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Let A be an additive category. Examples:

A = R—Mod or A = R—Proj .

The category R—Mod is abelian, the category
R—Proj is not.

The category K(A):

(i) Objects: cochain complexes.

(ii) Morphisms:
HOMOTOPY EQUIVALENCE CLASSES
of cochain maps.



A cochain map f: X — Y is:
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Two cochain maps f,g : X — Y are homo-
topic if there exists
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Notation: Cochain maps will be written
f: X — Y, cochain homotopies © : X =Y.
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If f: X — Y is a morphism, it factors as

()

Form the short exact sequence
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If W is the complex
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Define >W to be
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For each 4, the map ¢* : Y* — Z' is a split
epimorphism: choose a splitting ©*: Z¢ — Y.
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We obtain a cochain map H : Z — XY, and
the composite

z A sy =9 sz
vanishes. Hence H factors through

h:7 — 22X .

We assemble this to




AXIOMS:

TR1: Every isomorph of a triangle is a trian-
gle. The sequence X BN X —0— 2X
is a triangle. Every morphism f: X — Y
can be completed to a triangle

TR2: X v 9. 7 " X is a triangle iff

v 9% 7 ~hsx = vy is.
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TR3 and TRA4: Given a commutative diagram
where the rows are triangles

x 4,y 9, 7 M osx

ol 18
X —VY — 7 — X’
f/ g/ h/
there is a morphism v : Z — Z’ rendering
commutative the diagram

x v 94, 7 M osx

al 18 ] 1Za
X —-VvY — Z — X",
f/ g/ h/
Furthermore, v can be chosen so that

(6 ), Lo a) (o 5o

X ey —Y @ IL——7' %

is a triangle.
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Definition. Let 8, 7 be triangulated cate-
gories. A ‘“triangulated” or “exact” functor
F : 8§ — T is a functor preserving the struc-
ture.

Examples: K(A) is triangulated. If A is abelian
we set

A(A) = {Acyclics} ;

then the inclusion A(A) — K(A) is triangu-
lated. Define

K(A)

D(A) AL

The natural projection

K(A) — D(A)

is triangulated.
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Definition. A functor H : J — A is homo-
logical if

(i) T is triangulated.

(ii) A is abelian.

(iii) For every triangle X — Y Z > X,
the sequence H(X) — H(Y) — H(Z) is
exact.

If we set H"(W) = H(XZ"W) then we obtain

— HYZ) — H°(X) — HOY) — H%(Z) — H'(X) —

Example: all representable functors are homo-
logical.
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TRb5: coproducts exist in 7.
Let T be a [TR5] triangulated category.

Definition 1: k£ € T is compact < any map

AEN

factors as

Definition 2: ¢ C T is the full subcategory of
all the compacts.

Definition 3: T is compactly generated <— 3
a set G C TJ¢ so that any non-zero object
t € T has a non-zero map g — t, g € G.
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Let T be a [TR5] triangulated category, and
let G C J¢ be as in Definition 3.

Theorem 1: If S C J¢ contains G and is closed
under triangles and retracts, then & = J¢.

Theorem 2: If 8§ C T contains GG and is closed
under triangles are coproducts, then § = 7.

Theorem 3: T satisfies Brown representabil-
ity. This means: a functor H : J°° — Ab
is representable iff

(i) H is homological.

(ii) H respects products: that is

H(Ht/\> = J] H(y.

AEN AEN
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Suppose R — 8 are [TR5] triangulated cate-
gories. Assume that the inclusion R — 8 is tri-
angulated, fully faithful and respects coprod-
ucts. Form the quotient T = §/R. Easy to
show: T is also a [TR5] triangulated category.
We have a diagram
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Theorem 4: Let R, § and T = §/R be as
above. Assume further that

(i) There is an H C &¢ as in Definition 3.
(ii) Thereisa G C RN&° which *generates”
R as in Definition 3.

Then:

e The functors R — 8 and « : & — J take
compacts to compacts. In other words, we
get a diagram
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which factors further as

Re 3¢ Tlse Je
§¢/RE
R $ - T

e In the diagram above, the functor ¢ is fully
faithful, and, up to splitting idempotents,
every object is in the image of ¢. Precisely:
for every object t € J¢ there exist objects
t € J¢ s e 8¢ and an isomorphism t ot/ =

i(s).
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Example: Let X be a noetherian, quasi-projective
scheme. Put 7 = D(qc/X), the (unbounded)
derived category of cochain complexes of quasi-
coherent sheaves on X.

T satisfies [TR5]; arbitrary direct sums of un-
bounded cochain complexes of quasi-coherent
sheaves exist.

Easy to show: any bounded complex of vector
bundles is compact. That is,

D?(Vect/X) c T¢ .
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Let L be an ample line bundle on X (L exists
because X is assumed quasi-projective). De-
fine

G={Z"L" | m,n€Z} .
Clearly G ¢ D(Vect/X) C T¢. A small exercise

in algebraic geometry gives that G satisfies the
hypothesis of Definition 3.

20



Corollary 1 Let T = D(ac/X). The subcate-
gory T¢, that is the full subcategory of compact
objects in T, is precisely D?(Vect/X).

Proof: We know the inclusion D®(Vect/X) C
T¢. On the other hand, D?(Vect/X) contains
G, is triangulated, and contains any direct sum-
mand of any of its objects. Theorem 1 now
tells us that D°(Vect/X) = T¢. O

21



Corollary 2 (=Grothendieck duality). Let
f X — Y be a morphism of noetherian
schemes, and assume X s quasi-projective.
Then the map

Rf« :D(ac/X) — D(qc/Y)

has a right adjoint f'.
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Proof: For any objects z € D(qc/X) and y €
D(qc/Y), we can consider the abelian group

Fix y, and view this as a functor in z. This
is a homological functor D(qc/X)°? — Ab re-
specting products, hence representable by T he-
orem 3. Thus

O
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X — quasi-projective, noetherian scheme,
U = Zariski open subset U C X,
A4 = X —U.
Let
S = D(ac/X)
T =  D(ac/U)
Tio — T = restriction to U.

Put R = ker(w); it is the subcategory

R = Dgz(ac/X) C D(ac/X)

of all complexes whose restriction to U is acyclic.

Easy to show: the natural map §/R — T is an
equivalence. Furthermore, the technical con-
ditions of Theorem 4 are satisfied.
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Theorem 4 applies. The general diagram of
Theorem 4

RC__,___> SC U”C
\Sc /Rc//
R S 7 T
becomes, in our special case,
D (Vect/X) Db (Vect/X) Tl vect DY (Vect/U)
D°(Vect/X) Z
DY (Vect/X)
Dz(ac/X) ————D(ac/X) = D(qc/U)

Theorem 4 says that the functor ¢ is fully faith-
ful, and is just an idempotent completion; ev-
ery object of D?(Vect/U) is a direct summand
of an object in the image of 1.
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Interesting derived categories that are not com-
pactly generated.:

Proposition 3 Let X be a connected, non-
compact manifold of dimension > 1. Let
D(Ab/X) be the derived category of all sheaves
of abelian groups on X. The only compact ob-
ject in D(Ab/X) is the zero object.
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Let T be a [TR5] triangulated category, let «
be a regular cardinal.

Definition 1’: Let § C T be a triangulated
subcategory. G is a—compact if, for any

g — H t)\ )
AEN
there exists A/ ¢ A with #A < a and

g 11 ¢
\ AEA
I 9x I1 t/\/

AeN HAe/\’ fA AEN

Definition—Theorem 2’': 7% C 7T is the maxi-
mal a—compact G.

Definition 3': T is a—compactly generated <
4 a small a—compact § C T so that any
non-zero object ¢t € T has a non-zero map
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Let T be a [TR5] triangulated category, and
let G C T be as in Definition 3'.

Theorem 1’: If § C T% contains G and is closed
under triangles, (retracts) and a—coproducts,
then & = J<.

Theorem 2': If § C J contains § and is closed
under triangles are coproducts, then 8 = 7.

Theorem 3’': T satisfies Brown representabil-
ity. This means: a functor H : J°° — Ab
is representable iff

(i) H is homological.

(ii) H respects products: that is

H(Ht)\> = |] H(y).

AEN AEN
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Suppose R «— 8 are [TRB5] triangulated cate-
gories. Assume that the inclusion R — & is tri-
angulated, fully faithful and respects coprod-
ucts. Form the quotient T = §/R. Easy to
show: T is also a [TR5] triangulated category.
We have a diagram

«

|

« 804

|

7
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Theorem 4’: Let R, 8 and T = §/R be as
above. Assume further that

(i) Thereis an a—compact JH C & as in Def-
inition 3".

(ii) Thereisa § C RNS* which is a—compact
in X and ‘“generates” R as in Defini-
tion 3'.

Then:

e The functors R — § and = : § — T
take a—compacts to a—compacts. In other
words, we get a diagram
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which factors further as

nga

:Ra SO‘_ TJo

R 8 - T

e In the diagram above, the functor 7 is fully
faithful, and (up to splitting idempotents)
every object is in the image of i. If a > Ng

we can say more: the map ¢ is an equiva-
lence.
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What happens as we change a7
(i) If a < 3 then T% c TP,

(i) If @ < B and T is a—compactly gener-
ated, then it is also g—compactly gener-
ated. We call T WELL GENERATED if
it is a—compactly generated for some «.

(iii) Assume that T is well generated. Then

T o= U,
(87
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