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STOCHASTIC GALERKIN METHODS

• Functions of the parameters have to be discretized in much the same way
functions of the (finite number of) spatial variables have to be discretized

– spatial discretization is effected via a standard finite element discretization
in the usual manner by choosing a J-dimensional subspace XJ ⊂ X

– let {φj(~y)}Jj=1 denote a basis for XJ

• Stochastic Galerkin methods are methods for which discretization with respect
to parameter space is also effected using a Galerkin approach, i.e.,

– we choose a K-dimensional subspace ZK ⊂ Z

– let {ψk(~y)}Kk=1 denote a basis for the parameter approximating space ZK



• Due to the product nature of the domain D ⊗ Γ and of the space X ⊗ Z, it
is natural to seek approximations that use this structure, i.e.,

– approximations are defined as a sum of products

of the spatial and probabilistic basis functions

• Thus, we seek an approximate solution of the SPDE of the form†

uJK =
J∑

j=1

K∑

k=1

cjkφj(x)ψk(~y) ∈ XJ × ZK

• The coefficients cjk, and therefore uJK, are determined by solving the problem
∫

D

∫

Γ

ρ(~y)S(uJK, ~y)T (v) dxd~y =

∫

D

∫

Γ

ρ(~y)vf(~y) dxd~y ∀ v ∈ XJ×ZK

†Potentially, some economies can be effected if one also approximates the data functions (e.g., coefficients)

appearing in the problem in the same way one approximates the solution, e.g., for a data function a(x; ~y),
one determines ak(x), k = 1, . . . , K, such that

K∑

k=1

ak(x)ψk(~y) ≈ a(x; y1, . . . , yN);

in actuality, these economies can be realized only in very limited settings; more on this later



• We then have that the discretized problem

∫

D

∫

Γ

ρ(~y)S
( J∑

j=1

K∑

k=1

cjkφj(x)ψk(~y), ~y
)
T
(
φj′(x)

)
ψk′(~y) dxd~y

=

∫

D

∫

Γ

ρ(~y)φj′(x)ψk′(~y)f(~y) dxd~y

for j ′ ∈ {1, . . . , J} and k′ ∈ {1, . . . , K}

• Of course, the solution

uJK(x; ~y) =
J∑

j=1

K∑

k=1

cjkφj(x)ψk(~y)

of this problem is independent of the basis set used

– although the coefficients cjk do depend on the choice of basis



• In general, the integrals cannot be evaluated exactly

– quadrature rules must be invoked to effect approximate evaluations

– thus, the integrals with respect to the parameter domain† Γ are

approximated by a quadrature rule to obtain

R∑

r=1

ŵrρ(~̂yr)ψk′(~̂yr)

∫

D
S
( J∑

j=1

K∑

k=1

cjkφj(x)ψk(~̂yr), ~̂yr

)
T
(
φj′(x)

)
dx

=
R∑

r=1

ŵrρ(~̂yr)ψk′(~̂yr)

∫

D
φj′(x)f(~̂yr) dx

for j ′ ∈ {1, . . . , J} and k′ ∈ {1, . . . , K}

for some choice of quadrature weights {ŵr}Rr=1 and quadrature points {~̂yr}Rr=1

in Γ

†Integrals with respect to the spatial domain D must also be approximated using quadrature rules; we do

not need to consider this issue since we assume that all methods discussed treat all aspects of the spatial
discretization in the same manner



– this quadrature rule need not be the same as the quadrature rule {wq, ~yq}Qr=1

used to obtain the approximation of a quantity of interest

• In general, the discrete problem is a fully coupled (in physical and parameter
spaces) JK × JK system

– there are JK equations and JK degrees of freedom cjk
†

• On the other hand, one can solve for the approximate dependence of the solu-
tion uJK(x, ~y) on both the spatial coordinates x and the random parameters
~y by solving a single deterministic problem of size JK

– in particular

- one does not have to explicitly sample the random parameters ~y

- one does not have to determine multiple solutions of the SPDE

†Economies are possible for linear SPDEs; more on this later



• Note that, once the cjk’s are determined, one has obtained the explicit formula

uJK(x; ~y) =
J∑

j=1

K∑

k=1

cjkφj(x)ψk(~y)

for the approximate solution of the SPDE that can be evaluated at any point
x ∈ D in the spatial domain and for any value ~y ∈ Γ of the random parameters

– in particular, one can determine, by straightforward evaluation, uJK(x, ~yq)
at any quadrature point ~yq appearing in a quadrature rule approximation
of a quantity of interest



• Thus, we obtain the stochastic Galerkin approximation

to the quantity of interest

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
u(x; ~yq)

)

≈
Q∑

q=1

wqρ(~yq)G
(
uJK(x; ~yq)

)

=

Q∑

q=1

wqρ(~yq)G
( J∑

j=1

K∑

k=1

cjkφj(x)ψk(~yq)
)



• To complete the description of the problem actually solved on a computer,
one has to make specific choices†

– for an approximating subspace ZK ⊂ Z

– for a basis {ψk(~y)}Kk=1 for ZK

– for a quadrature rule {ŵr, ~̂yr}R used to approximate

the parameter integrals in the discretized SPDE

– for a quadrature rule {wq, ~yq}Qq=1 used to approximate

the parameter integrals in the discretized quantity of interest

• We arrange our discussion according to the first two choices

– for each choice for the approximating space and the basis set, we will make
choices for the two quadrature rules

†We assume that the approximating subspace SJ ⊂ S and a basis {φj(x)}J
j=1 used for spatial discretization

have been already chosen



• For parameter approximating spaces ZK, one can use

– locally-supported piecewise polynomial spaces

- i.e., a finite element-type method

– globally-supported polynomial spaces

- i.e., a spectral-type method

• Following this plan will enable us to show that many (if not all) numerical
methods for SPDEs can be derived from the stochastic Galerkin framework



GLOBAL POLYNOMIAL APPROXIMATING SPACES –

POLYNOMIAL CHAOS AND

LAGRANGE INTERPOLATORY METHODS



GLOBAL POLYNOMIAL APPROXIMATING SPACES
FOR PARAMETER APPROXIMATION

• Let Pr denote the set of all polynomials of degree less than or equal to r

• Let {Θi(y)}ri=0 denote a basis for Pr

– of course, there are an infinite number of possible bases

- the simplest is the monomial basis for which

Θi(y) = yi for i = 0, 1, . . . , r

– we will discuss several bases later

• Let p = (p1, p2, . . . , pN) be a multi-index, i.e.,

– an N -vector whose components are non-negative integers

and let |p| =
∑N

n=1 pn



• For each parameter yn, we use polynomials of degreeM and a basis {Θn,k(yn)}Kn
k=1

– for the sake of simplicity, we assume that Mn = M for all n

– there are good reasons for sometimes choosing different degree polynomials
for each parameter

- we will point out some instances for which this is the case



• For a given integer M ≥ 0, let {ψk(~y)}Kk=1 denote the set of distinct multi-
variate polynomials such that

{
ψk(~y)

}K
k=1

=
{ N∏

n=1

Θn,in(yn)
}

where
Θn,in(yn) ∈ PM and |p| ≤M

– the highest degree term in any of the multivariate polynomials is M

- thus, if N = 2 and M = 2, we have terms like

y2
1 and y1y2 but not terms like y2

1y2

– the number of probabilistic degrees of freedom is given by

K =
(N +M)!

N !M !
where N = number of random parameters

M = maximal degree of any of the

N -dimensional global poloynomials used



– for example, if N = 2 and M = 3, we have

|p| = p1 + p2 ≤M = 3

and

K =
(N +M)!

N !M !
=

(2 + 3)!

2! 3!
= 10

and we have the set of 10 basis functions

{
ψ1(y1, y2) , . . . , ψ10(y1, y2)

}
=





Θ1,0(y1) Θ2,0(y2)
Θ1,1(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,1(y2)
Θ1,1(y1) Θ2,1(y2)
Θ1,2(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,2(y2)
Θ1,2(y1) Θ2,1(y2)
Θ1,1(y1) Θ2,2(y2)
Θ1,3(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,3(y2)







• Alternately, one could use the tensor product basis

{
ψk(~y)

}K
k=1

=
{ N∏

n=1

Θn,in(yn)
}

where
Θn,in(yn) ∈ PM and pn ≤M for all n

– now the highest degree term in any of the

polynomials is M in each yn

- thus, if M = 2, we have not only have terms like

y2
1 and y1y2, but we also have terms like y2

1y2 and y2
1y

2
2

– the number of probabilistic degrees of freedom is now given by

K = (M + 1)N

where N = number of random parameters

M = maximal degree in any variable yn of any of the

N -dimensional global poloynomials used



– for example, if N = 2 and M = 3, we have

K = (M + 1)N = (3 + 1)2 = 16

{
ψ1(y1, y2) , . . . , ψ16(y1, y2)

}
=





Θ1,0(y1) Θ2,0(y2)
Θ1,1(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,1(y2)
Θ1,1(y1) Θ2,1(y2)
Θ1,2(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,2(y2)
Θ1,2(y1) Θ2,1(y2)
Θ1,1(y1) Θ2,2(y2)
Θ1,3(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,3(y2)
Θ1,1(y1) Θ2,3(y2)
Θ1,2(y1) Θ2,3(y2)
Θ1,3(y1) Θ2,3(y2)
Θ1,2(y1) Θ2,2(y2)
Θ1,3(y1) Θ2,1(y2)
Θ1,3(y1) Θ2,2(y2)







Global polynomial approximation in parameter space

N = M = K = no. of probabilistic
no. random maximal degree degrees of freedom
parameters of polynomials using complete using tensor

polynomial basis product basis

3 3 20 64
5 56 216

5 3 56 1,024
5 252 7,776

10 3 286 1,048,576
5 3,003 60,046,176

20 3 1,771 > 1×1012

5 53,130 > 3×1015

100 3 176,851 > 1×1060

5 96,560,646 > 6×1077

• It seems that using tensor product bases is a bad idea



• Once a basis set {ψk(~y)}Kk=1 is chosen, we use the approximation

uJ,K =
J∑

j=1

K∑

k=1

cj,kφj(x)ψk(~y)

– the probabilistic basis functions {ψk(~y)}Kk=1 are

multivariate global polynomials

• The discrete system involves JK equations in JK unknowns, where

J = the number of finite element degrees of freedom

used to discretize in physical space

K = the number of global polynomials

used to discretize in parameter space



GLOBAL ORTHOGONAL POLYNOMIAL BASES

• For n = 1, . . . , N , let {Hn,mn(yn)}Mmn=0 denote the set of polynomials in R

of degree less than or equal to M that are orthonormal with respect to the
function ρn(yn)

– we have that

∫

In
Hn,mn(yn)Hn,m′

n
(yn)ρn(yn) dyn = δmm′ for mn, m

′
n ∈ {0, . . . ,M}

– note that the set {Hn,mn(yn)}Mmn=0 is hierarchical in the sense that

degree(Hn,mn) = mn

• Let

Ψk(~y) =
N∏

n=1

Hn,mn(yn) for all mn ∈ {0, . . . ,M} such that
∑N

n=1mn ≤M



• We then have that k ∈
{

1, . . . ,KPC =
(N +M)!

N !M !

}

• For example, if M = 1 and N = 3 we have the KPC = 4 basis functions†

H1,0(y1)H2,0(y2)H3,0(y3)

H1,1(y1)H2,0(y2)H3,0(y3) H1,0(y1)H2,1(y2)H3,0(y3) H1,0(y1)H2,0(y2)H3,1(y3)

while for if M = 2 and N = 3 we have the KPC = 10 basis functions
(suppressing noting the explicit dependences on the ~yn’s)

H1,0H2,0H3,0

H1,1H2,0H3,0 H1,0H2,1H3,0 H1,0H2,0H3,1

H1,2H2,0H3,0 H1,1H2,1H3,0 H1,1H2,0H3,1 H1,0H2,2H3,0 H1,0H2,1H3,1 H1,0H2,0H3,2

†It is convenient to write the N -dimensional polynomials so that each row contains the polynomials of the

same total degree
∑N

n=1mn; thus the first row contains all possible products of the N one-dimensional
polynomials of total degree 0, the second row has total degree 1, etc.



• We see that the functions Ψk(~y)’s are products of one-dimensional orthonor-
mal polynomials and have total degree less than or equal to M

– we then have that∫

Γ

Ψk(~y)Ψk′(~y)ρ(~y) d~y =

∫

Γ

Ψk(~y)Ψk′(~y)Π
N
n=1ρn(yn) d~y

=
N∏

n=1

∫

In
Hn,mn(yn)Hn,m′

n
(yn)ρn(yn) dyn = δkk′

– note that we need to write ρ(~y) =
∏N

n=1 ρn(yn), i.e., as a product as well,
so that we know what Hn,m(·) is orthonormal with respect to

– thus, we are restricted to independent random variables and to parameter
domains Γ that are (possibly infinite) hypercubes

• It is easy to see that the set {Ψk}KPC
k=1 of N -dimensional polynomials is a basis

for the complete polynomial space of degree M , i.e.,

span{Ψk}KPC
k=1 = all polynomials of total degree ≤M



• The stochastic Galerkin-global orthogonal polynomial approximation of the

solution of the SPDE is then defined by setting

ZPC = span{Ψk}KPC
k=1

so that

uPC(x, ~y) =
J∑

j=1

KPC∑

k=1

cjkφj(x)Ψk(~y)

• This is better known under another name†

(stochastic Galerkin) polynomial chaos approximation (SG-PC)
= complete, global orthonormal polynomial approximation

†Polynomial chaos approximations usually refer to the case for which, for all n, ρn(yn) is a Gaussian

PDF so that, for all n, {Hn,m(yn)}M
m=0 are sets of Hermite polynomials; for other PDFs, the SC-PC

approximation is usually referred to as a generalized polynomial chaos approximation; here we do not

differentiate between the two and refer to all cases as polynomial chaos approximations



• The implementation of the SG-PC method is simpler if one instead uses a
tensor product polynomial space; however, as we have seen, such a choice
leads to hugely more costly approximations†

†The tensor product basis is given by

Ψk(~y) =

N∏

n=1

Hn,mn
(yn) for all mn ∈ {0, . . . ,M} such that mn ≤M

in this case, span{Ψk}K
k=1 is the tensor product space of polynomials such that the degree in any

coordinate yn is less than or equal to M ; if we do this, we end up with K = (M + 1)N basis functions;
for example, if M = 1 and N = 3, we have the 8 polynomials (the 4 we had before plus 4 additional ones)

H1,0H2,0H3,0

H1,1H2,0H3,0 H1,0H2,1H3,0 H1,0H2,0H3,1

H1,1H2,1H3,0 H1,1H2,0H3,1 H1,0H2,1H3,1

H1,1H2,1H3,1

for N > 1 and M > 0 we have that (M + 1)N > (N+M)!
N !M ! ; for a moderate number of parameters or for a

moderately high degree polynomial, we in fact have that (M + 1)N ≫ (N+M)!
N !M ! ; for example,

if M = 6 and N = 3 =⇒ (N +M)!/(N !M !) = 84 and (M + 1)N = 343
if M = 4 and N = 5 =⇒ (N +M)!/(N !M !) = 126 and (M + 1)N = 3125

if M = 2 and N = 7 =⇒ (N +M)!/(N !M !) = 36 and (M + 1)N = 2187
the disparity gets worse as, say, N increases; for example,

if M = 2 and N = 10 =⇒ (N +M)!/(N !M !) = 66 and (M + 1)N = 59059

on the other hand, since the accuracy, i.e., the rate of convergence of global polynomial approximation,
is determined by the degree of the largest complete polynomial space contained in the approximate

space, for the same M , the accuracy obtained using a tensor product space is the same as that obtained
using a complete polynomial space; as a result, by using the latter one can obtain the same accuracy

with substantially fewer degrees of freedom



SG-PC approximations of quantities of interest

• The SG-PC approximation of a quantity of interest is then defined by

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uPC(x; ~yq)

)

where

– uPC(x; ~yq), q = 1, . . . , Q, is obtained by evaluation of the

SG-PC approximation of the stochastic SPDE at the quadrature points

- i.e., we have that

uPC(x, ~yq) =

J∑

j=1

KPC∑

k=1

cjkφj(x)Ψk(~yq) for q = 1, . . . , Q



• Thus, the SG-PC approximation of a quantity of interest can be determined
by

1. first solving a single JKPC × JKPC system of equations to determine the
SG-PC approximation of the solution of the SPDE;

2. then evaluating the SG-PC approximation at the Q quadrature points;

3. substituting the results of Step 2 into the quadrature rule approximation of
the quantity of interest

• The cost of obtaining an SG-PC approximation of a quantity of interest is
dominated by the first step



GLOBAL LAGRANGE INTERPOLATORY BASES

• Instead of using global orthogonal polynomials to define a stochastic Galerkin
method, one can use interpolatory polynomials

• Given a set of points {~̃yk}KLI
k=1 in Γ

– for k ∈ {1, . . . , KLI}, let Lk(~y) denote the set of Lagrange interpolating
polynomials for these points

- we have that

Lk(~yk′) = δkk′ for all k, k′ ∈ {1, . . . , KLI}

• Set ψk(~y) = Lk(~y) for k ∈ {1, . . . ,KLI} so that

ZKLI
= span{Lk}KLI

k=1



• Then, the stochastic Galerkin-Lagrange interpolant (SG-LI) approximation of
the solution of the SPDE takes the form

uLI(x, ~y) =

J∑

j=1

KLI∑

k=1

cjkφj(x)Lk(~y)

• In general, the SG-LI approximation to the solution of an SPDE can be ob-
tained by solving a single JKLI × JKLI system

– this would also be the dominant cost encountered in obtaining an SG-LI
approximation of a quantity of interest



• If we choose a point set {~̃yk}KLI
k=1 that can be used to define a complete

interpolating polynomial of degree less than or equal M , we have that

ZKLI
= ZKPC

and KLI = KPC =
(N +M)!

N !M !

• In this case, it is clear that

the polynomial chaos approximation uPC(x; ~y)
= global Lagrange interpolant approximation
uLI(x; ~y) based on a complete polynomial space

– the only differences between the two approximations result from the choices
of bases



• Unfortunately, even for a moderate number of parameters, it may not be easy
to define a “good” set of interpolation points that can be used to determine
a complete Lagrange interpolant

– it is easy to define a set of interpolation points that can be used to define
a tensor product Lagrange interpolant†

– however, as we have seen, this leads to a very inefficient approximation
compared to complete polynomial approximation

• There exists intermediate choices, e.g., Smolyak point sets,

that can be systematically defined in any dimension

– for the Smolyak point sets, KLI >
(M +N)!

N !M !
so that they require more

points compared to complete polynomial interpolation

– however, we have that KLI ≪ (M + 1)N so that it requires much fewer
points compared to tensor product interpolation

†Unlike the case for orthogonal polynomials, for Lagrange polynomials it is not easy to define a complete

polynomial basis from the tensor product basis; for the Lagrange case, the tensor product basis is not
hierarchical since all Lagrange polynomials are of the same degree



• We therefore conclude that

in general, for the same accuracy, a
stochastic Galerkin-Lagrange polynomial approximation

is (a little) more costly to obtain than is a
stochastic Galerkin-polynomial chaos approximation

• However, as we shall now see, a judicious choice for the interpolation points
can lead to great efficiency improvements in stochastic Galerkin-Lagrange
interpolation methods

– we defer discussion of how one one obtains the LI-approximation

of a quantity of interest until after we consider this special case

of the SG-LI method

– we also defer further discussion of Smolyak point sets until later



STOCHASTIC COLLOCATION METHODS



• For the SG-LI method, the discretized SPDE looks like
R∑

r=1

ŵrρ(~̂yr)Lk′(~̂yr)

∫

D
S
( J∑

j=1

K∑

k=1

cjkφj(x)Lk(~̂yr), ~̂yr

)
T
(
φj′(x)

)
dx

=

R∑

r=1

ŵrρ(~̂yr)Lk′(~̂yr)

∫

D
φj′(x)f(~̂yr) dx

for j ′ ∈ {1, . . . , J} and k′ ∈ {1, . . . , K}

• Suppose we choose

the interpolating points {~̃yk}KLI
k=1 for the SG-LI method

to be the same as

the quadrature points {~̂yr}Rr=1 used in the discretized SPDE

• We then have that

Lk(~̂yr) = δkr ∀ r, k ∈ {1, . . . , R = KLI}



• As a result, the discretized SPDE reduces to
∫

D
S
( J∑

j=1

cjrφj(x), ~̂yr

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~̂yr) dx

for j ′ ∈ {1, . . . , J}, r ∈ {1, . . . , R = KLI}

• Thus, we have total uncoupling in parameter space

– for each r ∈ {1, . . . , R}, we can solve the separate standard, deterministic
finite element problem for {cjr}Jj=1

for r ∈ {1, . . . , R}, determine ur(x) =
∑J

j=1 cjrφj(x) satisfying
∫

D
S
(
ur(x), ~̂yr

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~̂yr) dx

for j ′ ∈ {1, . . . , J}



• Such a method is referred to as a stochastic collocation (SC) method so that

stochastic collocation methods are
stochastic Galerkin-Lagrange interpolation methods for which
the interpolation points are the same as the quadrature points

of the quadrature rule used to discretize the SPDE

• It is important to note that for stochastic collocation methods,

the uncoupling of the spatial and probabilistic degrees of freedom

occurs for

general nonlinear PDEs

general joint probability distributions

and

general random field data



• If desired, the stochastic collocation approximation to the solution u(x, ~y) of
the SPDE is then given by

uSC(x, ~y) =

R∑

r=1

ur(x)Lr(~y) =

J∑

j=1

R∑

r=1

cjrφj(x)Lr(~y)

– however, as we will now see, one does not need to form this expression to
a determine an approximation of a quantity of interest

– this is unlike the case for general stochastic Galerkin methods, including
polynomial chaos methods, for which one must evaluate the approximation
of the solution of the SPDE at the quadrature points of the approximation
of a quantity of interest



SC-approximations of quantities of interest

• It is also convenient to use the same quadrature rule

- to approximate a quantity of interest

as was used to

- approximate the integrals in the discretized SPDE

and that was also used as

- the Lagrange interpolations points,

i.e., we choose
KLI = R = Q

{~̃yk}KLI
k=1 = {~̂yr}Rr=1 = {~yq}Qq=1 and {ŵr}Rr=1 = {wq}Qq=1

• We then have that

Lr(~yq) = δrq for all r, q ∈ {1, . . . ,KLI = R = Q}



• Using this in the expression for the approximation of a quantity of interest
results in

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uSC(x)

)

=

Q∑

q=1

wqρ(~yq)G
( R∑

r=1

ur(x)Lr(~yq)
)

=

Q∑

q=1

wqρ(~yq)G
(
uq(x)

)

i.e.,

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uq(x)

)

where, for q ∈ {1, . . . , Q = R = KLI}, uq(x) =
∑J

j=1 cjqφj(x)

is determined from∫

D
S
(
uq(x), ~yq

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~yq) dx for j ′ ∈ {1, . . . , J}



• Note that

– we do not have to explicitly determine the Lagrange interpolating

polynomials {Lk(~y)}KLI
k=1 to determine the approximation of a

quantity of interest

– nor do we have to form and evaluate, at quadrature points, the

SC-approximation†

• Thus, we see that the SC-approximation of a quantity of interest can be
determined by

1. first solving Q = KLI systems of equations of size J to determine uq(x)
for q = 1, . . . , Q = KLI;

2. then substituting the results of Step 1 into the approximation of the quantity
of interest

†In contrast, for PC approximations of quantities of interest one must explicitly evaluate the PC

approximation at quadrature points



• The cost of obtaining the SC-approximation of a quantity of interest is

dominated by the first step which requires the solution of KLI systems

of size J

– recall that the cost of obtaining the PC-approximation of a quantity of
interest is dominated by the cost of solving a single deterministic system of
size JKPC

– for general, nonlinear problems, the SC-approximation can be obtained at
much less cost†

†In the best-case scenario for which the PC-system of size JKPC and each of the Q = R = KLI SC-

systems of size J can be solved in linear time, the solution cost associated with the PC-approximation of
a quantity of interest will be of O(JKPC) while the corresponding solution cost for the SC-approximation

of a quantity of interest is of O(JKLI); for the same accuracy, in practice KLI > KPC so that in this
best-case scenario, the SC-approximation of a quantity of interest is more costly to obtain than is the
PC-approximation; for more general problems for which solution costs are not linear in the number of

degrees of freedom, the PC-approximation is more costly to obtain that is the SC-approximation since,
for some α > 1, one must compare the cost of O(JKPC)α for the PC case to the cost of O(JαKLI) for

the SC case, keeping in mind that although KLI > KPC, using Smolyak points as collocation points we
have that KLI ≈ KPC



NON-INTRUSIVE POLYNOMIAL CHAOS METHODS



• Can the uncoupling of parameter and spatial degrees of freedom be effected
in a polynomial chaos setting?

• The PC approximation is given by

uPC(x, ~y) =

J∑

j=1

KPC∑

k=1

cjkφj(x)Ψk(~y) =

KPC∑

k=1

ũk(x)Ψk(~y)

where for k ∈ {1, . . . , KPC},

ũk(x) =
J∑

j=1

cjkφj(x)

and {Ψk(~y)}KPC
k=1 is a set of orthonormal polynomials with respect to weight

ρ(~y) =
∏N

n=1 ρn(yn)

• As a result, we have that, for k′ ∈ {1, . . . , KPC},
∫

Γ

uPC(x, ~y)Ψk′(~y)ρ(~y) d~y =

KPC∑

k=1

uk(x)

∫

Γ

Ψk(~y)Ψk′(~y)ρ(~y) d~y = ũk′(x)



• We view this as a formula for ũk′(x), i.e.,

ũk′(x) =
J∑

j=1

cjk′φj(x) =

∫

Γ

uPC(x, ~y)Ψk′(~y)ρ(~y) d~y

• We use a quadrature rule† {ŵr, ~̂yr}Rr=1 to approximate the integral to obtain

ũk′(x) ≈
R∑

r=1

ŵruPC(x, ~̂yr)Ψk′(~̂yr)ρ(~̂yr) for k′ ∈ {1, . . . , KPC}

• For r ∈ {1, . . . , R}, we replace uPC(x, ~̂yr) by the solution ur(x) of ‡

∫

D
S
(
ur(x), ~̂yr

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~̂yr) dx for j ′ ∈ {1, . . . , J}

†This quadrature rule may be the same or may be different from the quadrature rule used to approximate
a quantity of interest
‡Note that this is exactly the same set of R equations that is solved for in the stochastic collocation case



• We thus obtain

ũk′(x) ≈
R∑

r=1

ŵrur(x)Ψk′(~̂yr)ρ(~̂yr)

• We use this approximation to define the† non-intrusive polynomial chaos

(NIPC) approximation to the solution u(x, ~y) of the SPDE:‡

u(x, ~y) ≈ uPC(x, ~y) =

KPC∑

k=1

ũk(x)Ψk(~y)

≈ uNIPC(x, ~y) =

KPC∑

k=1

R∑

r=1

ŵrur(x)Ψk(~̂yr)ρ(~̂yr)Ψk(~y)

†Nowadays, the polynomial chaos method previously discussed is often referred as the intrusive polynomial
chaos method to differentiate it from the non-intrusive polynomial chaos method defined here
‡In comparison, the stochastic collocation approximation takes the simpler form

uSC(x, ~y) =

R∑

r=1

ur(x)Lr(~y)

due to the fact that Lk(~̂yr) = δkr in the SC case while Ψk(~̂yr) 6= 0 for all k and r in the NIPC case



• Thus, the NIPC approximation can be obtained by solving

R deterministic problems of size J to obtain ur(x) for r = 1, . . . , R

instead of the

one deterministic problem of size JKPC

that is solved in the intrusive polynomial chaos method

• All KPC “coefficients”
∑R

r=1 ŵrur(x)Ψk(~̂yr)ρ(~̂yr), k ∈ {1, . . . ,KPC}, in the
NIPC expansion

uNIPC(x, ~y) =

KPC∑

k=1

R∑

r=1

ŵrur(x)Ψk(~̂yr)ρ(~̂yr)Ψk(~y)

=
R∑

r=1

ŵrρ(~̂yr)ur(x)

KPC∑

k=1

Ψk(~̂yr)Ψk(~y)

can be obtained from the same R solutions ur(x), r ∈ {1, . . . , R}, of the
SPDE



• The cost of obtaining the NIPC-approximation is dominated by the need to
solve† R systems of size J

• For non-intrusive-polynomial chaos approximations,

the uncoupling of the spatial and probabilistic degrees of freedom

occurs for

general nonlinear PDEs

but only for

independent random variables‡

and

Gaussian random field data‡

†This is just the same as for the stochastic collocation approximation

‡This is unlike the case for stochastic collocation methods for which similar uncouplings are possible for

general joint probability distributions and general random fields



• Thus, it is clear that

non-intrusive polynomial chaos approximations are
stochastic Galerkin-global orthogonal polynomial approximations

obtained by approximating the coefficients of the
orthogonal polynomials via a quadrature rule

• It is also clear that, for the same accuracy

the costs of obtaining stochastic collocation and
non-intrusive polynomial chaos approximations are comparable

and, in general, both are much lower than the cost of
obtaining the intrusive polynomial chaos approximation



NIPC-approximations of quantities of interest

• Unlike the stochastic collocation case, there is no great advantage to using
the same quadrature rule for approximating a quantity of interest as is used
to construct the non-intrusive polynomial chaos approximation

– on the other hand, there is no reason not to do so

– so, we choose

Q = R, {wq}Qq=1 = {ŵr}Rr=1, and {~yq}Qq=1 = {~̂yr}Rr=1



• Then, the NIPC approximation of a quantity of interest has the form†

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uNIPC(x)

)

=

Q∑

q=1

wqρ(~yq)G

(KPC∑

k=1

( Q∑

q=1

wquq(x)Ψk(~yq)ρ(~yq)
)
Ψk(~yq)

)

where, for q ∈ {1, . . . , Q = R}, uq(x) =
∑J

j=1 cjqφj(x) is determined from

∫

D
S
(
uq(x), ~yq

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~yq) dx for j ′ ∈ {1, . . . , J}

†In comparison, the stochastic collocation approximation of the quantity of interest takes the simpler form

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uq(x)

)

again due to the fact that Lk(~̂yr) = δkr in the SC case while Ψk(~̂yr) 6= 0 for all k and r in the NIPC case



• Thus, we see that the NIPC approximation of a quantity of interest can be
determined by

1. first solving Q systems of equations of size J to determine

uq(x) for q = 1, . . . , Q;

2. then substituting the results of Step 1 into the NIPC-approximation of the
quantity of interest

• Note that one is not restricted to use of any particular quadrature rule, either
to determine the NIPC approximation of the solution of the SPDE or the NIPC
approximation to a quantity of interest

– in particular, one does not have to use interpolatory quadrature rules

– one can use, e.g., any of the rules to be discussed in connection with
stochastic sampling methods



• Note also that to obtain this approximation, one has to explicitly construct
and evaluate, at the quadrature points ~yq, the non-intrusive polynomial chaos
approximation

– this includes having to explicitly evaluate the orthogonal polynomial basis
functions Ψk(·) at the quadrature points

– this should be contrasted with the SC approximation of a quantity of in-
terest that does not need the explicit construction or evaluation of the
SC approximation nor of the the Lagrange interpolatory polynomial basis
functions Lk(·)

– again, these differences between the two methods are due to the facts that
Lk(~yq) = δkq while Ψk(~yq) 6= 0 for all k and q




