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Moment constraints
Entropy functional
The minimization problem

(X ,X , µ) ... a σ-finite measure space with µ nonzero

ϕ = (ϕ0, . . . , ϕd) : X → R1+d ...moment mapping

(a (1 + d)-tuple of real-valued measurable functions on X )

assuming ϕ0 ≡ 1

The moment constraints

For a = (a0, . . . , ad) ∈ R1+d

La =
{
g > 0 measurable :

∫
X

ϕ g dµ = a
}
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Moment constraints
Entropy functional
The minimization problem

γ ... a strictly convex and differentiable function on (0,+∞)

extended to γ(0) = limt↓0 γ(t) and γ(t) = +∞ for t < 0

The entropy functional based on γ

For a measurable function g > 0 on X

J(g) =
∫
X

γ(g) dµ

if the integral exists, finite of not, and J(g) = +∞ otherwise.

Shannon functional: γ(t) = t ln t

Burg functional: γ(t) = 1− ln t
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PROBLEM
For given a ∈ R1+d , minimize J(g) subject to the
moment constraints g ∈ La.

The value function

H(a) = infg∈La J(g) , a ∈ R1+d ,

ranges in [−∞,+∞] and is convex.



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Moment constraints
Entropy functional
The minimization problem

PROBLEM
For given a ∈ R1+d , minimize J(g) subject to the
moment constraints g ∈ La.

The value function

H(a) = infg∈La J(g) , a ∈ R1+d ,

ranges in [−∞,+∞] and is convex.



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Moment constraints
Entropy functional
The minimization problem

PROBLEM
For given a ∈ R1+d , minimize J(g) subject to the
moment constraints g ∈ La.

The value function

H(a) = infg∈La J(g) , a ∈ R1+d ,

ranges in [−∞,+∞] and is convex.



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Shannon differential entropy
Minimization of the relative entropy
The value function identically +∞

X = R, µ Lebesgue measure and ϕ = (1, x , x2)

For a = (a0, a1, a2)

La =
{
g > 0:

∫
R g(x) dx = a0∫
R x g(x) dx = a1∫
R x2 g(x) dx = a2

}
γ(t) = t ln t, t > 0

J(g) =
∫

R g(x) ln g(x) dx = − the differential Shannon entropy

The function H admits an explicit formula, e.g. for a = (1, 0, 1)

H(a) = minLa J = −1
2 ln(2π)− 1

2 = J
(

1√
2π

e−x2/2
)

the minimizer is unique,
Gaussian with the given moments
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Shannon differential entropy
Minimization of the relative entropy
The value function identically +∞

(X ,X , µ) probability space, ϕ arbitrary

Shannon functional

For a = (1, a1, . . . , a2) if g ∈ La

any g ∈ La is the µ-density of a probability measure P

and
∫
X

g ln g dµ = D(P||µ).

Thus, infLaJ is the minimization of the divergence D(P||µ)
subject to

∫
X

ϕ dP = a.

(Cs&M (2003) IEEE Trans. IT)
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Shannon differential entropy
Minimization of the relative entropy
The value function identically +∞

X = R, µ =
∑

n>1
1
n2 δn and ϕ(x) = (1, x)

γ(t) = e 2/t , t > 0

J(g) =
∫
X

γ(g) dµ =
∑

n>1 e 2/g(n) 1

n2
, g > 0 .

If finite then g(n) > 1
ln n eventually.

Therefore,
∫
X ϕ1 g dµ =

∑
n>1 n g(n) 1

n2 diverges.

This implies that g is not in the union of the families La,

thus H ≡ +∞.
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Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

H(a) = infg∈La J(g), a ∈ R1+d ... the primal problem

H∗(ϑ) = supa∈R1+d

[
〈ϑ, a〉 − H(a)

]
, ϑ ∈ R1+d ... the conjugate of H

γ∗(r) = supt>0

[
rt − γ(t)

]
, r ∈ R ... the conjugate of γ

Proposition (H∗ is expressible through γ∗)

If H 6≡ +∞ then

H∗
γ(ϑ) =

∫
X

γ∗(〈ϑ, ϕ〉) dµ , ϑ ∈ R1+d .

(a full proof using ideas of Rockafellar 68)

H∗∗(a) = supϑ∈R1+d

[
〈ϑ, a〉 − H∗(ϑ)

]
, a ∈ R1+d ... the dual problem

H∗∗ 6 H, with the equality at the points of lower semicontinuity
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Shannon functional: γ(t) = t ln t

γ∗(r) = supt>0 [rt − t ln t] = er−1

H∗∗(a) = supϑ∈R1+d

[
〈ϑ, a〉 −

∫
X

exp(〈ϑ, ϕ〉 − 1) dµ
]

where the bracket rewrites to

ϑ0a0 + Σd
j=1 ϑjaj − eϑ0−1

∫
X

exp
(
Σd

j=1 ϑjϕj

)
dµ .

Maximizing over ϑ0,

H∗∗(a) = a0 ln a0+sup ϑ1,...,ϑd

[
Σd

j=1ϑjaj−
∫
X

exp
(
Σd

j=1ϑjϕj

)
dµ

]
.

... maximization of the normalized log-likelihood function
in the exponential family based on µ and (ϕ1, . . . , ϕd).

(Cs&M (2008) Probab. Th. Rel. F.)
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Example: Shannon differential entropy (cont.)
Example: Burg entropy

Theorem

Assume a ∈ ri(dom(Hγ)) and Hγ(a) > −∞.

Then, Hγ(a) = H∗∗
γ (a),

the dual value is attained by some ϑ ∈ R1+d ,
the function ga = γ∗′(〈ϑ, ϕ〉) does not depend

on the choice of a maximizer ϑ,
and for all g ∈ La

J(g) = H(a) + B(g , ga) +
∫
X

g |γ′(0)− 〈ϑ, ϕ〉|+ dµ.

(B ... Bregman distance based on γ)
The primal problem has a minimizer if and only if ga ∈ La.∫
X vanishes when γ′(0) = −∞ (γ is ess. smooth, or steep).

If gn ∈ La and J(gn) → H(a) then B(gn, ga) → 0.
ga .... generalized primal solution
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Example: Burg entropy

H(a) = infg∈La

∫
Rg(x) ln g(x) dx , ... the primal problem

where La, a ∈ R3, comes from the moments 1, x , x2

the dual problem

H∗∗(a) = supϑ∈R3

[
ϑ0a0+ϑ1a1+ϑ2a2−

∫
X

exp(ϑ0+ϑ1x+ϑ2x
2−1)dµ

]
explicitly computable, finite on an open set in R3

H = H∗∗ with the same open effective domain

For a in the open domain

ga has the form exp(ϑ0 + ϑ1x + ϑ2x
2 − 1), thus is proportional to

a Gaussian density

adjusting the moments, ga is the unique primal solution
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Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]
H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]
H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]
H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]
H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]
H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]

H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]
H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]
H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]
H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]
H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

X = [0, 1], dµ = 2x dx and ϕ = (1, x)

Burg functional: γ(t) = 1− ln t, t > 0

γ∗(r) = − ln(−r), r < 0

γ∗′(r) = −1/r , r < 0

the primal problem H(a) = infg∈La

∫
1

0
[1− ln g(x)] 2x dx

the dual problem

H∗∗(a) = supϑ∈R2

[
ϑ0a0 + ϑ1a1 +

∫
1

0
ln(−ϑ0 − ϑ1x) 2x dx

]
H = H∗∗, the domain open a0 > 0, a1 < a0

unique maximizer ϑ = (0,−1/a1) when a0 > 2a1,

generalized primal solution ga(x) = a1/x

if a0 = 1, a1 < 1/2 it is not a density:
∫

1

0

a1
x 2x dx = 2a1 < a0

NO primal solution! (a variation on Borwein & Lewis (1993))



Formulation of the problem
Special instance and examples

Convex conjugation
Main results

Effective domain
Constraint qualification avoided
The dual problem

ccϕ(µ) ⊆ R1+d ... convex core of the ϕ-image of µ, intersection
of all convex Borel sets B ⊆ R1+d s.t. µ(ϕ−1(R1+d \B)) = 0.

cnϕ(µ) = {ta : t > 0 , a ∈ ccϕ(µ)} ... ϕ-cone of µ

Lemma: The set La is nonempty if and only if a ∈ cnϕ(µ).

Corollary: H = +∞ outside cnϕ(µ).

Theorem

If µ is finite and γ(0) = +∞ then dom(H) equals ri(cnϕ(µ)) or ∅.
If µ is finite and γ(0) finite then dom(H) = cnϕ(µ).

If µ is infinite and γ(0) = 0 then dom(H) = cnϕ(µ).

If µ is infinite and γ(0) > 0 then dom(H) = ∅.
If µ is infinite and γ(0) < 0 then H = −∞ on dom(H) = cnϕ(µ).
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Theorem

Assume a ∈ R1+d with Hγ(a) finite.

Denote by F the face of the convex cone cnϕ(µ) with a ∈ ri(F )
Then, the adjusted dual problem

H̃(a) = sup ϑ∈R1+d

[
〈ϑ, a〉 −

∫
ϕ−1(cl(F ))

γ∗(〈ϑ, ϕ〉) dµ
]
.

has a maximizer ϑ ∈ R1+d ,
Hγ(a) = H̃(a) + γ(0) · µ(X \ ϕ−1(cl(F ))),
the function ga = γ∗′(〈ϑ, ϕ〉)11ϕ−1(F ) does not depend on its choice
and for all g ∈ La

J(g) = H(a) + B(g , ga) +
∫
X

g |γ′(0)− 〈ϑ, ϕ〉|+ dµ.
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Assume a ∈ R1+d with Hγ(a) finite.
Denote by F the face of the convex cone cnϕ(µ) with a ∈ ri(F )
Then, the adjusted dual problem

H̃(a) = sup ϑ∈R1+d
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Theorem

Assume H > −∞ and a ∈ dom(H∗∗).

Then, there exists a unique nonnegative function ha such that

H∗∗(a)−
[
〈ϑ, a〉 −

∫
X

γ∗(〈ϑ, ϕ〉) dµ
]

>

B(ha, γ
∗′(〈ϑ, ϕ〉)) +

∫
X

ha |γ′(0)− 〈ϑ, ϕ〉|+ dµ

for ϑ ∈ dom(H∗
γ) satisfying 〈ϑ, ϕ〉 < γ′(+∞), µ-a.e.

If Hγ(a) = H∗∗(a) then ha = ga.

For γ(t) = t ln t, this is MLE in EF; an explicit construction of ha

is available in Cs&M (2008) Probab. Th. Rel. F.

The talk is based on a contribution to Proc. IEEE ISIT, Toronto,
being published this week.
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