Well-generated triangulated categories

Amnon Neeman

July 22, 2009

Let $\mathcal A$ be an additive category. Examples:

$$\mathcal{A} = R \text{-Mod}$$
 or $\mathcal{A} = R \text{-Proj}$.

The category R-Mod is *abelian*, the category R-Proj is not.

The category K(A):

- (i) Objects: cochain complexes.
- (ii) Morphisms:
 HOMOTOPY EQUIVALENCE CLASSES
 of cochain maps.

A cochain map $f: X \longrightarrow Y$ is:

$$\xrightarrow{\partial_{X}^{i-2}} X^{i-2} \xrightarrow{\partial_{X}^{i-1}} X^{i-1} \xrightarrow{\partial_{X}^{i}} X^{i} \xrightarrow{\partial_{X}^{i+1}} X^{i+1} \xrightarrow{\partial_{X}^{i+2}} X^{i+1} \xrightarrow{\partial_{X}^{i+2}} Y^{i-1} \xrightarrow{\int_{Y}^{i-2}} Y^{i-1} \xrightarrow{\partial_{Y}^{i-2}} Y^{i} \xrightarrow{\partial_{Y}^{i+1}} Y^{i} \xrightarrow{\partial_{Y}^{i+1}} Y^{i+1} \xrightarrow{\partial_{Y}^{i+2}}$$

Two cochain maps $f,g:X\longrightarrow Y$ are homotopic if there exists

$$\xrightarrow{\partial_{X}^{i-2}} X^{i-2} \xrightarrow{\partial_{X}^{i-1}} X^{i-1} \xrightarrow{\partial_{X}^{i}} X^{i-1} \xrightarrow{\partial_{X}^{i}} X^{i+1} \xrightarrow{\partial_{X}^{i+1}} X^{i+1} \xrightarrow{\partial_{X}^{i+2}} Y^{i-1} \xrightarrow{\partial_{Y}^{i-2}} Y^{i-1} \xrightarrow{\partial_{Y}^{i-1}} Y^{i-1} \xrightarrow{\partial_{Y}^{i+1}} Y^{i+1} \xrightarrow{\partial_{Y}^{i+2}} Y^{i+1} \xrightarrow$$

with
$$f^i - g^i = \Theta^{i+1} \partial_X^{i+1} + \partial_Y^i \Theta^i$$
.

Notation: Cochain maps will be written $f: X \longrightarrow Y$, cochain homotopies $\Theta: X \Longrightarrow Y$.

$$\nu: X \longrightarrow C(X)$$
.

If $f: X \longrightarrow Y$ is a morphism, it factors as

$$X \xrightarrow{\left(\begin{array}{c}f\\\nu\end{array}\right)} Y \oplus C(X) \xrightarrow{\left(\begin{array}{c}1&0\right)} Y.$$

Form the short exact sequence

$$0 \longrightarrow X \xrightarrow{\left(\begin{array}{c}f\\\nu\end{array}\right)} Y \oplus C(X) \xrightarrow{g} Z \longrightarrow 0.$$

If W is the complex

$$\xrightarrow{\partial^{i-2}} W^{i-2} \xrightarrow{\partial^{i-1}} W^{i-1} \xrightarrow{\partial^{i}} W^{i} \xrightarrow{\partial^{i+1}} W^{i+1} \xrightarrow{\partial^{i+2}} W^{i+1} W^{i+$$

Define ΣW to be

$$\xrightarrow{-\partial^{i-1}} W^{i-1} \xrightarrow{-\partial^{i}} W^{i} \xrightarrow{-\partial^{i+1}} W^{i+1} \xrightarrow{-\partial^{i+2}} W^{i+2} \xrightarrow{-\partial^{i+3}}$$

For each i, the map $g^i: \overline{Y}^i \longrightarrow Z^i$ is a split epimorphism; choose a splitting $\Theta^i: Z^i \longrightarrow \overline{Y}^i$.

We obtain a cochain map $H:Z\longrightarrow \Sigma\overline{Y}$, and the composite

$$Z \xrightarrow{H} \Sigma \overline{Y} \xrightarrow{\Sigma g} \Sigma Z$$

vanishes. Hence H factors through

$$h: Z \longrightarrow \Sigma X$$
.

We assemble this to

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$$
.

AXIOMS:

TR1: Every isomorph of a triangle is a triangle. The sequence $X \xrightarrow{1} X \longrightarrow 0 \longrightarrow \Sigma X$ is a triangle. Every morphism $f: X \longrightarrow Y$ can be completed to a triangle

TR2: $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$ is a triangle iff $Y \xrightarrow{-g} Z \xrightarrow{-h} \Sigma X \xrightarrow{-\Sigma f} \Sigma Y$ is.

TR3 and TR4: Given a commutative diagram where the rows are triangles

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$$

$$\alpha \downarrow \qquad \downarrow \beta$$

$$X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} \Sigma X'$$

there is a morphism $\gamma:Z\longrightarrow Z'$ rendering commutative the diagram

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$$

$$\alpha \downarrow \qquad \downarrow \beta \qquad \downarrow \gamma \qquad \downarrow \Sigma \alpha$$

$$X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} \Sigma X'.$$

Furthermore, γ can be chosen so that

$$X' \oplus Y \xrightarrow{\int_{0}^{f'} -g} Y' \oplus Z \xrightarrow{\int_{0}^{g'} -\gamma} Z' \oplus \Sigma X \xrightarrow{\int_{0}^{h'} -\Sigma \alpha} \Sigma X' \oplus \Sigma Y$$

is a triangle.

Definition. Let S, T be triangulated categories. A "triangulated" or "exact" functor $F: S \longrightarrow T$ is a functor preserving the structure.

Examples: $\mathbf{K}(\mathcal{A})$ is triangulated. If \mathcal{A} is abelian we set

$$A(A) = \{Acyclics\};$$

then the inclusion $\mathbf{A}(\mathcal{A}) \longrightarrow \mathbf{K}(\mathcal{A})$ is triangulated. Define

$$D(A) = \frac{K(A)}{A(A)}.$$

The natural projection

$$\mathbf{K}(\mathcal{A}) \stackrel{\pi}{\longrightarrow} \mathbf{D}(\mathcal{A})$$

is triangulated.

Definition. A functor $H: \mathcal{T} \longrightarrow \mathcal{A}$ is *homological* if

- (i) T is triangulated.
- (ii) A is abelian.
- (iii) For every triangle $X \longrightarrow Y \longrightarrow Z \longrightarrow \Sigma X$, the sequence $H(X) \longrightarrow H(Y) \longrightarrow H(Z)$ is exact.

If we set $H^n(W)=H(\Sigma^n W)$ then we obtain $\longrightarrow H^{-1}(Z) \longrightarrow H^0(X) \longrightarrow H^0(Y) \longrightarrow H^0(Z) \longrightarrow H^1(X) \longrightarrow$

Example: all representable functors are homological.

TR5: coproducts exist in \mathfrak{T} .

Let T be a [TR5] triangulated category.

Definition 1: $k \in \mathcal{T}$ is compact \iff any map

$$k \longrightarrow \coprod_{\lambda \in \Lambda} t_{\lambda}$$

factors as

Definition 2: $\mathbb{T}^c \subset \mathbb{T}$ is the full subcategory of all the compacts.

Definition 3: \mathfrak{T} is compactly generated $\iff \exists$ a set $G \subset \mathfrak{T}^c$ so that any non-zero object $t \in \mathfrak{T}$ has a non-zero map $g \longrightarrow t$, $g \in G$.

Let \mathcal{T} be a [TR5] triangulated category, and let $G \subset \mathcal{T}^c$ be as in Definition 3.

- **Theorem 1:** If $S \subset T^c$ contains G and is closed under triangles and retracts, then $S = T^c$.
- **Theorem 2:** If $S \subset T$ contains G and is closed under triangles are coproducts, then S = T.
- **Theorem 3:** \mathfrak{T} satisfies Brown representability. This means: a functor $H:\mathfrak{T}^{\mathrm{op}}\longrightarrow\mathcal{A}b$ is representable iff
 - (i) H is homological.
 - (ii) H respects products: that is

$$H\left(\coprod_{\lambda\in\Lambda}t_{\lambda}\right) = \prod_{\lambda\in\Lambda}H(t_{\lambda}).$$

Suppose $\mathcal{R} \hookrightarrow \mathcal{S}$ are [TR5] triangulated categories. Assume that the inclusion $\mathcal{R} \hookrightarrow \mathcal{S}$ is triangulated, fully faithful and respects coproducts. Form the quotient $\mathcal{T} = \mathcal{S}/\mathcal{R}$. Easy to show: \mathcal{T} is also a [TR5] triangulated category. We have a diagram

Theorem 4: Let \mathcal{R} , \mathcal{S} and $\mathcal{T} = \mathcal{S}/\mathcal{R}$ be as above. Assume further that

- (i) There is an $H \subset \mathbb{S}^c$ as in Definition 3.
- (ii) There is a $G \subset \mathcal{R} \cap \mathbb{S}^c$ which "generates" \mathcal{R} as in Definition 3.

Then:

• The functors $\mathcal{R} \longrightarrow \mathcal{S}$ and $\pi: \mathcal{S} \longrightarrow \mathcal{T}$ take compacts to compacts. In other words, we get a diagram

which factors further as

• In the diagram above, the functor i is fully faithful, and, up to splitting idempotents, every object is in the image of i. Precisely: for every object $t \in \mathfrak{T}^c$ there exist objects $t' \in \mathfrak{T}^c$, $s \in \mathbb{S}^c$ and an isomorphism $t \oplus t' \cong i(s)$.

Example: Let X be a noetherian, quasi-projective scheme. Put $\mathfrak{T}=\mathbf{D}(\operatorname{qc}/X)$, the (unbounded) derived category of cochain complexes of quasi-coherent sheaves on X.

T satisfies [TR5]; arbitrary direct sums of unbounded cochain complexes of quasi-coherent sheaves exist.

Easy to show: any bounded complex of vector bundles is compact. That is,

$$\mathbf{D}^b(\mathsf{Vect}/X) \subset \mathfrak{T}^c$$
.

Let $\mathcal L$ be an ample line bundle on X ($\mathcal L$ exists because X is assumed quasi-projective). Define

$$G = \{ \Sigma^n \mathcal{L}^m \mid m, n \in \mathbb{Z} \} .$$

Clearly $G \subset \mathbf{D}^b(\operatorname{Vect}/X) \subset \mathfrak{T}^c$. A small exercise in algebraic geometry gives that G satisfies the hypothesis of Definition 3.

Corollary 1 Let T = D(qc/X). The subcategory T^c , that is the full subcategory of compact objects in T, is precisely $D^b(\text{Vect}/X)$.

Proof: We know the inclusion $\mathbf{D}^b(\operatorname{Vect}/X) \subset \mathfrak{T}^c$. On the other hand, $\mathbf{D}^b(\operatorname{Vect}/X)$ contains G, is triangulated, and contains any direct summand of any of its objects. Theorem 1 now tells us that $\mathbf{D}^b(\operatorname{Vect}/X) = \mathfrak{T}^c$.

Corollary 2 (=Grothendieck duality). Let $f: X \longrightarrow Y$ be a morphism of noetherian schemes, and assume X is quasi-projective. Then the map

$$Rf_*: \mathbf{D}(\mathsf{qc}/X) \longrightarrow \mathbf{D}(\mathsf{qc}/Y)$$

has a right adjoint f!.

Proof: For any objects $x \in \mathbf{D}(qc/X)$ and $y \in \mathbf{D}(qc/Y)$, we can consider the abelian group

$$\operatorname{Hom}_{\mathbf{D}(\operatorname{QC}/Y)}(Rf_*x,y).$$

Fix y, and view this as a functor in x. This is a homological functor $\mathbf{D}(\mathsf{qc}/X)^\mathsf{op} \longrightarrow \mathcal{A}b$ respecting products, hence representable by Theorem 3. Thus

$$\operatorname{Hom}_{\mathbf{D}(\operatorname{qC}/Y)}(Rf_*x,y) = \operatorname{Hom}_{\mathbf{D}(\operatorname{qC}/X)}(x,f^!y).$$

$$X$$
 = quasi-projective, noetherian scheme,

$$U$$
 = Zariski open subset $U \subset X$,

$$Z = X - U.$$

Let

$$\begin{array}{rcl} \mathbb{S} & = & \mathrm{D}(\mathrm{qc}/X) \\ \mathbb{T} & = & \mathrm{D}(\mathrm{qc}/U) \\ \pi: \mathbb{S} \longrightarrow \mathbb{T} & = & \mathrm{restriction\ to}\ U. \end{array}$$

Put $\Re = \ker(\pi)$; it is the subcategory

$$\mathcal{R} = \mathbf{D}_Z(\mathsf{qc}/X) \subset \mathbf{D}(\mathsf{qc}/X)$$

of all complexes whose restriction to U is acyclic.

Easy to show: the natural map $S/\Re \longrightarrow \Im$ is an equivalence. Furthermore, the technical conditions of Theorem 4 are satisfied.

Theorem 4 applies. The general diagram of Theorem 4

becomes, in our special case,

Theorem 4 says that the functor i is fully faithful, and is just an idempotent completion; every object of $D^b(\operatorname{Vect}/U)$ is a direct summand of an object in the image of i.

Interesting derived categories that are not compactly generated:

Proposition 3 Let X be a connected, non-compact manifold of dimension ≥ 1 . Let $\mathbf{D}(\mathsf{Ab}/X)$ be the derived category of all sheaves of abelian groups on X. The only compact object in $\mathbf{D}(\mathsf{Ab}/X)$ is the zero object.

Let $\mathcal T$ be a [TR5] triangulated category, let α be a regular cardinal.

Definition 1': Let $\mathcal{G} \subset \mathcal{T}$ be a triangulated subcategory. \mathcal{G} is α -compact if, for any

$$g \longrightarrow \coprod_{\lambda \in \Lambda} t_{\lambda} ,$$

there exists $\Lambda' \subset \Lambda$ with $\#\Lambda' < \alpha$ and

Definition—Theorem 2': $\mathfrak{T}^{\alpha}\subset \mathfrak{T}$ is the maximal α —compact $\mathfrak{G}.$

Definition 3': \mathcal{T} is α -compactly generated \iff \exists a small α -compact $\mathcal{G} \subset \mathcal{T}$ so that any non-zero object $t \in \mathcal{T}$ has a non-zero map $g \longrightarrow t, \ g \in \mathcal{G}$.

Let \mathcal{T} be a [TR5] triangulated category, and let $\mathcal{G} \subset \mathcal{T}$ be as in Definition 3'.

- **Theorem 1':** If $S \subset T^{\alpha}$ contains \mathcal{G} and is closed under triangles, (retracts) and α —coproducts, then $S = T^{\alpha}$.
- **Theorem 2':** If $S \subset T$ contains G and is closed under triangles are coproducts, then S = T.
- **Theorem 3':** $\mathbb T$ satisfies Brown representability. This means: a functor $H: \mathbb T^{\mathrm{op}} \longrightarrow \mathcal Ab$ is representable iff
 - (i) H is homological.
 - (ii) H respects products: that is

$$H\left(\coprod_{\lambda\in\Lambda}t_{\lambda}\right) = \prod_{\lambda\in\Lambda}H(t_{\lambda}).$$

Suppose $\Re \hookrightarrow \$$ are [TR5] triangulated categories. Assume that the inclusion $\Re \hookrightarrow \$$ is triangulated, fully faithful and respects coproducts. Form the quotient $\Im = \$/\Re$. Easy to show: \Im is also a [TR5] triangulated category. We have a diagram

Theorem 4': Let \Re , \Im and $\Im = \Im/\Re$ be as above. Assume further that

- (i) There is an α -compact $\mathcal{H} \subset \mathbb{S}$ as in Definition 3'.
- (ii) There is a $\mathcal{G} \subset \mathcal{R} \cap \mathcal{S}^{\alpha}$ which is α —compact in \mathcal{R} and "generates" \mathcal{R} as in Definition 3'.

Then:

• The functors $\mathcal{R} \longrightarrow \mathcal{S}$ and $\pi: \mathcal{S} \longrightarrow \mathcal{T}$ take α -compacts to α -compacts. In other words, we get a diagram

which factors further as

• In the diagram above, the functor i is fully faithful, and (up to splitting idempotents) every object is in the image of i. If $\alpha > \aleph_0$ we can say more: the map i is an equivalence.

What happens as we change α ?

- (i) If $\alpha < \beta$ then $\mathfrak{T}^{\alpha} \subset \mathfrak{T}^{\beta}$.
- (ii) If $\alpha < \beta$ and \Im is α -compactly generated, then it is also β -compactly generated. We call \Im WELL GENERATED if it is α -compactly generated for some α .
- (iii) Assume that T is well generated. Then

$$\mathfrak{T} = \bigcup_{\alpha} \mathfrak{T}^{\alpha}$$
.