Formulation of the problem Special instance and examples Convex conjugation Main results

On minimization of entropy functionals under moment constraints

I. Csiszár (Budapest) F. Matúš (Prague)

Lecture at
LMS Durham Symposium
Mathematical Aspects of Graphical Models
June 30 – July 10, 2008

Moment constraints Entropy functional The minimization problem

 (X, \mathcal{X}, μ) ... a σ -finite measure space with μ nonzero

$$(X, \mathcal{X}, \mu)$$
 ... a σ -finite measure space with μ nonzero $\varphi = (\varphi_0, \dots, \varphi_d) \colon X \to \mathbb{R}^{1+d}$...moment mapping

$$(X,\mathcal{X},\mu)$$
 ... a σ -finite measure space with μ nonzero
$$\varphi=(\varphi_0,\ldots,\varphi_d)\colon X\to\mathbb{R}^{1+d} \text{ ...moment mapping}$$
 (a $(1+d)$ -tuple of real-valued measurable functions on X)

$$(X,\mathcal{X},\mu)$$
 ... a σ -finite measure space with μ nonzero
$$\varphi = (\varphi_0,\dots,\varphi_d)\colon X \to \mathbb{R}^{1+d} \text{ ...moment mapping}$$
 (a $(1+d)$ -tuple of real-valued measurable functions on X) assuming $\varphi_0 \equiv 1$

$$(X,\mathcal{X},\mu)$$
 ... a σ -finite measure space with μ nonzero
$$\varphi = (\varphi_0,\dots,\varphi_d)\colon X \to \mathbb{R}^{1+d} \text{ ...moment mapping}$$
 (a $(1+d)$ -tuple of real-valued measurable functions on X) assuming $\varphi_0 \equiv 1$

The moment constraints

For
$$a=(a_0,\ldots,a_d)\in\mathbb{R}^{1+d}$$

$$\mathcal{L}_{a}=\left\{ g\geqslant0\text{ measurable : }\int_{X}\varphi\,g\;d\mu=a
ight\}$$

Moment constraints Entropy functional The minimization problem

 γ ... a strictly convex and differentiable function on $(0, +\infty)$

 γ ... a strictly convex and differentiable function on $(0, +\infty)$ extended to $\gamma(0) = \lim_{t \downarrow 0} \gamma(t)$ and $\gamma(t) = +\infty$ for t < 0

 γ ... a strictly convex and differentiable function on $(0,+\infty)$ extended to $\gamma(0)=\lim_{t\downarrow 0}\,\gamma(t)$ and $\gamma(t)=+\infty$ for t<0

The entropy functional based on γ

For a measurable function $g \geqslant 0$ on X

$$J(g) = \int_X \gamma(g) \, d\mu$$

if the integral exists, finite of not, and $J(g) = +\infty$ otherwise.

 γ ... a strictly convex and differentiable function on $(0,+\infty)$ extended to $\gamma(0)=\lim_{t\downarrow 0}\,\gamma(t)$ and $\gamma(t)=+\infty$ for t<0

The entropy functional based on γ

For a measurable function $g \geqslant 0$ on X

$$J(g) = \int_X \gamma(g) \, d\mu$$

if the integral exists, finite of not, and $J(g) = +\infty$ otherwise.

Shannon functional: $\gamma(t) = t \ln t$

 γ ... a strictly convex and differentiable function on $(0,+\infty)$ extended to $\gamma(0)=\lim_{t\downarrow 0}\,\gamma(t)$ and $\gamma(t)=+\infty$ for t<0

The entropy functional based on γ

For a measurable function $g \geqslant 0$ on X

$$J(g) = \int_X \gamma(g) \, d\mu$$

if the integral exists, finite of not, and $J(g) = +\infty$ otherwise.

Shannon functional: $\gamma(t) = t \ln t$

Burg functional: $\gamma(t) = 1 - \ln t$

Moment constraints Entropy functional The minimization problem

PROBLEM

For given $a \in \mathbb{R}^{1+d}$, minimize J(g) subject to the moment constraints $g \in \mathcal{L}_a$.

PROBLEM

For given $a \in \mathbb{R}^{1+d}$, minimize J(g) subject to the moment constraints $g \in \mathcal{L}_a$.

The value function

$$H(a) = \inf_{g \in \mathcal{L}_a} J(g), \qquad a \in \mathbb{R}^{1+d},$$

PROBLEM

For given $a \in \mathbb{R}^{1+d}$, minimize J(g) subject to the moment constraints $g \in \mathcal{L}_a$.

The value function

$$H(a) = \inf_{g \in \mathcal{L}_a} J(g), \qquad a \in \mathbb{R}^{1+d},$$

ranges in $[-\infty, +\infty]$ and is convex.

Shannon differential entropy Minimization of the relative entropy. The value function identically $+\infty$

$$X = \mathbb{R}$$
, μ Lebesgue measure and $\varphi = (1, x, x^2)$

$$X=\mathbb{R},~\mu$$
 Lebesgue measure and $arphi=(1,x,x^2)$ For $a=(a_0,a_1,a_2)$

$$\mathcal{L}_{a} = \left\{ g \geqslant 0 \colon \int_{\mathbb{R}} g(x) \, dx = a_{0} \right.$$
$$\int_{\mathbb{R}} x \, g(x) \, dx = a_{1}$$
$$\int_{\mathbb{R}} x^{2} \, g(x) \, dx = a_{2} \right\}$$

$$X=\mathbb{R}$$
, μ Lebesgue measure and $arphi=(1,x,x^2)$ For $a=(a_0,a_1,a_2)$

$$\mathcal{L}_{a} = \left\{ g \geqslant 0 \colon \int_{\mathbb{R}} g(x) \, dx = a_{0} \right.$$
$$\int_{\mathbb{R}} x \, g(x) \, dx = a_{1}$$
$$\int_{\mathbb{R}} x^{2} \, g(x) \, dx = a_{2} \right\}$$

$$\gamma(t)=t\ln t, \quad t>0$$

$$X=\mathbb{R}$$
, μ Lebesgue measure and $arphi=(1,x,x^2)$ For $a=(a_0,a_1,a_2)$

$$\mathcal{L}_{a} = \left\{ g \geqslant 0 \colon \int_{\mathbb{R}} g(x) \, dx = a_{0} \right.$$
$$\int_{\mathbb{R}} x \, g(x) \, dx = a_{1}$$
$$\int_{\mathbb{R}} x^{2} \, g(x) \, dx = a_{2} \right\}$$

$$\gamma(t)=t\ln t, \quad t>0$$
 $J(g)=\int_{\mathbb{R}}g(x)\ln g(x)\ dx=-$ the differential Shannon entropy

$$X=\mathbb{R},~\mu$$
 Lebesgue measure and $\varphi=(1,x,x^2)$ For $a=(a_0,a_1,a_2)$

$$\mathcal{L}_{a} = \left\{ g \geqslant 0 \colon \int_{\mathbb{R}} g(x) \, dx = a_{0} \right.$$
$$\int_{\mathbb{R}} x \, g(x) \, dx = a_{1}$$
$$\int_{\mathbb{R}} x^{2} \, g(x) \, dx = a_{2} \right\}$$

$$\gamma(t)=t\ln t, \quad t>0$$

$$J(g)=\int_{\mathbb{R}}g(x)\ln g(x)\,dx=- \text{ the differential Shannon entropy}$$
 The function H admits an explicit formula, e.g. for $a=(1,0,1)$

$$H(a) = \min_{\mathcal{L}_a} J = -\frac{1}{2} \ln(2\pi) - \frac{1}{2} = J(\frac{1}{\sqrt{2\pi}} e^{-x^2/2})$$

$$X=\mathbb{R},~\mu$$
 Lebesgue measure and $\varphi=(1,x,x^2)$ For $a=(a_0,a_1,a_2)$

$$\mathcal{L}_{a} = \left\{ g \geqslant 0 \colon \int_{\mathbb{R}} g(x) \, dx = a_{0} \right.$$
$$\int_{\mathbb{R}} x \, g(x) \, dx = a_{1}$$
$$\int_{\mathbb{R}} x^{2} \, g(x) \, dx = a_{2} \right\}$$

$$\gamma(t)=t\ln t, \quad t>0$$

$$J(g)=\int_{\mathbb{R}}g(x)\ln g(x)\,dx=- \text{ the differential Shannon entropy}$$
 The function H admits an explicit formula, e.g. for $a=(1,0,1)$

$$H(a) = \min_{\mathcal{L}_a} J = -\frac{1}{2} \ln(2\pi) - \frac{1}{2} = J(\frac{1}{\sqrt{2\pi}} e^{-x^2/2})$$

the minimizer is unique, Gaussian with the given moments

 (X, \mathcal{X}, μ) probability space, φ arbitrary

 (X, \mathcal{X}, μ) probability space, φ arbitrary Shannon functional

 (X,\mathcal{X},μ) probability space, arphi arbitrary Shannon functional For $a=(1,a_1,\ldots,a_2)$ if $g\in\mathcal{L}_a$

 (X,\mathcal{X},μ) probability space, φ arbitrary Shannon functional For $a=(1,a_1,\ldots,a_2)$ if $g\in\mathcal{L}_a$ any $g\in\mathcal{L}_a$ is the μ -density of a probability measure P

 (X,\mathcal{X},μ) probability space, φ arbitrary Shannon functional For $a=(1,a_1,\ldots,a_2)$ if $g\in\mathcal{L}_a$ any $g\in\mathcal{L}_a$ is the μ -density of a probability measure P and $\int_X g \ln g \ d\mu = D(P\|\mu)$.

 (X,\mathcal{X},μ) probability space, φ arbitrary Shannon functional For $a=(1,a_1,\ldots,a_2)$ if $g\in\mathcal{L}_a$ any $g\in\mathcal{L}_a$ is the μ -density of a probability measure P and $\int_X g \ln g \ d\mu = D(P\|\mu)$. Thus, $\inf_{\mathcal{L}_a} J$ is the minimization of the divergence $D(P\|\mu)$ subject to $\int_X \varphi \ dP = a$.

```
(X,\mathcal{X},\mu) probability space, \varphi arbitrary Shannon functional For a=(1,a_1,\ldots,a_2) if g\in\mathcal{L}_a any g\in\mathcal{L}_a is the \mu-density of a probability measure P and \int_X g \ln g \ d\mu = D(P\|\mu). Thus, \inf_{\mathcal{L}_a} J is the minimization of the divergence D(P\|\mu) subject to \int_X \varphi \ dP = a. (Cs&M (2003) IEEE Trans. IT)
```

$$X=\mathbb{R}$$
, $\mu=\sum_{n\geqslant 1}\,rac{1}{n^2}\,\delta_n$ and $arphi(x)=(1,x)$

$$X=\mathbb{R},\, \mu=\sum_{n\geqslant 1}\,rac{1}{n^2}\,\delta_n$$
 and $arphi(x)=(1,x)$ $\gamma(t)=e^{2/t},\,\,t>0$

$$X=\mathbb{R},~\mu=\sum_{n\geqslant 1}~rac{1}{n^2}\,\delta_n$$
 and $arphi(x)=(1,x)$ $\gamma(t)=e^{2/t},~t>0$

$$J(g) = \int_X \gamma(g) d\mu = \sum_{n \geqslant 1} e^{2/g(n)} \frac{1}{n^2}, \quad g \geqslant 0.$$

$$X=\mathbb{R},~\mu=\sum_{n\geqslant 1}~rac{1}{n^2}\,\delta_n$$
 and $arphi(x)=(1,x)$ $\gamma(t)=e^{2/t},~t>0$

$$J(g) = \int_X \gamma(g) d\mu = \sum_{n \geqslant 1} e^{2/g(n)} \frac{1}{n^2}, \quad g \geqslant 0.$$

$$X=\mathbb{R},\, \mu=\sum_{n\geqslant 1}\,rac{1}{n^2}\,\delta_n$$
 and $arphi(x)=(1,x)$ $\gamma(t)=e^{2/t},\,\,t>0$

$$J(g) = \int_X \gamma(g) d\mu = \sum_{n \geqslant 1} e^{2/g(n)} \frac{1}{n^2}, \quad g \geqslant 0.$$

Therefore, $\int_X \varphi_1 g d\mu = \sum_{n\geqslant 1} n g(n) \frac{1}{n^2}$ diverges.

$$X=\mathbb{R},~\mu=\sum_{n\geqslant 1}~rac{1}{n^2}\,\delta_n$$
 and $arphi(x)=(1,x)$ $\gamma(t)=e^{2/t},~t>0$

$$J(g) = \int_X \gamma(g) d\mu = \sum_{n \geqslant 1} e^{2/g(n)} \frac{1}{n^2}, \quad g \geqslant 0.$$

Therefore, $\int_X \varphi_1 g d\mu = \sum_{n\geqslant 1} n g(n) \frac{1}{n^2}$ diverges.

This implies that g is not in the union of the families \mathcal{L}_{a} ,

$$X=\mathbb{R}$$
, $\mu=\sum_{n\geqslant 1} rac{1}{n^2}\,\delta_n$ and $arphi(x)=(1,x)$ $\gamma(t)=e^{2/t}$, $t>0$

$$J(g) = \int_X \gamma(g) d\mu = \sum_{n \geqslant 1} e^{2/g(n)} \frac{1}{n^2}, \quad g \geqslant 0.$$

Therefore, $\int_X \varphi_1 g d\mu = \sum_{n\geqslant 1} n g(n) \frac{1}{n^2}$ diverges.

This implies that g is not in the union of the families \mathcal{L}_a ,

thus $H \equiv +\infty$.

Formulation of the problem Special instance and examples Convex conjugation Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$H(a) = \inf_{g \in \mathcal{L}_a} J(g), \ a \in \mathbb{R}^{1+d} \dots$$
 the primal problem

Formulation of the problem Special instance and examples Convex conjugation Main results Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$H(a) = \inf_{g \in \mathcal{L}_a} J(g), \ a \in \mathbb{R}^{1+d} \dots$$
 the primal problem $H^*(\vartheta) = \sup_{a \in \mathbb{R}^{1+d}} \left[\langle \vartheta, a \rangle - H(a) \right], \ \vartheta \in \mathbb{R}^{1+d} \dots$ the conjugate of H

Fenchel duality
MLE in exponential family
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$H(a) = \inf_{g \in \mathcal{L}_a} J(g), \ a \in \mathbb{R}^{1+d} \dots$$
 the primal problem $H^*(\vartheta) = \sup_{a \in \mathbb{R}^{1+d}} \left[\langle \vartheta, a \rangle - H(a) \right], \ \vartheta \in \mathbb{R}^{1+d} \dots$ the conjugate of $H(a) = \sup_{t > 0} \left[rt - \gamma(t) \right], \ r \in \mathbb{R} \dots$ the conjugate of γ

$$\begin{split} &H(a)=\inf_{g\in\mathcal{L}_a}J(g),\ \ a\in\mathbb{R}^{1+d}\ \dots\ \text{the primal problem}\\ &H^*(\vartheta)=\sup_{a\in\mathbb{R}^{1+d}}\left[\langle\vartheta,a\rangle-H(a)\right],\ \ \vartheta\in\mathbb{R}^{1+d}\ \dots\ \text{the conjugate of}\ H\\ &\gamma^*(r)=\sup_{t>0}\left[rt-\gamma(t)\right],\ \ r\in\mathbb{R}\ \dots\ \text{the conjugate of}\ \gamma \end{split}$$

Proposition (H^* is expressible through γ^*)

If $H \not\equiv +\infty$ then

$$H_{\gamma}^*(\vartheta) = \int_X \gamma^*(\langle \vartheta, \varphi \rangle) d\mu, \qquad \vartheta \in \mathbb{R}^{1+d}$$

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$\begin{split} &H(a)=\inf_{g\in\mathcal{L}_a}J(g),\ \ a\in\mathbb{R}^{1+d}\ \dots\ \text{the primal problem}\\ &H^*(\vartheta)=\sup_{a\in\mathbb{R}^{1+d}}\left[\langle\vartheta,a\rangle-H(a)\right],\ \ \vartheta\in\mathbb{R}^{1+d}\ \dots\ \text{the conjugate of}\ H\\ &\gamma^*(r)=\sup_{t>0}\left[rt-\gamma(t)\right],\ \ r\in\mathbb{R}\ \dots\ \text{the conjugate of}\ \gamma \end{split}$$

Proposition (H^* is expressible through γ^*)

If $H \not\equiv +\infty$ then

$$H_{\gamma}^*(\vartheta) = \int_{\mathbf{X}} \gamma^*(\langle \vartheta, \varphi \rangle) d\mu, \qquad \vartheta \in \mathbb{R}^{1+d}.$$

(a full proof using ideas of Rockafellar 68)

$$\begin{split} &H(a)=\inf_{g\in\mathcal{L}_a}J(g),\ \ a\in\mathbb{R}^{1+d}\ \dots\ \text{the primal problem}\\ &H^*(\vartheta)=\sup_{a\in\mathbb{R}^{1+d}}\left[\langle\vartheta,a\rangle-H(a)\right],\ \ \vartheta\in\mathbb{R}^{1+d}\ \dots\ \text{the conjugate of}\ H\\ &\gamma^*(r)=\sup_{t>0}\left[rt-\gamma(t)\right],\ \ r\in\mathbb{R}\ \dots\ \text{the conjugate of}\ \gamma \end{split}$$

Proposition (H^* is expressible through γ^*)

If $H \not\equiv +\infty$ then

$$H_{\gamma}^*(\vartheta) = \int_{\mathbf{X}} \gamma^*(\langle \vartheta, \varphi \rangle) d\mu, \qquad \vartheta \in \mathbb{R}^{1+d}.$$

(a full proof using ideas of Rockafellar 68)

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^{1+d}} [\langle \vartheta, a \rangle - H^*(\vartheta)], \quad a \in \mathbb{R}^{1+d} \dots \text{ the dual problem}$$

$$\begin{split} &H(a)=\inf_{g\in\mathcal{L}_a}J(g),\ \ a\in\mathbb{R}^{1+d}\ \dots\ \text{the primal problem}\\ &H^*(\vartheta)=\sup_{a\in\mathbb{R}^{1+d}}\left[\langle\vartheta,a\rangle-H(a)\right],\ \ \vartheta\in\mathbb{R}^{1+d}\ \dots\ \text{the conjugate of}\ H\\ &\gamma^*(r)=\sup_{t>0}\left[rt-\gamma(t)\right],\ \ r\in\mathbb{R}\ \dots\ \text{the conjugate of}\ \gamma \end{split}$$

Proposition (H^* is expressible through γ^*)

If $H \not\equiv +\infty$ then

$$H_{\gamma}^*(\vartheta) = \int_X \gamma^*(\langle \vartheta, \varphi \rangle) d\mu, \qquad \vartheta \in \mathbb{R}^{1+d}.$$

(a full proof using ideas of Rockafellar 68)

 $H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^{1+d}} [\langle \vartheta, a \rangle - H^*(\vartheta)], \quad a \in \mathbb{R}^{1+d} \dots \text{ the dual problem } H^{**} \leq H, \text{ with the equality at the points of lower semicontinuity}$

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

Shannon functional: $\gamma(t) = t \ln t$

Fenchel duality

MLE in exponential family

Minimization under constraint qualification

Example: Shannon differential entropy (cont.)

Example: Burg entropy

Shannon functional:
$$\gamma(t) = t \ln t$$

$$\gamma^*(r) = \sup_{t>0} \left[rt - t \ln t \right] = e^{r-1}$$

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^{1+d}} \left[\langle \vartheta, a \rangle - \int_X \, \exp(\langle \vartheta, \varphi \rangle - 1) \, d\mu \right]$$

Shannon functional:
$$\gamma(t) = t \ln t$$

$$\gamma^*(r) = \sup_{t>0} \left[rt - t \ln t \right] = e^{r-1}$$

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^{1+d}} \left[\langle \vartheta, a \rangle - \int_X \exp(\langle \vartheta, \varphi \rangle - 1) \ d\mu \right]$$

where the bracket rewrites to

$$\vartheta_0 \mathsf{a}_0 + \Sigma_{j=1}^d \ \vartheta_j \mathsf{a}_j - \mathsf{e}^{\vartheta_0 - 1} \textstyle \int_X \ \exp \left(\Sigma_{j=1}^d \ \vartheta_j \varphi_j \right) \, d\mu \, .$$

Shannon functional: $\gamma(t) = t \ln t$ $\gamma^*(r) = \sup_{t>0} \left[rt - t \ln t \right] = e^{r-1}$ $H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^{1+d}} \left[\langle \vartheta, a \rangle - \int_X \, \exp(\langle \vartheta, \varphi \rangle - 1) \, d\mu \right]$

where the bracket rewrites to

$$\vartheta_0 a_0 + \sum_{j=1}^d \vartheta_j a_j - e^{\vartheta_0 - 1} \int_X \exp\left(\sum_{j=1}^d \vartheta_j \varphi_j\right) d\mu$$
 .

Maximizing over ϑ_0 ,

$$H^{**}(a) = a_0 \ln a_0 + \sup_{\vartheta_1, \dots, \vartheta_d} \left[\Sigma_{j=1}^d \vartheta_j a_j - \int_X \exp \left(\Sigma_{j=1}^d \vartheta_j \varphi_j \right) d\mu \right].$$

Shannon functional:
$$\gamma(t) = t \ln t$$

$$\gamma^*(r) = \sup_{t>0} \left[rt - t \ln t \right] = e^{r-1}$$

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^{1+d}} \left[\langle \vartheta, a \rangle - \int_X \, \exp(\langle \vartheta, \varphi \rangle - 1) \, d\mu \right]$$

where the bracket rewrites to

$$\vartheta_0 a_0 + \sum_{j=1}^d \vartheta_j a_j - e^{\vartheta_0 - 1} \int_X \exp\left(\sum_{j=1}^d \vartheta_j \varphi_j\right) d\mu$$
 .

Maximizing over ϑ_0 ,

$$H^{**}(a) = a_0 \ln a_0 + \sup_{\vartheta_1, \dots, \vartheta_d} \left[\Sigma_{j=1}^d \vartheta_j a_j - \int_X \exp \left(\Sigma_{j=1}^d \vartheta_j \varphi_j \right) d\mu \right].$$

... maximization of the normalized log-likelihood function in the exponential family based on μ and $(\varphi_1, \ldots, \varphi_d)$.

Shannon functional: $\gamma(t) = t \ln t$ $\gamma^*(r) = \sup_{t>0} \left[rt - t \ln t \right] = e^{r-1}$ $H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^{1+d}} \left[\langle \vartheta, a \rangle - \int_X \, \exp(\langle \vartheta, \varphi \rangle - 1) \, d\mu \right]$

where the bracket rewrites to

$$\vartheta_0 a_0 + \sum_{j=1}^d \vartheta_j a_j - e^{\vartheta_0 - 1} \int_X \exp\left(\sum_{j=1}^d \vartheta_j \varphi_j\right) d\mu.$$

Maximizing over ϑ_0 ,

$$H^{**}(a) = a_0 \ln a_0 + \sup_{\vartheta_1, \dots, \vartheta_d} \left[\Sigma_{j=1}^d \vartheta_j a_j - \int_X \exp \left(\Sigma_{j=1}^d \vartheta_j \varphi_j \right) d\mu \right].$$

... maximization of the normalized log-likelihood function in the exponential family based on μ and $(\varphi_1,\ldots,\varphi_d)$. (Cs&M (2008) *Probab. Th. Rel. F.*)

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

Theorem

Assume $a \in ri(dom(H_{\gamma}))$ and $H_{\gamma}(a) > -\infty$.

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

Theorem

Assume $a \in ri(dom(H_{\gamma}))$ and $H_{\gamma}(a) > -\infty$.

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Sharnon differential entropy (cont.)
Example: Burg entropy

Theorem

Assume
$$a \in ri(dom(H_{\gamma}))$$
 and $H_{\gamma}(a) > -\infty$.
Then, $H_{\gamma}(a) = H_{\gamma}^{**}(a)$,

Theorem

Assume
$$a \in ri(dom(H_{\gamma}))$$
 and $H_{\gamma}(a) > -\infty$.
Then, $H_{\gamma}(a) = H_{\gamma}^{**}(a)$, the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$,

Theorem

Assume $\mathbf{a} \in ri(dom(H_{\gamma}))$ and $H_{\gamma}(\mathbf{a}) > -\infty$. Then, $H_{\gamma}(\mathbf{a}) = H_{\gamma}^{**}(\mathbf{a})$, the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $\mathbf{g}_{\mathbf{a}} = \gamma^{*'}(\langle \vartheta, \varphi \rangle)$ does not depend on the choice of a maximizer ϑ ,

Theorem

Assume $a \in ri(dom(H_{\gamma}))$ and $H_{\gamma}(a) > -\infty$. Then, $H_{\gamma}(a) = H_{\gamma}^{**}(a)$, the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $g_a = \gamma^{*'}(\langle \vartheta, \varphi \rangle)$ does not depend on the choice of a maximizer ϑ , and for all $g \in \mathcal{L}_a$

$$J(g) = H(a) + B(g, g_a) + \int_X g |\gamma'(0) - \langle \vartheta, \varphi \rangle|_+ d\mu.$$

Theorem

Assume
$$a \in ri(dom(H_{\gamma}))$$
 and $H_{\gamma}(a) > -\infty$.
 Then, $H_{\gamma}(a) = H_{\gamma}^{**}(a)$, the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $g_a = \gamma^{*'}(\langle \vartheta, \varphi \rangle)$ does not depend on the choice of a maximizer ϑ , and for all $g \in \mathcal{L}_a$

 $J(g) = H(a) + B(g, \mathbf{g}_a) + \int_{\mathbf{Y}} g |\gamma'(0) - \langle \vartheta, \varphi \rangle|_{+} d\mu.$

(B ... Bregman distance based on γ)

Theorem

Assume
$$a \in ri(dom(H_{\gamma}))$$
 and $H_{\gamma}(a) > -\infty$.
 Then, $H_{\gamma}(a) = H_{\gamma}^{**}(a)$, the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $g_a = \gamma^{*'}(\langle \vartheta, \varphi \rangle)$ does not depend on the choice of a maximizer ϑ , and for all $g \in \mathcal{L}_a$

$$J(g) = H(a) + B(g, g_a) + \int_X g |\gamma'(0) - \langle \vartheta, \varphi \rangle|_+ d\mu.$$

(B ... Bregman distance based on γ)

The primal problem has a minimizer if and only if $g_a \in \mathcal{L}_a$.

Theorem

Assume $a \in ri(dom(H_{\gamma}))$ and $H_{\gamma}(a) > -\infty$. Then, $H_{\gamma}(a) = H_{\gamma}^{**}(a)$, the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $g_a = \gamma^{*'}(\langle \vartheta, \varphi \rangle)$ does not depend on the choice of a maximizer ϑ , and for all $g \in \mathcal{L}_a$

$$J(g) = H(a) + B(g, g_a) + \int_X g |\gamma'(0) - \langle \vartheta, \varphi \rangle|_+ d\mu.$$

(B ... Bregman distance based on γ) The primal problem has a minimizer if and only if $g_a \in \mathcal{L}_a$. \int_X vanishes when $\gamma'(0) = -\infty$ (γ is ess. smooth, or steep).

Theorem

Assume
$$a \in ri(dom(H_{\gamma}))$$
 and $H_{\gamma}(a) > -\infty$.
 Then, $H_{\gamma}(a) = H_{\gamma}^{**}(a)$, the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $g_a = \gamma^{*'}(\langle \vartheta, \varphi \rangle)$ does not depend on the choice of a maximizer ϑ , and for all $g \in \mathcal{L}_a$

$$J(g) = H(a) + B(g, g_a) + \int_X g |\gamma'(0) - \langle \vartheta, \varphi \rangle|_+ d\mu.$$

(B ... Bregman distance based on γ)

The primal problem has a minimizer if and only if $g_a \in \mathcal{L}_a$. \int_X vanishes when $\gamma'(0) = -\infty$ (γ is ess. smooth, or steep). If $g_n \in \mathcal{L}_a$ and $J(g_n) \to H(a)$ then $B(g_n, g_a) \to 0$.

ga generalized primal solution

Fenchel duality
MLE in exponential family
Mlinimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$H(a) = \inf_{g \in \mathcal{L}_a} \int_{\mathbb{R}} g(x) \ln g(x) dx$$
, ... the primal problem where \mathcal{L}_a , $a \in \mathbb{R}^3$, comes from the moments $1, x, x^2$

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$H(a)=\inf_{g\in\mathcal{L}_a}\int_{\mathbb{R}}g(x)\ln g(x)\,dx$$
, ... the primal problem where \mathcal{L}_a , $a\in\mathbb{R}^3$, comes from the moments $1,x,x^2$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^3} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \vartheta_2 a_2 - \int_X \exp(\vartheta_0 + \vartheta_1 x + \vartheta_2 x^2 - 1) d\mu \right]$$

explicitly computable, finite on an open set in \mathbb{R}^3

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$H(a)=\inf_{g\in\mathcal{L}_a}\int_{\mathbb{R}}g(x)\ln g(x)\,dx$$
, ... the primal problem where \mathcal{L}_a , $a\in\mathbb{R}^3$, comes from the moments $1,x,x^2$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^3} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \vartheta_2 a_2 - \int_X \exp(\vartheta_0 + \vartheta_1 x + \vartheta_2 x^2 - 1) d\mu \right]$$

explicitly computable, finite on an open set in \mathbb{R}^3 $H=H^{**}$ with the same open effective domain

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$H(a)=\inf_{g\in\mathcal{L}_a}\int_{\mathbb{R}}g(x)\ln g(x)\,dx$$
, ... the primal problem where \mathcal{L}_a , $a\in\mathbb{R}^3$, comes from the moments $1,x,x^2$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^3} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \vartheta_2 a_2 - \int_X \exp(\vartheta_0 + \vartheta_1 x + \vartheta_2 x^2 - 1) d\mu \right]$$

explicitly computable, finite on an open set in \mathbb{R}^3 $H=H^{**}$ with the same open effective domain For a in the open domain

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Narre entropy.

$$H(a)=\inf_{g\in\mathcal{L}_a}\int_{\mathbb{R}}g(x)\ln g(x)\,dx$$
, ... the primal problem where \mathcal{L}_a , $a\in\mathbb{R}^3$, comes from the moments $1,x,x^2$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^3} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \vartheta_2 a_2 - \int_X \exp(\vartheta_0 + \vartheta_1 x + \vartheta_2 x^2 - 1) d\mu \right]$$

explicitly computable, finite on an open set in \mathbb{R}^3

 $H=H^{**}$ with the same open effective domain

For a in the open domain

 g_a has the form $\exp(\vartheta_0 + \vartheta_1 x + \vartheta_2 x^2 - 1)$, thus is proportional to a Gaussian density

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$H(a)=\inf_{g\in\mathcal{L}_a}\int_{\mathbb{R}}g(x)\ln g(x)\,dx$$
, ... the primal problem where \mathcal{L}_a , $a\in\mathbb{R}^3$, comes from the moments $1,x,x^2$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^3} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \vartheta_2 a_2 - \int_X \exp(\vartheta_0 + \vartheta_1 x + \vartheta_2 x^2 - 1) d\mu \right]$$

explicitly computable, finite on an open set in \mathbb{R}^3

 $H = H^{**}$ with the same open effective domain

For a in the open domain

 g_a has the form $\exp(\vartheta_0 + \vartheta_1 x + \vartheta_2 x^2 - 1)$, thus is proportional to a Gaussian density

adjusting the moments, g_a is the unique primal solution

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.
Example: Burg entropy

$$X = [0, 1], d\mu = 2x dx \text{ and } \varphi = (1, x)$$

Fenchel duality
MLE in exponential family
MlE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$X=[0,1]$$
, $d\mu=2x\,dx$ and $\varphi=(1,x)$

Burg functional: $\gamma(t) = 1 - \ln t$, t > 0

Fenchel duality
MLE in exponential family
MLEin exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$X=[0,1], \ d\mu=2x\ dx \ {\rm and}\ \varphi=(1,x)$$
 Burg functional: $\gamma(t)=1-\ln t, \quad t>0$ $\gamma^*(r)=-\ln(-r), \quad r<0$

Fenchel duality
MLE in exponential family
Mlinimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$\begin{split} X &= [0,1], \ d\mu = 2x \ dx \ \text{and} \ \varphi = (1,x) \\ \text{Burg functional:} \ \gamma(t) &= 1 - \ln t, \quad t > 0 \\ \gamma^*(r) &= -\ln(-r), \quad r < 0 \\ \gamma^{*\prime}(r) &= -1/r, \quad r < 0 \end{split}$$

Fenchel duality
MLE in exponential family
MlE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$X=[0,1],\ d\mu=2x\ dx$$
 and $\varphi=(1,x)$
Burg functional: $\gamma(t)=1-\ln t,\ t>0$ $\gamma^*(r)=-\ln(-r),\ r<0$ $\gamma^{*'}(r)=-1/r,\ r<0$
the primal problem $H(a)=\inf_{g\in\mathcal{L}_a}\int_0^1\ [1-\ln g(x)]\,2x\ dx$

Fenchel duality
MLE in exponential family
MINIMIZED MINIMIZED STATE TO A CONSTRUCTION
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$X=[0,1],\ d\mu=2x\ dx$$
 and $\varphi=(1,x)$ Burg functional: $\gamma(t)=1-\ln t,\ t>0$ $\gamma^*(r)=-\ln(-r),\ r<0$ $\gamma^{*'}(r)=-1/r,\ r<0$ the primal problem $H(a)=\inf_{g\in\mathcal{L}_a}\int_0^1\ [1-\ln g(x)]\,2x\ dx$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^2} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \int_0^1 \ln(-\vartheta_0 - \vartheta_1 x) 2x \, dx \right]$$

$$X=[0,1],\ d\mu=2x\,dx$$
 and $\varphi=(1,x)$ Burg functional: $\gamma(t)=1-\ln t,\ t>0$ $\gamma^*(r)=-\ln(-r),\ r<0$ $\gamma^{*'}(r)=-1/r,\ r<0$ the primal problem $H(a)=\inf_{g\in\mathcal{L}_a}\int_0^1\ [1-\ln g(x)]\,2x\,dx$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^2} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \int_0^1 \ln(-\vartheta_0 - \vartheta_1 x) \, 2x \, dx \right]$$

 $H = H^{**}$, the domain open $a_0 > 0$, $a_1 < a_0$

$$X=[0,1],\ d\mu=2x\,dx$$
 and $\varphi=(1,x)$ Burg functional: $\gamma(t)=1-\ln t,\ t>0$ $\gamma^*(r)=-\ln(-r),\ r<0$ $\gamma^{*'}(r)=-1/r,\ r<0$ the primal problem $H(a)=\inf_{g\in\mathcal{L}_a}\int_0^1\ [1-\ln g(x)]\,2x\,dx$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^2} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \int_0^1 \ln(-\vartheta_0 - \vartheta_1 x) \, 2x \, dx \right]$$

 $H = H^{**}$, the domain open $a_0 > 0$, $a_1 < a_0$ unique maximizer $\vartheta = (0, -1/a_1)$ when $a_0 \ge 2a_1$,

$$X=[0,1],\ d\mu=2x\ dx$$
 and $\varphi=(1,x)$ Burg functional: $\gamma(t)=1-\ln t,\ t>0$ $\gamma^*(r)=-\ln(-r),\ r<0$ $\gamma^{*'}(r)=-1/r,\ r<0$ the primal problem $H(a)=\inf_{g\in\mathcal{L}_a}\int_0^1\ [1-\ln g(x)]\,2x\ dx$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^2} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \int_0^1 \ln(-\vartheta_0 - \vartheta_1 x) \, 2x \, dx \right]$$
 $H = H^{**}$, the domain open $a_0 > 0$, $a_1 < a_0$ unique maximizer $\vartheta = (0, -1/a_1)$ when $a_0 \geqslant 2a_1$, generalized primal solution $g_a(x) = a_1/x$

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$X = [0,1], \ d\mu = 2x \ dx \ \text{and} \ \varphi = (1,x)$$
 Burg functional: $\gamma(t) = 1 - \ln t, \quad t > 0$
$$\gamma^*(r) = -\ln(-r), \quad r < 0$$

$$\gamma^{*\prime}(r) = -1/r, \quad r < 0$$

the primal problem $H(a) = \inf_{g \in \mathcal{L}_a} \int_0^1 [1 - \ln g(x)] 2x \, dx$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^2} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \int_0^1 \ln(-\vartheta_0 - \vartheta_1 x) \, 2x \, dx \right]$$
 $H = H^{**}$, the domain open $a_0 > 0$, $a_1 < a_0$
unique maximizer $\vartheta = (0, -1/a_1)$ when $a_0 \geqslant 2a_1$, generalized primal solution $g_a(x) = a_1/x$
if $a_0 = 1$, $a_1 < 1/2$ it is not a density: $\int_0^1 \frac{a_1}{x} \, 2x \, dx = 2a_1 < a_0$

Fenchel duality
MLE in exponential family
MLEinization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$X=[0,1],\ d\mu=2x\ dx\ \text{and}\ \varphi=(1,x)$$
 Burg functional: $\gamma(t)=1-\ln t,\quad t>0$
$$\gamma^*(r)=-\ln(-r),\quad r<0$$

$$\gamma^{*'}(r)=-1/r,\quad r<0$$
 the primal problem $H(a)=\inf_{g\in\mathcal{L}_s}\int_0^1\ [1-\ln g(x)]\ 2x\ dx$ the dual problem

$$H^{**}(a) = \sup_{\vartheta \in \mathbb{R}^2} \left[\vartheta_0 a_0 + \vartheta_1 a_1 + \int_0^1 \ln(-\vartheta_0 - \vartheta_1 x) \, 2x \, dx \right]$$
 $H = H^{**}$, the domain open $a_0 > 0$, $a_1 < a_0$ unique maximizer $\vartheta = (0, -1/a_1)$ when $a_0 \geqslant 2a_1$, generalized primal solution $g_a(x) = a_1/x$ if $a_0 = 1$, $a_1 < 1/2$ it is not a density: $\int_0^1 \frac{a_1}{x} \, 2x \, dx = 2a_1 < a_0$ NO primal solution! (a variation on Borwein & Lewis (1993))

$$cc_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d}$$
 ... convex core of the φ -image of μ , intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu(\varphi^{-1}(\mathbb{R}^{1+d} \setminus B)) = 0$.

$$cc_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d}$$
 ... convex core of the φ -image of μ , intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu(\varphi^{-1}(\mathbb{R}^{1+d} \setminus B)) = 0$. $cn_{\varphi}(\mu) = \{ta : t \geqslant 0, \ a \in cc_{\varphi}(\mu)\}$... φ -cone of μ

$$cc_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d}$$
 ... convex core of the φ -image of μ , intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu(\varphi^{-1}(\mathbb{R}^{1+d} \setminus B)) = 0$. $cn_{\varphi}(\mu) = \{ta: t \geqslant 0, a \in cc_{\varphi}(\mu)\}$... φ -cone of μ Lemma: The set \mathcal{L}_a is nonempty if and only if $a \in cn_{\varphi}(\mu)$.

$$cc_{\varphi}(\mu)\subseteq\mathbb{R}^{1+d}$$
 ... convex core of the φ -image of μ , intersection of all convex Borel sets $B\subseteq\mathbb{R}^{1+d}$ s.t. $\mu(\varphi^{-1}(\mathbb{R}^{1+d}\setminus B))=0$. $cn_{\varphi}(\mu)=\{ta\colon t\geqslant 0\,,\, a\in cc_{\varphi}(\mu)\}$... φ -cone of μ Lemma: The set \mathcal{L}_a is nonempty if and only if $a\in cn_{\varphi}(\mu)$.

Corollary: $H = +\infty$ outside $cn_{\wp}(\mu)$.

$$cc_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d}$$
 ... convex core of the φ -image of μ , intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu(\varphi^{-1}(\mathbb{R}^{1+d} \setminus B)) = 0$.

$$\mathit{cn}_{arphi}(\mu) = \{\mathit{ta} \colon t \geqslant 0 \,, \, \mathit{a} \in \mathit{cc}_{arphi}(\mu)\} \, \dots \, \mathit{\varphi}\text{-cone of } \mu$$

Corollary: $H = +\infty$ outside $cn_{\varphi}(\mu)$.

Theorem

$$cc_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d}$$
 ... convex core of the φ -image of μ , intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu(\varphi^{-1}(\mathbb{R}^{1+d} \setminus B)) = 0$.

$$cn_{\varphi}(\mu) = \{ta \colon t \geqslant 0 \,, \, a \in cc_{\varphi}(\mu)\} \, \dots \, \varphi$$
-cone of μ

Corollary: $H = +\infty$ outside $cn_{\varphi}(\mu)$.

Theorem

If μ is finite and $\gamma(0)=+\infty$ then dom(H) equals $ri(cn_{\varphi}(\mu))$ or \emptyset .

$$cc_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d}$$
 ... convex core of the φ -image of μ , intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu(\varphi^{-1}(\mathbb{R}^{1+d} \setminus B)) = 0$.

$$\mathit{cn}_{arphi}(\mu) = \{\mathit{ta} \colon \mathit{t} \geqslant 0 \,,\, \mathit{a} \in \mathit{cc}_{arphi}(\mu)\} \, \ldots \, \mathit{\varphi}\text{-cone of } \mu$$

Corollary: $H = +\infty$ outside $cn_{\varphi}(\mu)$.

Theorem

If μ is finite and $\gamma(0) = +\infty$ then dom(H) equals $ri(cn_{\varphi}(\mu))$ or \emptyset . If μ is finite and $\gamma(0)$ finite then $dom(H) = cn_{\varphi}(\mu)$.

$$cc_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d}$$
 ... convex core of the φ -image of μ , intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu(\varphi^{-1}(\mathbb{R}^{1+d} \setminus B)) = 0$.

$$\mathit{cn}_{arphi}(\mu) = \{\mathit{ta} \colon \mathit{t} \geqslant 0 \,,\, \mathit{a} \in \mathit{cc}_{arphi}(\mu)\} \, \ldots \, \mathit{\varphi}\text{-cone of } \mu$$

Corollary: $H = +\infty$ outside $cn_{\varphi}(\mu)$.

Theorem

If μ is finite and $\gamma(0)=+\infty$ then dom(H) equals $ri(cn_{\varphi}(\mu))$ or \emptyset .

If μ is finite and $\gamma(0)$ finite then $dom(H) = cn_{\varphi}(\mu)$.

If μ is infinite and $\gamma(0) = 0$ then $dom(H) = cn_{\varphi}(\mu)$.

$$cc_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d}$$
 ... convex core of the φ -image of μ , intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu(\varphi^{-1}(\mathbb{R}^{1+d} \setminus B)) = 0$.

$$\mathit{cn}_{arphi}(\mu) = \{\mathit{ta} \colon t \geqslant 0 \,, \, \mathit{a} \in \mathit{cc}_{arphi}(\mu)\} \, \dots \, \mathit{\varphi}\text{-cone of } \mu$$

Corollary: $H = +\infty$ outside $cn_{\varphi}(\mu)$.

Theorem

If μ is finite and $\gamma(0)=+\infty$ then dom(H) equals $ri(cn_{\varphi}(\mu))$ or \emptyset .

If μ is finite and $\gamma(0)$ finite then $dom(H) = cn_{\varphi}(\mu)$.

If μ is infinite and $\gamma(0) = 0$ then $dom(H) = cn_{\varphi}(\mu)$.

If μ is infinite and $\gamma(0) > 0$ then $dom(H) = \emptyset$.

$$cc_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d}$$
 ... convex core of the φ -image of μ , intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu(\varphi^{-1}(\mathbb{R}^{1+d} \setminus B)) = 0$.

$$\mathit{cn}_{arphi}(\mu) = \{\mathit{ta} \colon \mathit{t} \geqslant 0 \,,\, \mathit{a} \in \mathit{cc}_{arphi}(\mu)\} \, \ldots \, \mathit{\varphi}\text{-cone of } \mu$$

Corollary: $H = +\infty$ outside $cn_{\varphi}(\mu)$.

Theorem

If μ is finite and $\gamma(0)=+\infty$ then dom(H) equals $ri(cn_{\varphi}(\mu))$ or \emptyset .

If μ is finite and $\gamma(0)$ finite then $dom(H) = cn_{\varphi}(\mu)$.

If μ is infinite and $\gamma(0) = 0$ then $dom(H) = cn_{\varphi}(\mu)$.

If μ is infinite and $\gamma(0) > 0$ then $dom(H) = \emptyset$.

If μ is infinite and $\gamma(0) < 0$ then $H = -\infty$ on $dom(H) = cn_{\varphi}(\mu)$.

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.

Denote by F the face of the convex cone $cn_{\varphi}(\mu)$ with $a \in ri(F)$

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.

Denote by F the face of the convex cone $cn_{\varphi}(\mu)$ with $a \in ri(F)$ Then, the adjusted dual problem

$$ilde{\mathcal{H}}(\mathbf{a}) = \sup_{\vartheta \in \mathbb{R}^{1+d}} \left[\langle \vartheta, \mathbf{a} \rangle - \int_{\varphi^{-1}(\operatorname{cl}(F))} \gamma^*(\langle \vartheta, \varphi \rangle) \ d\mu \right].$$

has a maximizer $\vartheta \in \mathbb{R}^{1+d}$,

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.

Denote by F the face of the convex cone $cn_{\varphi}(\mu)$ with $a \in ri(F)$ Then, the adjusted dual problem

$$ilde{\mathcal{H}}(a) = \sup_{\vartheta \in \mathbb{R}^{1+d}} \left[\langle \vartheta, a \rangle - \int_{\varphi^{-1}(cl(F))} \gamma^*(\langle \vartheta, \varphi \rangle) \ d\mu \right].$$

has a maximizer
$$\vartheta \in \mathbb{R}^{1+d}$$
,
 $H_{\gamma}(a) = \tilde{H}(a) + \gamma(0) \cdot \mu(X \setminus \varphi^{-1}(cl(F)))$,

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.

Denote by F the face of the convex cone $cn_{\varphi}(\mu)$ with $a \in ri(F)$ Then, the adjusted dual problem

$$ilde{\mathcal{H}}(\mathbf{a}) = \sup_{\vartheta \in \mathbb{R}^{1+d}} \left[\langle \vartheta, \mathbf{a} \rangle - \int_{\varphi^{-1}(\operatorname{cl}(F))} \gamma^*(\langle \vartheta, \varphi \rangle) \ d\mu \right].$$

has a maximizer $\vartheta \in \mathbb{R}^{1+d}$, $H_{\gamma}(a) = \tilde{H}(a) + \gamma(0) \cdot \mu(X \setminus \varphi^{-1}(cl(F)))$, the function $\mathbf{g}_a = \gamma^{*'}(\langle \vartheta, \varphi \rangle) \mathbf{1}_{\varphi^{-1}(F)}$ does not depend on its choice

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.

Denote by F the face of the convex cone $cn_{\varphi}(\mu)$ with $a \in ri(F)$ Then, the adjusted dual problem

$$ilde{\mathcal{H}}(\mathbf{a}) = \sup_{\vartheta \in \mathbb{R}^{1+d}} \left[\langle \vartheta, \mathbf{a} \rangle - \int_{\varphi^{-1}(\operatorname{cl}(F))} \gamma^*(\langle \vartheta, \varphi \rangle) \ d\mu \right].$$

has a maximizer $\vartheta \in \mathbb{R}^{1+d}$, $H_{\gamma}(a) = \tilde{H}(a) + \gamma(0) \cdot \mu(X \setminus \varphi^{-1}(cl(F)))$, the function $g_a = {\gamma^*}'(\langle \vartheta, \varphi \rangle) \mathbf{1}_{\varphi^{-1}(F)}$ does not depend on its choice and for all $g \in \mathcal{L}_a$

$$J(g) = H(a) + B(g, g_a) + \int_X g |\gamma'(0) - \langle \vartheta, \varphi \rangle|_+ d\mu.$$

Assume $H > -\infty$ and $a \in dom(H^{**})$.

Assume $H > -\infty$ and $a \in dom(H^{**})$.

Assume $H > -\infty$ and $a \in dom(H^{**})$.

Then, there exists a unique nonnegative function has such that

$$\begin{split} H^{**}(a) - \left[\langle \vartheta, a \rangle - \int_X \gamma^*(\langle \vartheta, \varphi \rangle) \ d\mu \right] \geqslant \\ B(h_a, \gamma^{*'}(\langle \vartheta, \varphi \rangle)) + \int_X h_a \left| \gamma'(0) - \langle \vartheta, \varphi \rangle \right|_+ d\mu \\ \text{for } \vartheta \in dom(H_\gamma^*) \text{ satisfying } \langle \vartheta, \varphi \rangle < \gamma'(+\infty), \ \mu\text{-a.e.} \end{split}$$

Assume $H > -\infty$ and $a \in dom(H^{**})$.

Then, there exists a unique nonnegative function h_a such that

$$H^{**}(a) - \left[\langle \vartheta, a \rangle - \int_{X} \gamma^{*}(\langle \vartheta, \varphi \rangle) d\mu \right] \geqslant B(h_{a}, \gamma^{*'}(\langle \vartheta, \varphi \rangle)) + \int_{X} h_{a} |\gamma'(0) - \langle \vartheta, \varphi \rangle|_{+} d\mu$$

for
$$\vartheta\in dom(H_{\gamma}^*)$$
 satisfying $\langle \vartheta, \varphi \rangle < \gamma'(+\infty)$, μ -a.e. If $H_{\gamma}(a)=H^{**}(a)$ then $h_a=\mathbf{g}_a$.

Assume $H > -\infty$ and $a \in dom(H^{**})$.

Then, there exists a unique nonnegative function h_a such that

$$H^{**}(a) - \left[\langle \vartheta, a \rangle - \int_{X} \gamma^{*}(\langle \vartheta, \varphi \rangle) d\mu \right] \geqslant B(h_{a}, \gamma^{*'}(\langle \vartheta, \varphi \rangle)) + \int_{X} h_{a} |\gamma'(0) - \langle \vartheta, \varphi \rangle|_{+} d\mu$$

for $\vartheta \in dom(H_{\gamma}^*)$ satisfying $\langle \vartheta, \varphi \rangle < \gamma'(+\infty)$, μ -a.e. If $H_{\gamma}(a) = H^{**}(a)$ then $h_a = g_a$.

For $\gamma(t)=t\ln t$, this is MLE in EF; an explicit construction of h_a is available in Cs&M (2008) *Probab. Th. Rel. F.*

Assume $H > -\infty$ and $a \in dom(H^{**})$.

Then, there exists a unique nonnegative function h_a such that

$$H^{**}(a) - \left[\langle \vartheta, a \rangle - \int_{X} \gamma^{*}(\langle \vartheta, \varphi \rangle) d\mu \right] \geqslant$$

$$B(h_{a}, \gamma^{*'}(\langle \vartheta, \varphi \rangle)) + \int_{X} h_{a} |\gamma'(0) - \langle \vartheta, \varphi \rangle|_{+} d\mu$$

for
$$\vartheta\in dom(H_{\gamma}^*)$$
 satisfying $\langle \vartheta, \varphi \rangle < \gamma'(+\infty)$, μ -a.e. If $H_{\gamma}(a)=H^{**}(a)$ then $h_a=g_a$.

For $\gamma(t)=t\ln t$, this is MLE in EF; an explicit construction of h_a is available in Cs&M (2008) *Probab. Th. Rel. F.*

The talk is based on a contribution to *Proc. IEEE ISIT*, Toronto, being published this week.