xi_{<2>}}{-(\alpha_1 + \frac{c_1 - s_2}{2} + \gamma_2) - \frac{s_2 + 1}{2}} = \frac{\xi_{<2>}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

$$E(X_{C_1 \setminus S_2, S_2}) = \frac{\xi_{C_1 \setminus S_2, S_2}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

Let
$$\xi = \theta + nS$$

$$E(X_{<2>}) = \frac{\xi_{<2>}}{-(\alpha_1 + \frac{c_1 - s_2}{2} + \gamma_2) - \frac{s_2 + 1}{2}} = \frac{\xi_{<2>}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

$$E(X_{C_1 \setminus S_2, S_2}) = \frac{\xi_{C_1 \setminus S_2, S_2}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

$$E(X_{C_1 \setminus S_2}) = \frac{\xi_{[1]}}{-(\alpha_1 + \frac{c_1 - s_2 + 1}{2})} \left(1 - \frac{s_2}{2(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}\right) + \frac{\xi_{C_1 \setminus S_2, S_2} \xi_{<2}^{-1} \xi_{S_2, C_1 \setminus S_2}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

Let
$$\xi = \theta + nS$$

$$E(X_{<2>}) = \frac{\xi_{<2>}}{-(\alpha_1 + \frac{c_1 - s_2}{2} + \gamma_2) - \frac{s_2 + 1}{2}} = \frac{\xi_{<2>}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

$$E(X_{C_1 \setminus S_2, S_2}) = \frac{\xi_{C_1 \setminus S_2, S_2}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

$$E(X_{C_1 \setminus S_2}) = \frac{\xi_{[1]}}{-(\alpha_1 + \frac{c_1 - s_2 + 1}{2})} \left(1 - \frac{s_2}{2(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}\right) + \frac{\xi_{C_1 \setminus S_2, S_2} \xi_{<2}^{-1} \xi_{S_2, C_1 \setminus S_2}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

$$E(X_{R_j,S_j}) = \xi_{[j>}\xi_{}^{-1}E(X_{}), \qquad j=2,\ldots,k$$

The $E(IW_{P_G})$ computed layer by layer

Let
$$\xi = \theta + nS$$

$$E(X_{<2>}) = \frac{\xi_{<2>}}{-(\alpha_1 + \frac{c_1 - s_2}{2} + \gamma_2) - \frac{s_2 + 1}{2}} = \frac{\xi_{<2>}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

$$E(X_{C_1 \setminus S_2, S_2}) = \frac{\xi_{C_1 \setminus S_2, S_2}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

$$E(X_{C_1 \setminus S_2}) = \frac{\xi_{[1]}}{-(\alpha_1 + \frac{c_1 - s_2 + 1}{2})} \left(1 - \frac{s_2}{2(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}\right) + \frac{\xi_{C_1 \setminus S_2, S_2} \xi_{<2}^{-1} \xi_{S_2, C_1 \setminus S_2}}{-(\alpha_1 + \frac{c_1 + 1}{2} + \gamma_2)}$$

$$E(X_{R_j,S_j}) = \xi_{[j>}\xi_{}^{-1}E(X_{}), \qquad j=2,\ldots,k$$

$$E(X_{R_{j}}) = \frac{\xi_{[j]}}{-(\alpha_{j} + \frac{c_{j} - s_{j} + 1}{2})} \left(1 + \frac{1}{2} \operatorname{tr}(\xi_{< j>}^{-1} E(X_{< j>}))\right) + \xi_{[j>} \xi_{< j>}^{-1} E(X_{< j>}) \xi_{< j>}^{-1} \xi_{< j}$$

explicit analytic expression: computed sequentially

Outline

- The Gaussian model
- ullet The graphical Gaussian model \mathcal{N}_G
- The W_{Q_G} and W_{P_G} Wisharts
- The hyper Markov property
- ullet The expected values of W_{Q_G} and IW_{P_G}
- Decision theoretic estimation of Σ
- Another Wishart?

The loss functions

Loss functions for Σ and Ω

$$L_1(\tilde{\Sigma}) = \operatorname{tr}(\tilde{\Sigma}\hat{\Sigma}^{-1}) - \log(|\tilde{\Sigma}\hat{\Sigma}^{-1}|) - r \qquad L_2(\tilde{\Sigma}) = \operatorname{tr}(\tilde{\Sigma} - \Sigma)^2$$

$$L_1(\tilde{\Omega}) = \operatorname{tr}(\tilde{\Omega}\Omega^{-1}) - \log(|\tilde{\Omega}\Omega^{-1}|) - r \qquad L_2(\tilde{\Omega}) = \operatorname{tr}(\tilde{\Omega} - \Omega)^2$$

Can we use them as is? It is important to note that

$$L_{1}(\tilde{\Sigma}) = \sum_{C \in \mathcal{C}} \operatorname{tr} \tilde{\Sigma}_{C} \Sigma_{C}^{-1} - \sum_{S \in \mathcal{S}} \operatorname{tr} \tilde{\Sigma}_{S} \Sigma_{S}^{-1} - \log \frac{\prod_{C \in \mathcal{C}} |\tilde{\Sigma}_{C}| \prod_{S \in \mathcal{S}} |\Sigma_{S}|}{\prod_{C \in \mathcal{C}} |\tilde{\Sigma}_{C}| \prod_{S \in \mathcal{C}} |\tilde{\Sigma}_{S}|}$$

$$L_{2}(\tilde{\Sigma}) = \Sigma_{(i,j) \in E} (\tilde{\Sigma}_{ij} - \Sigma_{ij})^{2}$$

Similarly $L_1(\tilde{\Omega}), L_2(\tilde{\Omega})$ only use the non zero entries of Ω

Our estimators

The Bayes estimators under L_1, L_2 and the IW_{P_G} on $\Sigma \in Q_G$ (equivalently the W_{P_G} on $\Omega \in P_G$)

Parameter of interest	L1	L2
\sum	$\tilde{\Sigma}_{L_1} = [E(\Omega S)]^{-1}$	$\tilde{\Sigma}_{L_2} = E(\Sigma S)$
Ω	$\tilde{\Omega}_{L_1} = [E(\Sigma S)]^{-1}$	$\tilde{\Omega}_{L_2} = E(\Omega S)$

The risk functions

Duality: The relationship between our Bayes estimators is as follows

$$\tilde{\Sigma}_{L_1} = \pi \left([\tilde{\Omega}_{L_2}]^{-1} \right)$$

$$\tilde{\Sigma}_{L_2} = \pi \left([\tilde{\Omega}_{L_1}]^{-1} \right)$$

The risk functions We assess the quality of our estimators using risk comparison for:

$$R_{L_i}(\tilde{\Sigma}_{L_i}) = E[L_i(\tilde{\Sigma}_{L_i}, \Sigma)], \quad i = 1, 2$$

$$R_{L_i}(\tilde{\Omega}_{L_i}) = E[(L_i(\tilde{\Omega}_{L_i}, \Omega))], \quad i = 1, 2$$

The prior, loss functions and estimators

We will use three different priors for Σ

- The $IW_{P_G}(\alpha, \beta, \theta)$ with k+1 free shape parameters
- The $HIW(\delta,\theta)$ prior with 1 free shape parameter: a special case of the IW_{P_G}
- The reference prior: an objective prior

and two loss functions L_1 and L_2 , and four estimators

$$E(\Omega|S)$$
 and its inverse $[E(\Omega|S)]^{-1}$

$$E(\Sigma|S)$$
 and its inverse $[E(\Sigma|S)]^{-1}$

and the MLE and the MLEg, that is the mle under the graphical model.

So, we have a total of eight estimators that we are going to study and compare.

Durham July 2008 – p. 38

Our approach: Bayesian graphical models

Bayesian graphical models combines the two approaches

- The graphical model is used as a tool for regularization
 - The prior give us flexibility in the estimator

Traditional choice of priors

- The conjugate prior which is the Wishart $W_r(\delta, \theta)$ with one shape parameter δ and the scale parameter θ
- Various priors which give more flexibility for the parameters, (inverse gammas on the diagonal and independent normals on the triangular elements of the Choleski) but then you

lose conjugacy- - - problematic for computations in high-dimensional problems.

"Two Cliques" study

 Ω

Simple Example with 2 Cliques

p = 100, and n = 75, 100, 500, 1000, C1=70 and C2=40

Scale Hyperparameter : $\theta = I$ or θ s.t. prior expected value of $\Sigma \in \Omega_{\infty}$ is I

of $\Sigma \in Q_G$ is I

Goal: Explore the flexibility of the IWpg

"Two Cliques" study - Risk comparis

	n = 75		n = 100		n = 500		n = 10	
	$R_1(\Omega)$	$R_1(\Sigma)$	$R_1(\Omega)$	$R_1(\Sigma)$	$R_1(\Omega)$	$R_1(\Sigma)$	$R_1(\Omega)$	
Reference	212.7	66.61	60.71	40.93	7.02	6.66	3.33	
HIW(3,I)	98.76	59.28	80.72	43.41	7.76	7.18	3.54	
$IW_{P_G}(1/2c_i, D)$	29.99	25.18	24.53	24.49	6.37	6.21	3.27	
$IW_{P_G}(1/2c_i,I)$	207.4	67.88	116.7	49.78	8.69	7.80	3.76	
$IW_{P_G}(1/4c_i, D)$	red22.18	red 17.96	red18.57	red15.87	red5.67	red5.43	red3.03	
$IW_{P_G}(1/4c_i,I)$	165.5	63.10	96.14	46.20	8.14	7.43	3.67	
$IW_{P_G}(1/10c_i, D)$	35.71	31.99	31.59	27.02	6.77	6.41	3.32	
$IW_{P_G}(1/10c_i, I)$	141.7	60.23	89.67	45.03	7.98	7.32	3.59	
MLEg	813.9	70.72	154.6	43.51	8.13	6.79	3.62	
MLE	_	_	7.3×10^8	102.5	14.45	10.85	6.00	
Risk Reduc. vs MLEg	red97%	red 75%	red88%	red64%	red30%	red20%	red16%	

"Two Cliques" study - Scree Plots

Top eigenvalues of Σ

Call-center data: Fitting a Graphical model

Dataset also analyzed by Huang et al. (2006) and Bickel and Levina(2006)

Records from a call-center of a major financial institution

Phone call from 7:00am till midnight during 2002 (on week days only)

Recording period of 10-minute intervals during 17 hours

Number of calls in each period N_{ij} , i=1,2,...239 and j=1,2,...,102 was recorded.

Standard transformation $x_{ij} = \left(N_{ij} + \frac{1}{4}\right)^{\frac{1}{2}}$ applied to make data closer to Normal

First 205 data points as training data and remaining 34 as test data

Call-center data: Fitting a Graphical model

Aim: Choose the "best" graphical model for the data, among models with banded inverse covariance matrices.

<u>Criterion 1</u>: K-fold cross-validation error (K = 10). We predict the second half of day given first half for the test data set after training our estimators on the training data set

$$x = \begin{pmatrix} x^{(1)} \\ x^{(2)} \end{pmatrix}, \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{21} & \Sigma_2 \end{pmatrix}$$

The best linear predictor for $\boldsymbol{x}_i^{(2)}$ from $\boldsymbol{x}_i^{(1)}$ is

$$x_i^{(2)} = \mu_2 + \Sigma_{21} \Sigma_1^{-1} (x_i^{(1)} - \mu_1)$$

Call-center data: Fitting a Graphical model..

Criteria 2: Bayesian model selection

Maximizing posterior probabilities for the model: we choose G_k with maximum posterior probability i.e.

$$P(G_k|y) \propto p(y|G_k)p(G_k)$$

where

$$P(y|G_k) = \int N(y|\Sigma_k) IW_{P_G}(\alpha, \beta, \theta; \Sigma_k) d\Sigma_k$$

...with some abuse of notation.

In fact $P(y,G_k)$ is equal to the ratio of normalizing constants for the prior and posterior distributions and these are known explicitly for the IW_{P_G} .

Differential banding

Differential banding illustration

Prediction error

Forecast error for selected banded and "differentially banded" models

Outline

- The Gaussian model
- ullet The graphical Gaussian model \mathcal{N}_G
- The W_{Q_G} and W_{P_G} Wisharts
- The hyper Markov property
- ullet The expected values of W_{Q_G} and IW_{P_G}
- Decision theoretic estimation of Σ
- Another Wishart?

The MLE for missing data

Question: Is the W_{Q_G} the distribution of the MLE of Σ ?

The notation

$$\mathbf{Z}^{t} = (Z_{1}^{t}, Z_{2}^{t}, Z_{3}^{t}, Z_{4}^{t})$$
$$\mathbf{Z_{i}}^{t} = (Z_{1}^{t}, Z_{i}^{t}), i = 2, 3, 4$$

 Z_i is a $p_i \times 1$ vector

The data

$$\mathbf{Z}_1, \dots, \mathbf{Z}_n, \qquad (Z_1)_1, \dots, (Z_1)_{n_1}, \qquad \mathbf{Z}_{\mathbf{i}1}, \dots, \mathbf{Z}_{\mathbf{i}n_i}, \ i = 2, 3, 4$$

$$V_0 = \sum_{j=1}^{n} \mathbf{Z}_j \mathbf{Z}_j^t, \quad V_1 = \sum_{j=1}^{n_1} (Z_1)_j (Z_1)_j^t, \quad V_i = \sum_{j=1}^{n_i} \mathbf{Z}_{ij} \mathbf{Z}_{ij}^t, \quad i = 2, 3, 4$$

The MLE for missing data: notation

$$v_0 = (v_{0lm}, l, m = 1, ...k), v_i = \begin{pmatrix} v_{i11} & v_{i1i} \\ v_{ii1} & v_{iii} \end{pmatrix}, i = 1, 2, 3, 4$$

$$v_{(0i)} = \begin{pmatrix} v_{011} & v_{01i} \\ v_{0i1} & v_{0ii} \end{pmatrix}, w_i = \begin{pmatrix} v_{011} + v_{i11} & v_{01i} + v_{i1i} \\ v_{0i1} + v_{ii1} & v_{0ii} + v_{iii} \end{pmatrix}, i = 2, 3, 4$$

$$\rho_{i1} = (v_{0i1} + v_{i21})(v_{011} + v_{i11})^{-1} = \rho_{1i}^{t}$$

$$w_{i\cdot 1} = v_{0ii} + v_{i22} - \rho_{i1}(v_{011} + v_{i11})\rho_{1i}$$

$$s_{1} = v_{011} + v_{1} + \sum_{i=2}^{k} v_{i11}.$$

The MLE: Sun and Sun 07

Based on the incomplete data as given above, the maximum likelihood estimate $\hat{\Sigma}$ of $\Sigma \in Q_G$ is given by the elements of its Choleski decomposition as follows

$$\hat{\Sigma}_{11} = \frac{s_1}{m_1}
\hat{\Sigma}_{i1} \hat{\Sigma}_{11}^{-1} = \hat{\Sigma}_{i1} \hat{\Sigma}_{11}^{-1} = \rho_{i1}, i = 2, ..., k
\hat{\Sigma}_{ii\cdot 1} = \frac{w_{i\cdot 1}}{m_i}, i = 2, ..., k$$

We want the joint distribution of $(s_1, \rho_i, w_{i\cdot 1}, i = 2, 3, 4)$

The W_{Q_G} for our graph

$$W_{Q_{G}}^{*}(\alpha, \beta, \sigma; ds_{1}, d\rho_{i1}, w_{i\cdot 1}, i =, 2, 3, 4)$$

$$\times |s_{1}|^{\frac{n+n_{1}+\sum_{i=2}^{k}n_{i}}{2}-\frac{p_{1}+1}{2}} \exp{-\frac{1}{2}\langle s_{1}, \Sigma_{11}^{-1}\rangle}$$

$$\times \prod_{i=2}^{4} |s_{1}|^{\frac{p_{i}}{2}} \exp{-\frac{1}{2}\langle (\rho_{i1}-\Sigma_{i1}\Sigma_{11}^{-1}), \Sigma_{i\cdot 1}^{-1}(\rho_{i1}-\Sigma_{i1}\Sigma_{11}^{-1})^{t}s_{1}\rangle}$$

$$\times \prod_{i=2}^{k} |w_{i\cdot 1}|^{\frac{n+n_{i}-p_{i}}{2}-\frac{p_{i}+1}{2}} \exp{-\frac{1}{2}\langle w_{i\cdot 1}, \Sigma_{i\cdot 1}^{-1}\rangle}$$

$$\times \sum_{i=2}^{k} |w_{i\cdot 1}|^{\frac{n+n_{i}-p_{i}}{2}-\frac{p_{i}+1}{2}} \exp{-\frac{1}{2}\langle w_{i\cdot 1}, \Sigma_{i\cdot 1}^{-1}\rangle}$$

The MLE:the ingredients

$$w_0 = \pi(v_0) = \begin{pmatrix} v_{011} & v_{012} & v_{013} & v_{014} \\ v_{021} & v_{022} & * & * \\ v_{031} & * & v_{033} & * \\ v_{041} & * & * & v_{044} \end{pmatrix} \sim W_{Q_G}(\frac{n}{2}, \frac{n}{2}, \hat{\Sigma}^{-1})$$

$$v_1 \sim W_{p_1}(\frac{n_1}{2}, \Sigma_{11}), \quad w_i \sim W_{p_1+p_i}(\frac{n+n_i}{2}, \Sigma_{(1i)}), \ i = 2, 3, 4$$

Recall $v_0, v_1, v_i, i = 2, 3, 4$ are independent BUT

the w_i 's are NOT independent. They have v_{011} in common.

A few Jacobians later

$$f(s_{1}, \rho_{i}, w_{i\cdot 1}, i = 2, \dots, k)$$

$$\propto |s_{1}|^{\frac{n+n_{1}+\sum_{i=2}^{k}(n_{i}+p_{i})}{2} - \frac{p_{1}+1}{2}} \exp{-\frac{1}{2}\langle s_{1}, \sum_{i=1}^{-1} \rangle}$$

$$\times \int_{\mathcal{D}} |l_{0}|^{\frac{n}{2} - \frac{p_{1}+1}{2}} |I_{p_{1}} - l_{0} - \sum_{i=2}^{k} l_{i}|^{\frac{n_{1}}{2} - \frac{p_{1}+1}{2}} \prod_{i=2}^{k} |l_{i}|^{\frac{n_{i}}{2} - \frac{p_{1}+1}{2}}$$

$$\times \prod_{i=2}^{k} |l_{0} + l_{i}|^{\frac{p_{i}}{2}} \exp{-\frac{1}{2}(\rho_{i1} - \xi_{i1}), \xi_{i\cdot 1}^{-1}(\rho_{i1} - \xi_{i1})^{t} \sigma(l_{0} + l_{i}) \sigma^{t}}$$

$$\times dl_{0} \prod_{i=2}^{k} dl_{i} \times \prod_{i=2}^{k} |w_{i\cdot 1}|^{\frac{n+n_{i}-p_{i}}{2} - \frac{p_{i}+1}{2}} \exp{-\frac{1}{2}\langle w_{i\cdot 1}, \sum_{i\cdot 1}^{-1} \rangle}$$

where $s_1 = \sigma \sigma^t$, σ is a lower triangular matrix.

Another Wishart?

Nearly the W_{Q_G} but not the $W_{Q_G}!!$