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Introduction

• max/sum-product message-passing:

– “divide and conquer”: based on factorization/Markov properties

– exact for decomposable; approximate for general graphs

– now standard in various fields (e.g., statistics, statistical machine

learning, statistical physics, computer vision, computational

biology....)

• convex relaxations (LP, SOCP, SDP etc.):

– “relax” a hard combinatorial problem into a simple convex one

– standard method in computer science, operations research, polyhedral

combinatorics

• notion of marginal polytope:

– geometric object associated with any undirected graphical model

– complexity critically determined by graph topology

– yields fruitful connections between message-passing and LP relaxation



MAP optimization in undirected graphical models

θst(xs, xt)

θs(xs)θt(xt)
• undirected graph G = (V,E)

• Xs ≡ random variable at node s

taking values xs ∈ Xs

• θs(xs) ≡ observation term

• θst(xs, xt) ≡ coupling term

• overall distribution decomposes additively on graph cliques:

p(x; θ) ∝ exp
{ ∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

• mode or maximum a posteriori (MAP) estimate:

x̂ ∈ arg max
x∈XN

{ ∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

.



Max-product on trees

Goal: Compute most probable configuration on a tree:

x̂ = arg max
x∈XN





∏

s∈V

exp(θs(xs)
∏

(s,t)∈E

exp(θst(xs, xt))




 .
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max
x1,x2,x3

p(x) = max
x1



exp(θ1(x1))
∏

t∈{1,3}

{
max

xt

exp[θt(xt) + θ2t(x2, xt)]

}



Max-product strategy: “Divide and conquer”: break global

maximization into simpler sub-problems. (Lauritzen & Spiegelhalter, 1988;

Dawid, 1992)



Max-product recursions

Decompose: max
x1,x2,x3,x4,x5

p(x) = max
x1

[
exp(θ1(x1))

∏
t∈N(2) Mt2(x2)

]
.
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Update messages:

M32(x3, x2) = max
x3



exp(θ3(x3) + θ23(x2, x3)
∏

v∈N(3)\2

Mv3(x3)







Variational view: Max-product and linear programs

• MAP as integer program: f∗ = max
x∈XN

˘ P

s∈V

θs(xs) +
P

(s,t)∈E

θst(xs, xt)
¯

• define local marginal distributions (e.g., for m = 3 states):

µs(xs) =

2
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• alternative formulation of MAP as linear program

g∗ = max
(µs,µst)∈M(T )

{ ∑

s∈V

Eµs
[θs(xs)] +

∑

(s,t)∈E

Eµst
[θst(xs, xt)]

}

Local expectations: Eµs
[θs(xs)] :=

∑

xs

µs(xs)θs(xs).

Key question: What constraints must local marginals {µs, µst}

satisfy?



Marginal polytopes for general undirected models

• M(G) ≡ set of all globally realizable marginals {µs, µst}:
8

<

:
~µ ∈ R

mN
˛
˛
˛ µs(xs) =

X

xt,t6=s

pµ(x), and µst(xs, xt) =
X

xu,u6=s,t

pµ(x)

9

=

;

for some pµ(·) over (X1, . . . , XN ) ∈ {0, 1, . . . , m− 1}N .

M(G)

aT
i ~µ ≤ bi

a

• polytope in m|V |+ m2|E| dimensions (m per vertex, m2 per edge)

• with mN vertices

• number of facets?



Marginal polytope for trees

• M(T ) ≡ special case of marginal polytope for tree T

• local marginal distributions on nodes/edges (e.g., m = 3)

µs(xs) =

2
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Consequence of junction tree theorem: If {µs, µst} are non-

negative and locally consistent :

Normalization :
∑

xs

µs(xs) = 1

Marginalization :
∑

x′

t

µst(xs, x
′
t) = µs(xs),

then on any tree-structured graph T , they are globally consistent .

(Lauritzen & Spiegelhalter, 1988)

.



Max-product on trees: Linear program solver

• MAP problem as a simple linear program:

f(x̂) = arg max
~µ∈M(T )





∑

s∈V

Eµs
[θs(xs)] +

∑

(s,t)∈E

Eµst
[θst(xs, xt)]






subject to ~µ in tree marginal polytope:

M(T ) =




~µ ≥ 0,
∑

xs

µs(xs) = 1,
∑

x′

t

µst(xs, x
′
t) = µs(xs)




 .

Max-product and LP solving:

• on tree-structured graphs, max-product is a dual algorithm for

solving the tree LP. (Wai. & Jordan, 2003)

• max-product message Mts(xs) ≡ Lagrange multiplier for

enforcing the constraint
∑

x′

t

µst(xs, x
′
t) = µs(xs).



Standard message-passing algorithms: With cycles

Exact for trees, but approximate for graphs with cycles.

Tu

Tv

Tw

w

u

v

s

t
Mut

Mwt

Mvt

Mts

Mts ≡ message from node t to s

N (t) ≡ neighbors of node t

Sum-product: for marginals

Max-product: for modes

Update: Mts(xs) ← max
x′

t
∈Xt

n

exp
h

θst(xs, x
′
t) + θt(x

′
t)

i
Q

v∈N (t)\s

Mvt(xt)
o

.

Question: What does max-product compute on a graph with cycles?



Some previous theory on ordinary max-product

• optimal for trees, and junction trees (Lauritzen & Spiegelhalter, 1988;

Pearl, 1988; Dawid, 1992)

• analysis of graphs with large girth (Gallager, 1963; many others from

1990s onwards)

• single-cycle graphs (Aji & McEliece, 1998; Horn, 1999; Weiss, 1998)

• existence of fixed points for positive couplings (Wainwright et al., 2003)

• local optimality guarantees:

– “tree-plus-loop” neighborhoods (Weiss & Freeman, 2001)

– strengthened optimality results and computable error bounds

(Wainwright et al., 2003)

• some exactness results for particular types of matching problems

(Bayati et al., 2006, 2008; Jebara & Huang, 2007; Sanghavi, 2008)



Standard analysis via computation tree

• standard tool: computation tree of message-passing updates

(Gallager, 1963)
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(a) Original graph (b) Computation tree (4 iterations)

• level t of tree: all nodes whose messages reach the root (node 1)

after t iterations of message-passing



Illustration: Non-exactness of standard max-product

Intuition:

• max-product solves (exactly) modified problem on computation tree

• edge/nodes not equally weighted ⇒ incorrectness of max-product
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(a) Diamond graph Gdia (b) Computation tree (4 iterations)

• for example: asymptotic node fractions in this computation tree:
h

f(1) f(2) f(3) f(4)
i

=
h

0.2393 0.2607 0.2607 0.2393
i



A whole family of non-exact examples

1

2
3

4

α

α

β

β

θs(xs)

8

<

:

αxs if s = 1 or s = 4

βxs if s = 2 or s = 3

θst(xs, xt) =

8

<

:

−γ if xs 6= xt

0 otherwise

• for γ sufficiently large, optimal solution is always either

14 =
[
1 1 1 1

]
or (−1)4 =

[
(−1) (−1) (−1) (−1)

]

• max-product and optimal decision based on different boundaries:

Optimal boundary: x̂ =





14 if 0.25α + 0.25β ≥ 0

(−1)4 otherwise

Max-product boundary: x̂ =





14 if 0.2393α + 0.2607β ≥ 0

(−1)4 otherwise



Tree-reweighted max-product algorithm

Message update from node t to node s:

reweighted messages

Mts(xs) ← κ max
x′

t
∈Xt

(

exp
hθst(xs, x

′
t)

ρst
| {z }

+ θt(x
′
t)

i

Q

v∈N (t)\s

z }| {
ˆ
Mvt(xt)

˜ρvt

ˆ
Mst(xt)

˜(1−ρts)

| {z }

)

.

reweighted edge opposite message

Properties:

1. Modified updates remain distributed and purely local over the graph.

2. Key differences:

• Messages are reweighted with ρst ∈ [0, 1].

• Potential on edge (s, t) is rescaled by ρst ∈ [0, 1].

• Update involves the reverse direction edge.

3. The choice ρst = 1 for all edges (s, t) recovers standard update.

(Wainwright, Jaakkola & Willsky, 2002)



Edge appearance probabilities

Experiment: What is the probability ρe that a given edge e ∈ E

belongs to a tree T drawn randomly under ρ?

e

b

f

e

b

f

e

b

f

e

b

f

(a) Original (b) ρ(T 1) = 1
3

(c) ρ(T 2) = 1
3

(d) ρ(T 3) = 1
3

In this example: ρb = 1; ρe = 2
3 ; ρf = 1

3 .

The vector ρe = { ρe | e ∈ E } must belong to the spanning tree

polytope, denoted T(G). (Edmonds, 1971)



TRW max-product does not lie

• from message fixed point M∗, compute pseudo-max-marginals

associated with vertex s,

νs(xs) = exp(θs(xs))
∏

t∈N(s)

[M∗
ts(xs)]

ρts ,

and similar quantity for edge (s, t).

• say strong tree agreement holds if there exists a configuration x∗

such that:

x∗s ∈ arg max
xs

νs(xs) for all s ∈ V

(x∗s, x
∗
t ) ∈ arg max

xs,xt

νst(xs, xt) for all (s, t) ∈ E.

Theorem: For any fixed point M∗ any STA configuration x∗ is a

mode (most probable configuration) on the full graph G.

(WaiJaaWil05)

• sharp contrast to ordinary max-product, which does lie



Tree-based relaxation for graphs with cycles

Set of locally consistent pseudomarginals for general graph G:

L(G) =

{
~τ |

∑

xs

τs(xs) = 1,
∑

xt

τst(xs, x
′
t) = τs(xs)

}
.

Integral vertex

Fractional vertexM(G)

L(G)

Key: For a general graph, L(G) is an outer bound on M(G), and yields

a linear-programming relaxation of the MAP problem:

f(x̂) = max
~µ∈M(G)

θT ~µ ≤ max
~τ∈L(G)

θT~τ .



TRW max-product and LP relaxation

First-order (tree-based) LP relaxation:

f(x̂) ≤ max
~τ∈L(G)





∑

s∈V

Eτs
[θs(xs)] +

∑

(s,t)∈E

Eτst
[θst(xs, xt)]






Theorem: (WaiJaaWil05; Kolmogorov & Wainwright, 2005):

(a) Strong tree agreement Any TRW fixed-point that satisfies the

strong tree agreement condition specifies an optimal LP solution.

(b) LP solving: For any binary pairwise problem, TRW max-product

solves the first-order LP relaxation.

(c) Persistence for binary problems: Let S ⊆ V be the subset of

vertices for which there exists a single point x∗s ∈ arg maxxs
ν∗s (xs).

Then for any optimal solution, it holds that ys = x∗s.



Basic idea: convex combinations of trees

Observation: Easy to find its MAP-optimal configurations on trees:

OPT(θ(T )) :=
˘
x ∈ Xn | x is MAP-optimal for p(x; θ(T ))

¯
.

Idea: Approximate original problem by a convex combination of trees.

ρ = {ρ(T )} ≡ probability distribution over spanning trees

θ(T ) ≡ tree-structured parameter vector

∗ θ∗ = ρ(T 1)θ(T 1) + ρ(T 2)θ(T 2) + ρ(T 3)θ(T 3)

† OPT(θ∗) ⊇ OPT(θ(T 1)) ∩ OPT(θ(T 2)) ∩ OPT(θ(T 3)).



Dual perspective: linear programming relaxation

• Upper bound maintained by reweighted message-passing:

max
x∈XN

〈θ∗, φ(x)〉 ≤
∑

T∈T

ρ(T ) max
x∈XN

〈θ(T ), φ(x)〉

• Dual of finding optimal upper bound ≡ tree-based LP relaxation:

max
x∈XN

〈θ∗, φ(x)〉 ≤ max
µ∈LOCAL(G)

〈µ, φ(x)〉

• TRW-MP algorithm fixed points specify LP optimum:

– whenever strong tree agreement holds (WaiJaaWil05)

– for any binary problem (KolWai05)

– ....but TRW-MP does not solve LP in general (Kol05)



Various connections and extensions

• max-sum diffusion framework (Schlesinger et al., 1960s, 70s; Werner,

2007)

• binary QPs and roof duality: equivalent to relaxation using L(G)

(Hammer et al., 1984; Boros et al., 1990)

• hierarchy of LP relaxations based on treewidth:

M(G) = Lt(G) ⊂ Lt−1(G) ⊂ . . . ⊂ L1(G)

• treewidth hierarchy: equivalent to Boros et al. (1990) and

Sherali-Adams (1990) hierarchies for binary problems (WaiJor04)

• other approaches with links to first-order L(G) LP relaxation:

– sequential TRW and conv. guarantees (Kolmogorov, 2005)

– convex free energies (Weiss et al., 2007)

– sub-gradients (Feldman et al, 2003; Komodakis et al., 2007)

– proximal projections (Ravikumar et al., 2008)



Extensions to computing/bounding likelihoods

• log normalization/likelihood for an undirected model:

A(θ) = log
∑

x∈XN

exp

{ ∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)

}

• variational reformulation as a convex optimization problem:

A(θ) = max
~µ∈M(G)

{
θT ~µ + H(~µ)

}
.

where

– H(~µ) is maximized entropy, over all distributions with mean

parameters ~µ

– marginal polytope M(G) of all globally realizable distributions

• both H(·) and M(G) pose significant challenges for general graphs

• as before hypertrees are easy, and inspire the same relaxation

philosophy (Wainwright & Jordan, 2003)



Summary

• marginal polytope: fundamental object associated with any discrete

graphical model

• connections between LP relaxation and message-passing algorithms

on graphs

• marginal polytopes and relaxations: also relevant for

approximating/bounding marginals and likelihoods

• many open questions/issues:

– approximation guarantees for LP relaxations: role of graph structure

– guarantees for marginal/likelihood approximations

– extensions to mixed discrete/continuous graphs, non-parametric

settings

– hybrid variational and MCMC methods



Some papers

• Wainwright, M. J. & Jordan, M. (2003) Graphical models, exponential families,

and variational methods. Department of Statistics, UC Berkeley, Technical

Report 649. To appear in Foundation and Trends in Machine Learning.

• Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S., (2005), Exact MAP

estimates via agreement on hypertrees: Message-passing and linear

programming. IEEE Trans. Information Theory, 51:3697–3717.

• Wainwright, M. J., Jaakkola, T. S. and Willsky, A. S. (2005). A new class of

upper bounds on the log partition function. IEEE Transactions on Information

Theory. July, 51:2313–2335.

• Daskalakis, C., Dimakis, A. D., Karp, R. and Wainwright, M. J. (2008).

Probabilistic analysis of linear programming decoding. To appear in IEEE

Trans. Info. Theory.

• Ravikumar, P., Agarwal, A. and Wainwright, M. J. (2008). Message-passing for

graph-structured linear programs: Proximal projections and convergence. To

appear in Int. Conference on Machine Learning, Helsinki, Finland.


