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Introduction

e max/sum-product message-passing:
— “divide and conquer”: based on factorization/Markov properties
— exact for decomposable; approximate for general graphs

— now standard in various fields (e.g., statistics, statistical machine
learning, statistical physics, computer vision, computational
biology....)

e convex relaxations (LP, SOCP, SDP etc.):

— “relax” a hard combinatorial problem into a simple convex one

— standard method in computer science, operations research, polyhedral
combinatorics

e notion of marginal polytope:
— geometric object associated with any undirected graphical model
— complexity critically determined by graph topology

— yields fruitful connections between message-passing and LP relaxation




MAP optimization in undirected graphical models
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e overall distribution decomposes additively on graph cliques:

p(x;0) exp{zes(ajs)—l— Z HSt(:vs,xt)}

seV (s,t)eE

e mode or maximum a posteriori (MAP) estimate:

% € arg max { S () + S Hst(xs,xt)}.
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Max-product on trees

Goal: Compute most probable configuration on a tree:

X = arg max H exp(fs(xs) H exp(Ost(Ts, xt))

xe XN
seV (s,t)eE

max p(x) = max |exp(fr(x1)) H {maXGXp[Ht(l’t)+92t(l’2>l’t)]}
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Max-product strategy: “Divide and conquer”: break global
maximization into simpler sub-problems.  (Lauritzen & Spiegelhalter, 1988;
Dawid, 1992)




Decompose:
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Max-product recursions
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Update messages:

exp(03(x3) + Oa23(x2, x3)
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Variational view: Max-product and linear programs

e MAP as integer program: f* = max { > Os(zs)+ Y Ose(ws,ze)}

xexXN " sev (s,t)EE

e define local marginal distributions (e.g., for m = 3 states):

5 (0) 115¢(0,0)  pst(0,1) st (0,2)
ps(xs) = |ps(1) pst(Ts, Te) = |pse(1,0)  pse(1,1)  pst(1,2)
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e alternative formulation of MAP as linear program

g = max {ZEMS[HS(IS)] + Z Eﬂst[QSt('rS7wt)]}
seV

(ps,pst)EM(T) (s,t)eE

Local expectations: E,.[0s(zs)] = Z,us(:vs)ﬁs(:vs).

Key question: What constraints must local marginals { s, tts }
satisty?




Marginal polytopes for general undirected models

e M(G) = set of all globally realizable marginals { s, pst }:

FER™ | p(as) = Y pu(x), and pales,ze) = S0 pulx)

Ti,tF£s Ty ,UWFS,T

for some p,(-) over (X1,...,Xn) € {0,1,...,m — 1}".

.

e polytope in m|V| + m?|E| dimensions (m per vertex, m* per edge)

a@'ﬁ < b;

o with m” vertices

e number of facets?




Marginal polytope for trees

e M(T') = special case of marginal polytope for tree T

e local marginal distributions on nodes/edges (e.g., m = 3)

Ms (0) Mst (07 O) Mst (07 1) Mst (07 2)
ps(xs) = | ps(1) pst(Ts, Te) = |pse(1,0)  pse(1,1)  pst(1,2)
RE (2)_ tst (2, O) Mst (2, 1) tst (2, 2)_

Consequence of junction tree theorem: If {us,pus} are non-

negative and locally consistent:

Normalization : Z,us(ibs) = 1
s
o o . /
Marginalization : Z,ust(ajs,xt) = us(zTs),

then on any tree-structured graph 7', they are globally consistent.
(Lauritzen & Spiegelhalter, 1988)




Max-product on trees: Linear program solver

e MAP problem as a simple linear program:

f(x) = arg max ZEMS[QS(ZUS)]+ Z B, [0st(zs, 2¢)]
seV

AEM(T) (s,t)eE

subject to i in tree marginal polytope:

M(T) = q# =0, ZMS(CUS) = 1, Zﬂst(x&w;) = ps(2s)

/
L

Max-product and LP solving:
e on tree-structured graphs, max-product is a dual algorithm for
solving the tree LP. (Wai. & Jordan, 2003)

e max-product message M;s(xs) = Lagrange multiplier for

enforcing the constraint Zx; tst(Ts, xh) = ps(xs).




Standard message-passing algorithms: With cycles

Exact for trees, but approximate for graphs with cycles.
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neighbors of node ¢

Sum-product: for marginals

Max-product: for modes

Update: Mis(xs) < max {exp {9875(:63,:62) + Gt(:cg)} ] Mvt(xt)}

Ty € Xt vEN (£)\s

Question: What does max-product compute on a graph with cycles?




Some previous theory on ordinary max-product
e optimal for trees, and junction trees (Lauritzen & Spiegelhalter, 1988;

Pearl, 1988; Dawid, 1992)

e analysis of graphs with large girth (Gallager, 1963; many others from
1990s onwards)

e single-cvcle egraphs Aji & McEliece, 1998: Horn, 1999; Weiss, 1998
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e existence of fixed points for positive couplings (Wainwright et al., 2003)

e local optimality guarantees:
— “tree-plus-loop” neighborhoods (Weiss & Freeman, 2001)

— strengthened optimality results and computable error bounds
(Wainwright et al., 2003)

e some exactness results for particular types of matching problems
(Bayati et al., 2006, 2008; Jebara & Huang, 2007; Sanghavi, 2008)




Standard analysis via computation tree

e standard tool: computation tree of message-passing updates
(Gallager, 1963)

1
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(a) Original graph (b) Computation tree (4 iterations)

e level t of tree: all nodes whose messages reach the root (node 1)

after ¢t iterations of message-passing




Illustration: Non-exactness of standard max-product

Intuition:
e max-product solves (exactly) modified problem on computation tree

e edge/nodes not equally weighted = incorrectness of max-product
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(a) Diamond graph Ggja (b) Computation tree (4 iterations)

e for example: asymptotic node fractions in this computation tree:

{f(l) f(2)  f(3) f(4)} = [0.2393 0.2607 0.2607 0.2393}




A whole family of non-exact examples
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e for v sufficiently large, optimal solution is always either

=11 1 e (D)= (-1 (-1 (-1) (-]

e max-product and optimal decision based on different boundaries:

14 if 0.25c + 0.256 > 0

Optimal boundary: X =
(—1)* otherwise

14 if 0.2393ca + 0.26075 > 0

Max-product boundary: X =
(—1)* otherwise




Tree-reweighted max-product algorithm

Message update from node ¢ to node s:

reweighted messages
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reweighted edge opposite message

Properties:

1. Modified updates remain distributed and purely local over the graph.
e Messages are reweighted with ps: € [0, 1].

2. Key differences: e Potential on edge (s,t) is rescaled by ps: € [0, 1].

e Update involves the reverse direction edge.

3. The choice ps: = 1 for all edges (s,t) recovers standard update.

(Wainwright, Jaakkola & Willsky, 2002)




Edge appearance probabilities

Experiment: What is the probability p. that a given edge e € E
belongs to a tree T' drawn randomly under p?
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In this example: op = 1; Do = %7 pr = %

The vector pe = { pe | € € E } must belong to the spanning tree
polytope, denoted T(G). (Edmonds, 1971)




TRW max-product does not lie

e from message fixed point M™, compute pseudo-mazx-marginals

associated with vertex s,

vs(rs) = exp(fs(ws)) H (M ()]

teEN(s)
and similar quantity for edge (s, t).

e say strong tree agreement holds if there exists a configuration x*
such that:

r, € argmaxvg(Ty) for all s € V
s
(x5, xf) € argmaxvg(Ts,xt) for all (s,t) € E.

Theorem: For any fixed point M* any STA configuration x* is a
mode (most probable configuration) on the full graph G.
(WaiJaaWil05)

e sharp contrast to ordinary max-product, which does lie




Tree-based relaxation for graphs with cycles

Set of locally consistent pseudomarginals for general graph G:

L(G) = {F D re(s) =1, Zfst(xs,x;):fs(xs)}.

Integral vertex

<

Fractional vertex

L(G)

Key: For a general graph, L(() is an outer bound on M(G), and yields

a linear-programming relaxation of the MAP problem:

X) = 0T < 7.
1) = a0 < g, 07




TRW max-product and LP relaxation

First-order (tree-based) LP relaxation:

f(x) < max ZETS (xs)] + Z E. . [0st(xs, x¢)]

(s,t)eE

Theorem: (WaiJaaWil05; Kolmogorov & Wainwright, 2005):

(a) Strong tree agreement Any TRW fixed-point that satisfies the

strong tree agreement condition specifies an optimal LP solution.

(b) LP solving: For any binary pairwise problem, TRW max-product

solves the first-order LP relaxation.

(c) Persistence for binary problems: Let S C V be the subset of
vertices for which there exists a single point z¥ € arg max,_ v} (x;).

Then for any optimal solution, it holds that ys = 7.




Basic idea: convex combinations of trees
Observation: Easy to find its MAP-optimal configurations on trees:

OPT(4(T)) := {xe€ X" |x is MAP-optimal for p(x;6(T))}.

Idea: Approximate original problem by a convex combination of trees.

p=A1p(T)} = probability distribution over spanning trees

o(T) = tree-structured parameter vector
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Dual perspective: linear programming relaxation

e Upper bound maintained by reweighted message-passing:

max (6%, ¢(x)) < Y p(T) max (0(T), ¢(x))

xe XN Tex xe XN

e Dual of finding optimal upper bound = tree-based LP relaxation:

max (6%, ¢(x)) < e G)w, P(x))

e TRW-MP algorithm fixed points specify LP optimum:
— whenever strong tree agreement holds (WaiJaaWil05)
— for any binary problem (KolWai05)
— ....but TRW-MP does not solve LLP in general (Kol05)




Various connections and extensions

max-sum diffusion framework (Schlesinger et al., 1960s, 70s; Werner,
2007)

binary QPs and roof duality: equivalent to relaxation using IL(G)
(Hammer et al., 1984; Boros et al., 1990)

hierarchy of LP relaxations based on treewidth:
M(G) =1L(G) CL;_1(G) C ... CLi(G)

treewidth hierarchy: equivalent to Boros et al. (1990) and
Sherali-Adams (1990) hierarchies for binary problems (WaiJor04)

other approaches with links to first-order IL(G) LP relaxation:

— sequential TRW and conv. guarantees (Kolmogorov, 2005)
— convex free energies (Weiss et al., 2007)
— sub-gradients (Feldman et al, 2003; Komodakis et al., 2007)
— proximal projections (Ravikumar et al., 2008)




Extensions to computing/bounding likelihoods

log normalization /likelihood for an undirected model:

A@) = log > exp{Zes(a:sH S Hst(xs,xt)}

xc XN seV (s,t)eEE

variational reformulation as a convex optimization problem:

A(O) = max 91[[+H[[ .
( ) /161\4?((;){ ( )}
where

— H(ji) is maximized entropy, over all distributions with mean
parameters [i

— marginal polytope M(G) of all globally realizable distributions
both H(-) and M(G) pose significant challenges for general graphs

as before hypertrees are easy, and inspire the same relaxation
philosophy (Wainwright & Jordan, 2003)




Summary

marginal polytope: fundamental object associated with any discrete
graphical model

connections between LP relaxation and message-passing algorithms

on graphs

marginal polytopes and relaxations: also relevant for

approximating /bounding marginals and likelihoods

many open questions/issues:
— approximation guarantees for LP relaxations: role of graph structure
— guarantees for marginal /likelihood approximations

— extensions to mixed discrete/continuous graphs, non-parametric

settings

— hybrid variational and MCMC methods
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