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(X, X, 1) ... a o-finite measure space with p nonzero
© = (¢0,...,04): X — R _moment mapping
(a (1 + d)-tuple of real-valued measurable functions on X)

assuming g =1

The moment constraints

For a = (ap,...,aq) € R

L= {g > 0 measurable : fx pgdu= a}
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Moment constraints
Entropy functional

The minimization problem

7 ... a strictly convex and differentiable function on (0, +00)
extended to y(0) = lim¢jo ¥(t) and y(t) = +oo for t <0

The entropy functional based on

For a measurable function g > 0 on X

Jg) = [ (g) du

if the integral exists, finite of not, and J(g) = +oo otherwise.

Shannon functional: y(t) = tint
Burg functional: y(t) =1—Int
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Moment constr.

F
The minimization problem

PROBLEM
For given a € R4 minimize J(g) subject to the
moment constraints g € L,.

The value function
H(a) = infger, J(g), ae R,

ranges in [—00, 00| and is convex.
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Special instance and examples

X =R, p Lebesgue measure and ¢ = (1, x, x?)

For a = (ap, a1, a2)

y(t)=tint, t>0
= [, &(x)Ing(x) dx = — the differential Shannon entropy
The function H admits an explicit formula, e.g. for a = (1,0, 1)

H(a):minﬁaJ:_%|n(2W)_%:J(\/%?e_xz/2)

the minimizer is unique,
Gaussian with the given moments
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Special instance and examples

(X, X, ) probability space, ¢ arbitrary
Shannon functional
Fora=(1,a1,...,a) if g € L,
any g € L, is the u-density of a probability measure P
and [, ging du = D(P|u).
Thus, infz,J is the minimization of the divergence D(P|pu)
subject to [, ¢ dP = a.
(Cs&M (2003) IEEE Trans. IT)
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Shannon differential entropy
Minimization of the relative entropy
The value function identically +o0o

Special instance and examples

X =R, =3 ,51 7 0nand p(x) = (1,x)
v(t) = et t>0

m 1
= Q) =Ty 250 L g0,

If finite then g(n) > -
Therefore, [y p1gdu=73",5; ng(n) # diverges.

This implies that g is not in the union of the families £,
thus H = +oo0.

eventually.
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Convex conjugation 7 ((emia)]

H(a) = infger, J(g), a € RM™Y ... the primal problem
H*(9) = sup,cpi+a [(¥,a) — H(a)], ¥ € R .. the conjugate of H
Y*(r) = supgsg [t — ()], r € R ... the conjugate of y

Proposition (H* is expressible through ~*)
If H # 400 then

H(0) = [, " Ddp, 9 eRWI

(a full proof using ideas of Rockafellar 68)
H**(a) = supgyepira [(9,a) — H*(9)], a€ R .. the dual problem
H*™ < H, with the equality at the points of lower semicontinuity
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Shannon functional: y(t) = tint

Y*(r) = supysq [rt — tint] = e 1

H**(a) = supgepi+d [(19, a) — fx exp((9, p) — 1) d,u}
where the bracket rewrites to
Jpag + Zj‘-lzl Vjaj — eﬁo*lfx exp (Zj-’zl Vi) dp.
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Example: Burg entropy

Convex conjugation

Shannon functional: y(t) = tint

Y*(r) = supysq [rt — tint] = e 1

H™(3) = supyenrea |(0,3) = [y exp((, ) = 1) dp

where the bracket rewrites to

Doao + Zle 19j3j . eﬁoflfx exp (ch-i:l ﬁjapj) du.

Maximizing over vy,

H**(a) = agInag+sup g, [Zj’zlﬁjaj—fx exp (Zleﬁjgpj) dpu) .

. maximization of the normalized log-likelihood function
in the exponential family based on p and (¢1,. .., @q)-

(Cs&M (2008) Probab. Th. Rel. F.)
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Shannon differential entropy (cont.)
Example: Burg entropy

Convex conjugation

Theorem

Assume a € ri(dom(Hy)) and H,(a) > —oc.
Then, H.(a) = H;*(a),
the dual value is attained by some 1 € Rtd
the function g, = v*'({9, ¢)) does not depend
on the choice of a maximizer U,
and for all g € L,

J(g) = H(a) + B(g, &) + [, & 1'(0) — (9 9)], dp.

(B ... Bregman distance based on 7)
The primal problem has a minimizer if and only if g, € £,.
[x vanishes when ~/(0) = —oo (7 is ess. smooth, or steep).
If gn € £, and J(gn) — H(a) then B(gn,g:) — 0.
g5 .... generalized primal solution
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Convex conjugation
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Example: Shannon differential entropy (cont.)

Example: Burg entropy

Convex conjugation

H(a) = infger, ng(x) Ing(x) dx, ... the primal problem

where £,, a € R3, comes from the moments 1,x,x2

the dual problem
H**(a) = SUPycR3 [190304—19131—}-’[9232—‘[)( eXp(’l90+’l91X+’l92X2—1)du]

explicitly computable, finite on an open set in R3
H = H** with the same open effective domain
For a in the open domain

g has the form exp(9g + ¥1x + ¥2x> — 1), thus is proportional to
a Gaussian density

adjusting the moments, g, is the unique primal solution
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X =10,1], du = 2xdx and ¢ = (1, x)
Burg functional: v(t) =1—1Int, t>0
v¥(r)=—In(=r), r<o0
v'(r)=-1/r, r<0
the primal problem H(a) = infzcr, fol [1—Ing(x)]2xdx
the dual problem

H**(a) = supyeg [19030 + a1+ [ In(~o — D1x) 2x dx

H = H**, the domain open ap > 0, a1 < ag

unique maximizer ¥ = (0, —1/a;) when ag > 2a;,
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Burg functional: v(t) =1—1Int, t>0
v¥(r)=—In(=r), r<o0
v'(r)=-1/r, r<0
the primal problem H(a) = infzcr, fol [1—Ing(x)]2xdx
the dual problem
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H = H**, the domain open ap > 0, a1 < ag
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Example: Shannon differential entropy (cont.)
Example: Burg entropy

Convex conjugation

X =10,1], du = 2xdx and ¢ = (1, x)
Burg functional: v(t) =1—1Int, t>0
v¥(r)=—In(=r), r<o0
v'(r)=-1/r, r<0
the primal problem H(a) = infzcr, fol [1—Ing(x)]2xdx
the dual problem

H™*(a) = supyegs [?9030 +thar + f —p — V1x) 2x dx

H = H**, the domain open ap > 0, a1 < ag

unique maximizer ¥ = (0, —1/a;) when ag > 2a;,

generalized primal solution  g,(x) = a1/x

if ag =1, a1 < 1/2 it is not a density: j;l 2L 2xdx = 2a1 < ap

NO primal solution! (a variation on Borwein & Lewis (1993))
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The dual problem

Main results

ccy(p) C R4 . convex core of the p-image of y, intersection
of all convex Borel sets B C R s.t. u(¢~}(R*9\ B)) = 0.

cng(p) ={ta: t >0, a€ ccy(p)} ... p-cone of p
Lemma: The set £, is nonempty if and only if a € cny(p).
Corollary: H = 400 outside cny(f1).

If v is finite and v(0) = 400 then dom(H) equals ri(cn, (1)) or 0.
If 1 is finite and (0) finite then dom(H) = cny(1).

If 41 is infinite and v(0) > 0 then dom(H) = 0.
If 11 is infinite and v(0) < 0 then H = —oc0 on dom(H) = cny(1).
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. The dual problem
Main results ;

Theorem

Assume a € R4 with H.(a) finite.
Denote by F the face of the convex cone cn, (1) with a € ri(F)
Then, the adjusted dual problem

Fia) = sup gepasa |(09:3) = [ sy 7 (0 9)) dla]

has a maximizer 9 € Rt9,

Hy(a) = H(a) +7(0) - u(X \ o~ (cl(F))),
the function g, = ({0, ¢))1,-1(F) does not depend on its choice
and for all g € L,

J(g) = H(a) + B(g,8:) + [, & 1V'(0) — (4, 0| dp.




Effective domain
Constraint qualification avoided

Main results The dual problem

Assume H > —oo and a € dom(H**).




Effective domain
Constraint qualification avoided

Main results The dual problem

Assume H > —oo and a € dom(H**).




Effective domain
Constraint qualification avoided

Main results The dual problem

Theorem

Assume H > —oo and a € dom(H**).
Then, there exists a unique nonnegative function h, such that

H**a)[ fX ﬁw)du]
B(hay v (8, 0))) + [ ha 7' (0) = (8, 0} dps

for ¥ € dom(H3) satisfying (9, p) < 7'(+00), p-a.e.
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Main results The dual problem

Theorem

Assume H > —oo and a € dom(H**).
Then, there exists a unique nonnegative function h, such that

H**a)[ fX ﬁw)du]
B(ha, ({8, 9))) + [ ha 7' (0) — (9, )| dus

for ¥ € dom(H3) satisfying (9, p) < 7'(+00), p-a.e.
If Hy(a) = H**(a) then ., = g,.

For v(t) = tInt, this is MLE in EF; an explicit construction of
is available in Cs&M (2008) Probab. Th. Rel. F.

The talk is based on a contribution to Proc. IEEE ISIT, Toronto,
being published this week.
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