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0 Matrix Functions and Differential Equations
@ Initial Value Problems
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Initial Value Problems

By the variation-of-constants formula the solution of the IVP
U=Au+g, ult)=uy,, AeCVN.gu,ecV,
is given by
u(t) = e Aug + (t— o) o1 ((t — 1)A)g,  t> b,

with the “Phi-function”

ef—1

P
Such relations are the basis of exponential integrators, which address
stiffness in ODE systems (in particular MOL semi-discretizations) by
explicitly evaluating the action of e# or ¢1(A) on a vector.

p1(2) =

[Hocbruck et al. (1998)], [Minchev & Wright (2005)], [Schmelzer (2007)].
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0 Matrix Functions and Differential Equations

@ Dirichlet-Neumann Maps
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Dirichlet-Neumann Maps (1)

u=20
Au(x) —ux =0, xe(0,L), L>0 U—b u=0
_UX(O):b7
u(L) = 0. 0 u=0 L

Mapping which assigns b — u(0) (Neumann-Dirichlet map, impedance
function) given by

%7 L= o0,
u(0) = f(A)b, f(z)= tanh(Ly/Z)
N L < .

[Druskin & Knizhnerman (1999)]
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Dirichlet-Neumann Maps (2)

Model problem

—Au=f on Q,
u=0 onodN

may be reformulated as (i = 1,2)

—Aui=f on Q;, Q4 Qp
u=0 onadQ; \ I [
Oplui = Su; onTl

in terms of Dirichlet-Neumann mapping (Steklov-Poincaré operator)

S: Hgéz(r) — H0_01/2(F). A spectrally equivalent preconditioner to S is given
by M(M~"L)'/2, where M and L are Galerkin mass and stiffness matrices for
basis functions restricted to I'. [Arioli & Loghin (2008)].
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0 Matrix Functions and Differential Equations

@ Stochastic Differential Equations
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Stochastic Differential Equations

Certain problems in population dynamics and neutron transport lead to
It6 differential equations

dy(t) = f(t,y(t)) dt + AV2(t, y(t) dW(t),  y(t) = ¥o,

with f and A known vector and matrix-valued functions and W(t) a
(vector) Wiener process.

Approximation using the Euler-Maruyama method results in the
iteration

Y1 = Yo+ AL, y,) + v AtA1/2(tnv Yn)wn

with w, sampled from a multivariate normal distribution.
[Allen, Baglama & Boyd (2000)]
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0 Matrix Functions and Differential Equations

@ Frequency Domain Model Reduction
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Frequency Domain Model Reduction

Time-dependent Maxwell’s equations on a bounded domain Q
H(oE)+Vx(uVxE)=-0JV, nx E=00n09, E(t)= E,.
Instead of MOL-discretization, switch to frequency domain
Vx(upVx E)+ iwcE = q, nx E =0o0n90Q
for w € [wmin, wmax|. FE discretization in space gives
(K+iwMu=q,  wE€ [wnin,wmax]-

If solution of interest only at p locations (receiver locations), introduce
restriction matrix R and evaluate

flw) = RT(K + iu.)M)_1q7 w € [Wmin, Wmax]-

[Borner, E. & Spitzer (2008)].
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9 Krylov Subspace Approximation
@ Algorithm
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Krylov Subspace Approximation of f(A)b

Given AcC™
f: D — C analytic, W(A) C D,
beC" bl =1,

compute f(A)b.

Approximate in Kylov subspace

f(AYD ~ f € Zm(Ab)={v=p(Ab:pc Pm_1}, m=1.2,...
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Basic Algorithm

Arnoldi-like decomposition

Avm = VmHm+hm+1,me+1e;
ran(Vm) = #m(A,b), VEV, =1
b= Vme17
Hp, unreduced upper Hessenberg

Approximant
fm = Vnf(Hn)es = Viuf(Hn)Vib.

@ Requires evaluation of (first column of) f(Hp) for small dense
matrix Hp,.

@ Simplification: Hy, Hermitian tridiagonal for A Hermitian
(Hermitian Lanczos process).
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Three Interpretations

@ Subspace approximation. H,, = V,’;’,A V., represents A on
Z#m(A, b) w.rt. V. Approximate f(A) with f(Hp,) there.
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Three Interpretations

@ Subspace approximation. H,, = V,’;’,A V., represents A on
Z#m(A, b) w.rt. V. Approximate f(A) with f(Hp,) there.

@ Cauchy integral. For a contour I with W(A) C intT,

f(A)b = i. / F(A)M — A)~" b dA

2m/f ) Vin(M — Hin) Vb d\ = Vit (Hpm)er.

= Xm(A)

Xm(\): Galerkin approx. of X(\) := (M — A)~'bw.r.t. (A, b).
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Three Interpretations

@ Subspace approximation. H,, = V,’;’,A V., represents A on
Z#m(A, b) w.rt. V. Approximate f(A) with f(Hp,) there.

@ Cauchy integral. For a contour I with W(A) C intT,

f(A)b = i. / F(A)M — A)~" b dA

~ I/f ) Vin(M — Hin) Vb d\ = Vit (Hpm)er.
s

=:Xm(})
Xm(\): Galerkin approx. of X(\) := (M — A)~'bw.r.t. (A, b).

@ Interpolation. If p € &2, 1 Hermite-interpolates f at nodes
A(Hm), then

f(A)b ~ p(A)b = Vp(Hm)es = Vmf(Hm)e;
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A Key Relation

For Arnoldi(-like) decomposition of J7,(A, b)
AV =VnpHp + hm+1,me+1e;7

denote vm := [ hj11-

For any polynomial p € £2,,_4 there holds
p(A)b =V p(Hn)e
and, for p € &, with leading coefficient o,

p(A)b = Vi p(Hm)er + amymVmi1-

[Druskin & Knizhnerman (1989)], [Saad (1992)], [Paige & al. (1995)].
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9 Krylov Subspace Approximation

@ Restarting
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Restarting

@ For large Krylov spaces storage and computation for Arnoldi
process too expensive.

@ Remedy: periodically restart Arnoldi process with new initial
vector.

@ Short recurrences for Arnoldi/Lanczos don'’t carry over to
approximation; two-pass algorithm another option.

@ Difficulties: no residual vector, recursive update of approximation.
@ Restarting method based on divided differences.
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Divided Differences

For function f, nodes ¥4, ...,9, € C, denote by
m
Wm(z) :==[J(z-¥;) nodal polynomial,
j=1
lwf € Py Hermite interpolant to f at {0}/,
Ay, fi= f—W/.,me m-th order divided difference of f w.r.t. wp,.
m

Then f=lw,f+ Ay, - W,
f(A)b = [l fI(A)b + [Ay,, f](A) wn(A)b
= Vnllw, fl(Hn)er + [Aw,, fI(A) (Vi wWn(Hn) €1 + YymVmet)
N—_——

-0
=fm+ Ym[Aw, fI(A)Vmi1.
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General Error Representation

Theorem (Eiermann & E., 2006)

Given a function f, matrix A € C"*", vector b € C", and the Arnoldi
decomposition AV ;= ViHm + b 1. mVm. 14, then the error of the
Krylov subspace approximation f,, of f(A)b is given by

f(A)b — fry = g(A)Vmi1, (1)

where g(z) = ym[Aw,f](2) and wy, € & denotes the (monic) nodal
polynomial associated with A(Hp).

Naive approach: update f, by explicit evaluation of divided differences
(block Newton interpolation).

This is (severely) unstable.
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Restart Algorithm 1 [Eiermann & E. (2006)]

k standard Arnoldi decompositions of A
AV;=VH; + hi 1 Vimiel, j=1,2,... k,
of the m-dim. Krylov spaces #i,(A, V(i—1)m+1), glued together,
AV = Vil + i1 Vien 1 €0, (2)
where Vy = [V Vy --- V] € Crxkm,
H,
Hy = k2 5’2 . g ckm<km - E; .= heje], € R™™.
. E,; Hy
(2) is an Arnoldi-like decomposition of J#xm(A, b). Compute

o= Vif(Hi)er = Fi_y + Vilf(Hk)e)k—1)m1.4m-
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Restart Algorithm 2 [Afanasjew, Eiermann, E. & Giittel (2008)]

Instead of f(A)b, evaluate r(A)b where f(\) ~ r(\) = Z"1 =L is a suitably
accurate rational approximation of . Now

f(Hk ZO&@ wgl— - 61 = ol

Due to block bidiagonal structure of Hy, each of the n, systems
(wel — A)F, = ey can be solved recursively:

(wel — Hy)rp 1 = ey, (wel —Hj)rej=Ejr;j—1, j=2,...,K,

where P, = [r],,r],,....r],]7. Last block of r(Hy)es now obtained as
Mo
[Ov LX) 07 I] r(Hk)e1 = Zafrf,h
=1
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Numerical Example

10 T T T T
10° + ¥
f=e"b w0}
— ——Alg. 1, m=c
t=10 3, T 1oL | T Alg- 2, m=
§ Alg. 1, m=90 r
A=[Vx(p™ VXl
. —4— Alg. 2, m=70
dim A = 565326 g 1. m=50 |
8 1074 —a—Alg. 2, m=50 L
A(A) € [-10%,0] T
107 sto;l)pi'ng error v

0 500 1000 1500 2000
matrix—vector products
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Deflated Restarting

@ Compensate for deterioration of convergence due to restarting by
augmenting the Krylov subspace with nearly invariant subspaces.

@ Identify a subspace which slows convergence, approximate this
space and eliminate its influence from the iteration process.

@ In practice: Approximate eigenspaces associated with
eigenvalues close to singularities of f (for f = exp, approximate
eigenspaces which belong to "large" eigenvalues).

@ Well known for eigenproblems [Wu & Simon (2000)], [Stewart (2001)]
and linear systems [Morgan (2002)].

For matrix functions, first proposed by [Niehoff (2006)].
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Numerical Example

Maxwell’'s equation, n = 565326, m = 70

10
—ell=0
f=e"b 10° ¢ ::::;io 1
_3 —e—ell =20
t - 10 5 107 L
A=[Vx( ' V)l
£ 10
dim A = 565 326 ®
A(A) C [-108,0] w0’y
target: eigenvalues closest i
to origin. 1ot ‘ ‘
0 5 10 15

restart cycle
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9 Krylov Subspace Approximation

@ Convergence
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Basic Error Bounds

For m-th (unrestarted) Krylov subspace approximation f,, ~ f(A)b and
any p € Zp,_1, there holds

If(A)b — fr|| < [[f(A)b — p(A)bl| + |[fm — p(A)b]|
= [I(f = P)(A)bI| + [[Vim(f — p)(Hm)e .

For A = A" we conclude
—fall <2 i - | :
IF(A)D = Fmlf <2 i0f {1 = Plloc prun(4) Amax(A)]
For general A:

f(A)b — || < C inf ||f -
IH(A)b = Fml| < C Inf [ = Plloc.w(a)

m—

where C ~ 13 is Crouziex’s universal constant.
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More Refined Bounds
Interpolation Theory

Sequence of Krylov subspace approximations f,, ~ f(A)b uniquely

determined by (any) triangular scheme of interpolation nodes 9™ e C
or their associated nodal polynomials wy, € &2, (wo(2) = 1)

o) vi(2) =z i,
oD 9@ ve(2) = (z - )z - 09),
FORPCIC va(2) = (z = 0{)(z — 057)(z — 05)),

making up the vectors in associated Arnoldi-like decomposition, i.e.,
Vipn=Vm—1(A)b,m=1,2,... .

Question: How quickly does f, converge to f(A)b and how does this
depend on A, b, f and {19/(.”’)} ?
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More Refined Bounds
Interpolation Theory: prescribed nodes

Under the assumption that the interpolation nodes are
@ contained in a fixed compact set Q2 C C,
@ distributed asymptotically according to measure . supported on Q,

one can show

[f(A)b — fry|'/™ < C, if f has finite singularities,
(m||f(A)b — fm||)1/’" < C, if fis entire of order 1,

where the constant C depends on

@ the domain of analyticity and type of f,

o A(A)

@ relative to the level curves of the logarithmic potential associated
with .
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Basic Quantities

Counting measure u, associated with m-th interpolation nodes:

1, 9eM,

1
= — 8 om here, forany M C C, 6y(M) = .
m Z am W y (M) {0, otherwise.

For every measure . supported on the compact set Q c C we define the
logarithmic potential U* : C — R{ of u by

z z)—/ﬂlog|z1_t|du(t)——/ﬂlog|z—t| du(t).

For the counting measure we have
Urn(z) = —— Zlog |z — 0 m)|,
- : m (m\ ™"
and therefore, since |vm(2)|"/™| = (H,-:1 ER) |) ,

log |Vim(2)[V/™ = Zlog|z 19("' | = —U!(2).
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Example
Two well-known node sequences

Equidistant:

Chebyshev:

o gyl =T
/ m—1

pm = p, du(t) = 3 dt

U*(z) =1—=Re[(1 = 2)log(1 — 2) + (1 + 2) log(1 + 2)]

ﬁ(m) = COS w
/ m—1

U (z)=e "2 —log|z— V22 — 1|
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Example

Their logarithmic potentials

Equidistant Chebyshev
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Another Example

Typical for restarting

Repeat nodes ¢ = —1,0, 1 cyclically, um = p = §(6_1 + do + 61)
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Potential Level Sets

For p > 0 define the level sets  Q,(p) := {z: U*(z) > —log(p)}

and set )
pu(A) = inf{p : A(A) € Qu(p)},
pu(f) :==inf{p : f analytic in Q,(p)}
1 - T T T T 1
0.5f 1 0.5f
0 0
-0.5¢ -0.5

B TR E— 0 05 1 15 15 -1 -o0s 0 05 1 15
equidistant measure Chebyshev

[Amin(A); Amax(A)] = [-1,1], f(Z) = 1/(1 —|—2522)
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Yet More Refined Bounds
Interpolation Theory: Ritz values as nodes

Can extend from linear systems to matrix functions the techniques of
Kuijlaars and Beckermann to quantify the effect of interpolating at
successively better approximations of parts of A(A).

The asymptotic convergence factor of the Arnoldi approximation can
be described using potentials of constrained equilibrium measures.
The error is given by
@ ¢/ if f has finite singularities, where ¢, < 1 is a non-increasing
function of m which depends on the eigenvalue distribution of A.

@ (cm/m)™if fis entire of order 1, where ¢y, is a non-increasing
function of m.
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9 Krylov Subspace Approximation

@ A Posteriori Error Estimation
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A Posteriori Error Estimation

Basic Approaches

@ For f rational, A Hermitian

e Derive upper and lower bounds by exploiting collinearity of Galerkin
residuals for shifted linear systems [Frommer & Simoncini (2008)]

@ Use CG-lower bounds of [Strakos & Tichy (2002)] for shifted
systems and sum. [Frommer & Simoncini (2008)]

@ For general f, Hermitian A
o Can derive upper and lower bounds based on error representation
formula (divided differences) [Eiermann, E. & Guttel (2008)]
@ For general f, general A
e Can use auxuliary nodes in error representation formula to obtain
estimates, upper or lower bounds [Saad (1992)], [Philippe & Sidje
(1993)], [Eiermann, E. & Guttel (2008)]
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@ Evaluation of f(A)b required for many PDE applications.
@ (Restarted) Krylov subspace methods effective for large problems.

@ Asymptotic convergence behavior well understood, at least in
Hermitian case.

@ Several estimators available for error of Krylov subspace
approximation to f(A)b.
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