Marginal polytopes of graphical models: Linear programs, max-product, and variational relaxation

Martin Wainwright

Department of Statistics

Department of Electrical Engineering and Computer Science UC Berkeley, CA

Email: wainwrig@{stat,eecs}.berkeley.edu

Based on joint works with:

Tommi Jaakkola, Alan Willsky (MIT)

Michael Jordan (Univ. California, Berkeley)

Vladimir Kolmogorov (Univ. College London)

Alekh Agarwal, Pradeep Ravikumar (Univ. California, Berkeley)

Introduction

• max/sum-product message-passing:

- "divide and conquer": based on factorization/Markov properties
- exact for decomposable; approximate for general graphs
- now standard in various fields (e.g., statistics, statistical machine learning, statistical physics, computer vision, computational biology....)

• convex relaxations (LP, SOCP, SDP etc.):

- "relax" a hard combinatorial problem into a simple convex one
- standard method in computer science, operations research, polyhedral combinatorics

• notion of marginal polytope:

- geometric object associated with any undirected graphical model
- complexity critically determined by graph topology
- yields fruitful connections between message-passing and LP relaxation

MAP optimization in undirected graphical models

- undirected graph G = (V, E)
- $X_s \equiv \text{random variable at node } s$ taking values $x_s \in \mathcal{X}_s$
- $\theta_s(x_s) \equiv \text{observation term}$
- $\theta_{st}(x_s, x_t) \equiv \text{coupling term}$
- overall distribution decomposes additively on graph cliques:

$$p(\mathbf{x}; \theta) \propto \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$$

• mode or maximum a posteriori (MAP) estimate:

$$\widehat{\mathbf{x}} \in \arg\max_{\mathbf{x}\in\mathcal{X}^N} \Big\{ \sum_{s\in V} \theta_s(x_s) + \sum_{(s,t)\in E} \theta_{st}(x_s, x_t) \Big\}.$$

Max-product on trees

Goal: Compute most probable configuration on a tree:

$$\widehat{\mathbf{x}} = \arg \max_{\mathbf{x} \in \mathcal{X}^N} \left\{ \prod_{s \in V} \exp(\theta_s(x_s) \prod_{(s,t) \in E} \exp(\theta_{st}(x_s, x_t)) \right\}.$$

$$\max_{x_1, x_2, x_3} p(\mathbf{x}) = \max_{x_1} \left[\exp(\theta_1(x_1)) \prod_{t \in \{1,3\}} \left\{ \max_{x_t} \exp[\theta_t(x_t) + \theta_{2t}(x_2, x_t)] \right\} \right]$$

Max-product strategy: "Divide and conquer": break global maximization into simpler sub-problems. (Lauritzen & Spiegelhalter, 1988; Dawid, 1992)

Max-product recursions

Decompose: $\max_{x_1, x_2, x_3, x_4, x_5} p(\mathbf{x}) = \max_{x_1} \left[\exp(\theta_1(x_1)) \prod_{t \in N(2)} M_{t2}(x_2) \right].$

Update messages:

$$M_{32}(x_3, x_2) = \max_{x_3} \left[\exp(\theta_3(x_3) + \theta_{23}(x_2, x_3) \prod_{v \in N(3) \setminus 2} M_{v3}(x_3)) \right]$$

Variational view: Max-product and linear programs

- MAP as integer program: $f^* = \max_{\mathbf{x} \in \mathcal{X}^N} \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$
- define local marginal distributions (e.g., for m = 3 states):

$$\mu_s(x_s) = \begin{bmatrix} \mu_s(0) \\ \mu_s(1) \\ \mu_s(2) \end{bmatrix} \qquad \mu_{st}(x_s, x_t) = \begin{bmatrix} \mu_{st}(0, 0) & \mu_{st}(0, 1) & \mu_{st}(0, 2) \\ \mu_{st}(1, 0) & \mu_{st}(1, 1) & \mu_{st}(1, 2) \\ \mu_{st}(2, 0) & \mu_{st}(2, 1) & \mu_{st}(2, 2) \end{bmatrix}$$

• alternative formulation of MAP as linear program

$$g^* = \max_{(\mu_s, \mu_{st}) \in \mathbb{M}(T)} \left\{ \sum_{s \in V} \mathbb{E}_{\mu_s} [\theta_s(x_s)] + \sum_{(s,t) \in E} \mathbb{E}_{\mu_{st}} [\theta_{st}(x_s, x_t)] \right\}$$

Local expectations: $\mathbb{E}_{\mu_s}[\theta_s(x_s)] := \sum_{x_s} \mu_s(x_s)\theta_s(x_s).$

Key question: What constraints must local marginals $\{\mu_s, \mu_{st}\}$ satisfy?

Marginal polytopes for general undirected models

• $\mathbb{M}(G) \equiv \text{ set of all } globally \ realizable \ marginals \ \{\mu_s, \mu_{st}\}:$

$$\left\{ \vec{\mu} \in \mathbb{R}^{m^N} \mid \mu_s(x_s) = \sum_{x_t, t \neq s} p_{\mu}(\mathbf{x}), \text{ and } \mu_{st}(x_s, x_t) = \sum_{x_u, u \neq s, t} p_{\mu}(\mathbf{x}) \right\}$$

for some $p_{\mu}(\cdot)$ over $(X_1, ..., X_N) \in \{0, 1, ..., m-1\}^N$.

- polytope in $m|V| + m^2|E|$ dimensions (m per vertex, m^2 per edge)
- with m^N vertices
- number of facets?

Marginal polytope for trees

- $\mathbb{M}(T) \equiv \text{special case of marginal polytope for tree } T$
- local marginal distributions on nodes/edges (e.g., m = 3)

$$\mu_s(x_s) = \begin{bmatrix} \mu_s(0) \\ \mu_s(1) \\ \mu_s(2) \end{bmatrix} \qquad \mu_{st}(x_s, x_t) = \begin{bmatrix} \mu_{st}(0, 0) & \mu_{st}(0, 1) & \mu_{st}(0, 2) \\ \mu_{st}(1, 0) & \mu_{st}(1, 1) & \mu_{st}(1, 2) \\ \mu_{st}(2, 0) & \mu_{st}(2, 1) & \mu_{st}(2, 2) \end{bmatrix}$$

Consequence of junction tree theorem: If $\{\mu_s, \mu_{st}\}$ are nonnegative and *locally consistent*:

Normalization:
$$\sum_{x_s} \mu_s(x_s) = 1$$

Normalization:
$$\sum_{x_s} \mu_s(x_s) = 1$$
 Marginalization:
$$\sum_{x_t'} \mu_{st}(x_s, x_t') = \mu_s(x_s),$$

then on any tree-structured graph T, they are $globally\ consistent$. (Lauritzen & Spiegelhalter, 1988)

Max-product on trees: Linear program solver

• MAP problem as a simple linear program:

$$f(\widehat{\mathbf{x}}) = \arg \max_{\overrightarrow{\mu} \in \mathbb{M}(T)} \left\{ \sum_{s \in V} \mathbb{E}_{\mu_s} [\theta_s(x_s)] + \sum_{(s,t) \in E} \mathbb{E}_{\mu_{st}} [\theta_{st}(x_s, x_t)] \right\}$$

subject to $\vec{\mu}$ in tree marginal polytope:

$$\mathbb{M}(T) = \left\{ \vec{\mu} \ge 0, \quad \sum_{x_s} \mu_s(x_s) = 1, \quad \sum_{x'_t} \mu_{st}(x_s, x'_t) = \mu_s(x_s) \right\}.$$

Max-product and LP solving:

- on tree-structured graphs, max-product is a dual algorithm for solving the tree LP. (Wai. & Jordan, 2003)
- max-product message $M_{ts}(x_s) \equiv \text{Lagrange multiplier}$ for enforcing the constraint $\sum_{x'_t} \mu_{st}(x_s, x'_t) = \mu_s(x_s)$.

Standard message-passing algorithms: With cycles

Exact for trees, but approximate for graphs with cycles.

 $M_{ts} \equiv \text{message from node } t \text{ to } s$

 $\mathcal{N}(t) \equiv \text{neighbors of node } t$

Sum-product: for marginals

Max-product: for modes

$$\underline{\text{Update:}} \quad \mathbf{M_{ts}}(\mathbf{x_s}) \leftarrow \max_{x_t' \in \mathcal{X}_t} \left\{ \exp \left[\theta_{st}(x_s, x_t') + \theta_t(x_t') \right] \prod_{v \in \mathcal{N}(t) \setminus s} \mathbf{M_{vt}}(\mathbf{x_t}) \right\}$$

Question: What does max-product compute on a graph with cycles?

Some previous theory on ordinary max-product

- optimal for trees, and junction trees (Lauritzen & Spiegelhalter, 1988; Pearl, 1988; Dawid, 1992)
- analysis of graphs with large girth (Gallager, 1963; many others from 1990s onwards)
- single-cycle graphs (Aji & McEliece, 1998; Horn, 1999; Weiss, 1998)
- existence of fixed points for positive couplings (Wainwright et al., 2003)
- local optimality guarantees:
 - "tree-plus-loop" neighborhoods (Weiss & Freeman, 2001)
 - strengthened optimality results and computable error bounds (Wainwright et al., 2003)
- some exactness results for particular types of matching problems (Bayati et al., 2006, 2008; Jebara & Huang, 2007; Sanghavi, 2008)

Standard analysis via computation tree

• standard tool: computation tree of message-passing updates (Gallager, 1963)

• level t of tree: all nodes whose messages reach the root (node 1) after t iterations of message-passing

Illustration: Non-exactness of standard max-product

Intuition:

- max-product solves (exactly) modified problem on computation tree
- edge/nodes not equally weighted \Rightarrow incorrectness of max-product

- (a) Diamond graph G_{dia}
- (b) Computation tree (4 iterations)
- for example: asymptotic node fractions in this computation tree:

$$\begin{bmatrix} f(1) & f(2) & f(3) & f(4) \end{bmatrix} = \begin{bmatrix} 0.2393 & 0.2607 & 0.2607 & 0.2393 \end{bmatrix}$$

A whole family of non-exact examples

• for γ sufficiently large, optimal solution is always either

$$1^4 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
 or $(-1)^4 = \begin{bmatrix} (-1) & (-1) & (-1) \end{bmatrix}$

• max-product and optimal decision based on different boundaries:

Optimal boundary:
$$\hat{\mathbf{x}} = \begin{cases} 1^4 & \text{if } 0.25\alpha + 0.25\beta \ge 0 \\ (-1)^4 & \text{otherwise} \end{cases}$$

$$\frac{\text{Max-product boundary:}}{\hat{\mathbf{x}}} \quad \hat{\mathbf{x}} = \begin{cases} 1^4 & \text{if } 0.2393\alpha + 0.2607\beta \ge 0 \\ (-1)^4 & \text{otherwise} \end{cases}$$

Tree-reweighted max-product algorithm

Message update from node t to node s:

reweighted messages

$$M_{ts}(x_s) \leftarrow \kappa \max_{x_t' \in \mathcal{X}_t} \left\{ \exp \left[\frac{\theta_{st}(x_s, x_t')}{\rho_{st}} + \theta_t(x_t') \right] \frac{\prod_{v \in \mathcal{N}(t) \setminus s} \left[M_{vt}(x_t) \right]^{\rho_{vt}}}{\left[M_{st}(x_t) \right]^{(1-\rho_{ts})}} \right\}.$$
reweighted edge opposite message

Properties:

- 1. Modified updates remain distributed and purely local over the graph.
 - Messages are reweighted with $\rho_{st} \in [0, 1]$.
- 2. Key differences: Potential on edge (s,t) is rescaled by $\rho_{st} \in [0,1]$.
 - Update involves the reverse direction edge.
- 3. The choice $\rho_{st} = 1$ for all edges (s, t) recovers standard update.

(Wainwright, Jaakkola & Willsky, 2002)

Edge appearance probabilities

Experiment: What is the probability ρ_e that a given edge $e \in E$ belongs to a tree T drawn randomly under ρ ?

- (a) Original (b) $\rho(T^1) = \frac{1}{3}$ (c) $\rho(T^2) = \frac{1}{3}$ (d) $\rho(T^3) = \frac{1}{3}$

In this example: $\rho_b = 1;$ $\rho_e = \frac{2}{3};$ $\rho_f = \frac{1}{3}.$

$$\rho_b = 1;$$

$$\rho_e = \frac{2}{3};$$

$$\rho_f = \frac{1}{3}$$

The vector $\rho_e = \{ \rho_e \mid e \in E \}$ must belong to the spanning tree polytope, denoted $\mathbb{T}(G)$. (Edmonds, 1971)

TRW max-product does not lie

• from message fixed point M^* , compute pseudo-max-marginals associated with vertex s,

$$\nu_s(x_s) = \exp(\theta_s(x_s)) \prod_{t \in N(s)} [M_{ts}^*(x_s)]^{\rho_{ts}},$$

and similar quantity for edge (s, t).

• say strong tree agreement holds if there exists a configuration \mathbf{x}^* such that:

$$x_s^* \in \arg\max_{x_s} \nu_s(x_s)$$
 for all $s \in V$
 $(x_s^*, x_t^*) \in \arg\max_{x_s, x_t} \nu_{st}(x_s, x_t)$ for all $(s, t) \in E$.

Theorem: For any fixed point M^* any STA configuration \mathbf{x}^* is a mode (most probable configuration) on the full graph G. (WaiJaaWil05)

• sharp contrast to ordinary max-product, which does lie

Tree-based relaxation for graphs with cycles

Set of locally consistent pseudomarginals for general graph G:

$$\mathbb{L}(G) = \left\{ \vec{\tau} \mid \sum_{x_s} \tau_s(x_s) = 1, \quad \sum_{x_t} \tau_{st}(x_s, x_t') = \tau_s(x_s) \right\}.$$

Key: For a general graph, L(G) is an outer bound on M(G), and yields a *linear-programming relaxation* of the MAP problem:

$$f(\widehat{\mathbf{x}}) = \max_{\vec{\mu} \in \mathbb{M}(G)} \theta^T \vec{\mu} \le \max_{\vec{\tau} \in \mathbb{L}(G)} \theta^T \vec{\tau}.$$

TRW max-product and LP relaxation

First-order (tree-based) LP relaxation:

$$f(\widehat{\mathbf{x}}) \leq \max_{\overrightarrow{\tau} \in \mathbb{L}(G)} \left\{ \sum_{s \in V} \mathbb{E}_{\tau_s} [\theta_s(x_s)] + \sum_{(s,t) \in E} \mathbb{E}_{\tau_{st}} [\theta_{st}(x_s, x_t)] \right\}$$

Theorem:

(WaiJaaWil05; Kolmogorov & Wainwright, 2005):

- (a) Strong tree agreement Any TRW fixed-point that satisfies the strong tree agreement condition specifies an optimal LP solution.
- (b) **LP solving:** For any binary pairwise problem, TRW max-product solves the first-order LP relaxation.
- (c) **Persistence for binary problems:** Let $S \subseteq V$ be the subset of vertices for which there exists a single point $x_s^* \in \arg\max_{x_s} \nu_s^*(x_s)$. Then for any optimal solution, it holds that $y_s = x_s^*$.

Basic idea: convex combinations of trees

Observation: Easy to find its MAP-optimal configurations on trees:

$$OPT(\theta(T)) := \{ \mathbf{x} \in \mathcal{X}^n \mid \mathbf{x} \text{ is MAP-optimal for } p(\mathbf{x}; \theta(T)) \}.$$

Idea: Approximate original problem by a convex combination of trees.

$$\rho = {\rho(T)}$$
 \equiv probability distribution over spanning trees

$$\theta(T)$$
 \equiv tree-structured parameter vector

Dual perspective: linear programming relaxation

• Upper bound maintained by reweighted message-passing:

$$\max_{\mathbf{x} \in \mathcal{X}^N} \langle \theta^*, \, \phi(\mathbf{x}) \rangle \leq \sum_{T \in \mathfrak{T}} \rho(T) \max_{\mathbf{x} \in \mathcal{X}^N} \langle \theta(T), \, \phi(\mathbf{x}) \rangle$$

• Dual of finding optimal upper bound \equiv tree-based LP relaxation:

$$\max_{\mathbf{x} \in \mathcal{X}^N} \langle \theta^*, \, \phi(\mathbf{x}) \rangle \leq \max_{\mu \in \text{LOCAL}(G)} \langle \mu, \, \phi(\mathbf{x}) \rangle$$

- TRW-MP algorithm fixed points specify LP optimum:
 - whenever strong tree agreement holds

(WaiJaaWil05)

- for any binary problem

(KolWai05)

-but TRW-MP does not solve LP in general

(Kol05)

Various connections and extensions

- max-sum diffusion framework (Schlesinger et al., 1960s, 70s; Werner, 2007)
- binary QPs and roof duality: equivalent to relaxation using $\mathbb{L}(G)$ (Hammer et al., 1984; Boros et al., 1990)
- hierarchy of LP relaxations based on treewidth:

$$\mathbb{M}(G) = \mathbb{L}_t(G) \subset \mathbb{L}_{t-1}(G) \subset \ldots \subset \mathbb{L}_1(G)$$

- treewidth hierarchy: equivalent to Boros et al. (1990) and Sherali-Adams (1990) hierarchies for binary problems (WaiJor04)
- other approaches with links to first-order $\mathbb{L}(G)$ LP relaxation:
 - sequential TRW and conv. guarantees (Kolmogorov, 2005)
 - convex free energies (Weiss et al., 2007)
 - sub-gradients (Feldman et al, 2003; Komodakis et al., 2007)
 - proximal projections (Ravikumar et al., 2008)

Extensions to computing/bounding likelihoods

• log normalization/likelihood for an undirected model:

$$A(\theta) = \log \sum_{\mathbf{x} \in \mathcal{X}^N} \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$$

• variational reformulation as a convex optimization problem:

$$A(\theta) = \max_{\vec{\mu} \in \mathbb{M}(G)} \{ \theta^T \vec{\mu} + H(\vec{\mu}) \}.$$

where

- $H(\vec{\mu})$ is maximized entropy, over all distributions with mean parameters $\vec{\mu}$
- marginal polytope $\mathbb{M}(G)$ of all globally realizable distributions
- both $H(\cdot)$ and $\mathbb{M}(G)$ pose significant challenges for general graphs
- as before hypertrees are easy, and inspire the same relaxation philosophy (Wainwright & Jordan, 2003)

Summary

- marginal polytope: fundamental object associated with any discrete graphical model
- connections between LP relaxation and message-passing algorithms on graphs
- marginal polytopes and relaxations: also relevant for approximating/bounding marginals and likelihoods
- many open questions/issues:
 - approximation guarantees for LP relaxations: role of graph structure
 - guarantees for marginal/likelihood approximations
 - extensions to mixed discrete/continuous graphs, non-parametric settings
 - hybrid variational and MCMC methods

Some papers

- Wainwright, M. J. & Jordan, M. (2003) Graphical models, exponential families, and variational methods. Department of Statistics, UC Berkeley, Technical Report 649. To appear in Foundation and Trends in Machine Learning.
- Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S., (2005), Exact MAP estimates via agreement on hypertrees: Message-passing and linear programming. IEEE Trans. Information Theory, 51:3697–3717.
- Wainwright, M. J., Jaakkola, T. S. and Willsky, A. S. (2005). A new class of upper bounds on the log partition function. *IEEE Transactions on Information Theory*. July, 51:2313–2335.
- Daskalakis, C., Dimakis, A. D., Karp, R. and Wainwright, M. J. (2008). Probabilistic analysis of linear programming decoding. To appear in IEEE Trans. Info. Theory.
- Ravikumar, P., Agarwal, A. and Wainwright, M. J. (2008). *Message-passing for graph-structured linear programs: Proximal projections and convergence*. To appear in Int. Conference on Machine Learning, Helsinki, Finland.