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• Questions raised by DNA properties

– some experimental facts

• A nonlinear model for DNA fluctuations and melting.

– Nonlinear localization
– DNA melting, a phase transition in one dimension

• From statistics to dynamics: limitations of the model.

– An improved model and its dynamics
– A new class of discrete breathers

• Sequence effects in DNA: another challenge.
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Questions raised by DNA properties

3.3 A

~ 9 A

~ 32° − 36°°

°

cm

µ

θ

Long.
totale
du

au

Approximativement 11 phosphates
par tour

3



DNA is a highly dynamical entity.

“Breathing of DNA” has been known from biologists for decades.

• Observation: kinetic of imino-proton exchanges

Guéron et al. used NMR.
(Gueron et al. Nature 328, 89 (1987))

• Lifetime of a base-pair (closed time): 10 ms.

• Individual base pair opening (neighbors
have different lifetimes)
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→ DNA as a “model lattice” for nonlinear science

4



DNA fluctuations can be studied with various experimental me thods

Neutron diffraction (with Andrew WILDES, ILL, Grenoble)

θ
Diffraction
pattern

neutrons

DNA "stack"

Measure the coherence length of
the base stacking, which makes a
diffraction grating.

M. Krisch, et al. Phys. Rev.
E 73 061909-1-10 (2006)
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UV Laser oxidative Guanine modifications: a probe of local st acking
fluctuations. (with Dimitar ANGELOV, ENS Lyon)

High-intensity UV laser pulses→ guanine oxidative lesions strongly modulated by
the local structure.

Oxozalone sensible to cleavage by piperidine
glycosylase

8-oxodG sensible to cleavage by Fpg protein, and
appears only in helicoidal stacking

→ Rpip/RFpG indicative of local opening

Opens the possibility to evaluate fluctuational
opening versus sequence.

6



From A. Spassky and D. Angelov, J. Mol. Biol. 323 9 (2002)

TT

FpG protein hot piperidine

Provides data for all GC pairs, contrary
to fluorophore–quencher methods.
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DNA fluctuations are important for biological function

The genetic code is buried (protected) inside the structure

Local opening can be thermally
created (observed in “DNA melting”)
(M. Peyrard, Nature Physics, 2, 13-14 (2006))

T

• Also observed in homopolymers (not disorder-induced localization)

• Larger openings: DNA “bubbles”

Questions

• How can we understand the localization observed in DNA melting?

• Can we understand the dynamics of the fluctuations (lifetime of a closed base
pair, and of the open state)
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A simple nonlinear model for DNA fluctuations and melting

(M. Peyrard and A.R. Bishop, Phys. Rev. Lett. 62, 2755 (1989) )

Beyond Ising: describe dynamics→ real variable y for base-pair stretching
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Coupling potential W (stacking) : crucial for the statistical mechanics
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Type I:

W(yn, yn−1) =
1

2
K (yn − yn−1)2

Type II:

W(yn, yn−1) =
1

2
K
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(yn− yn−1)2

if yn and yn−1 ≪ 1/α⇒ K′ ≈ K(1 + ρ)
if yn or yn−1 ≫ 1/α⇒ K′ ≈ KModel parameters:

Actual potential interactions→ can be estimated
(ex. D energy for base-pair breaking ≈ 0.03 eV. Includes solvent effects)

Comparison with experiments→ precise their values
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Dynamics of the thermalized model (homopolymer)

Simulation at constrained T

• Low temperature:
Thermally generated discrete
breathers
corresponds to “DNA
breathing” of biologists.

• High temperature: “patches”
of high and low “T”
corresponds to “DNA
denaturation bubbles”

• The thermal denaturation: a
true transition in 1D?
(not only an academic
problem!)

T = 100 K T = 340 K increasing T
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The study of the biological problem leads to a new idea: tempo rary
localization of thermal fluctuations.

Energy equipartition temporarily broken!

Local distribution P(y, n0, t0,∆n,∆t)

Behind this phenomenon: discrete breathers:

mün − K(un+1 + un−1 − 2un) + ω2
d(un − u3

n) = 0

Very general, no strict condition contrary to
solitons
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How does it occur ? Nonlinear localization.

Time evolution of the energy density
shows the formation of local modes
through two mechanisms:

• Modulational instability of a plane
wave.

• Energy exchange in collisions.
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Discreteness helps collecting energy: discrete breathers are NOT solitons.

The biggest (most stable) is favored.
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Statistics of the collisions
(200 collisions)

Energy exchange

∆H1 =
Ebig(after) − Ebig(before)

Esmall(before)
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The statistical physics of DNA “melting”

n n+1n-1

V(y  )
n W(y  ,  y      )

n n-1

y

Compute the partition functionZ and then the free energy F = −kBT lnZ

Z =
∫

+∞

−∞

N
∏

n=1

dyndpne−βH = (2πmkBT)N/2×
∫

+∞

−∞

N
∏

n=1

dyne−β[W(yn,yn−1)+V(yn)]δ(yN− y1)
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Method: Transfer integral calculation:

Z = (2πmkBT)N/2Zy = (2πmkBT)N/2

∫

+∞

−∞

N
∏

n=1

dyne−β[W(yn,yn−1)+V(yn)]δ(yN − y1)

Define the transfer operator yn−1 → yn and its eigenfunctions φi by:
∫

dyn−1 exp−β
{

W(yn, yn−1) + V(yn))
}

× φi(yn−1) = e−βεiφi(yn)

Expand δ(yN − y1) =
∑

iφ
∗
i
(yN)φi(y1) and perform successively the integrals over y1, y2, . . . , yN−1

Zy =

∑

i

e−βNεi
∫

dyN|φi(yN)|2 =
∑

i

e−βNεi because φi normalized.

In the thermodynamic limit (N→∞)Zy = e−βNε0 (ε0 smallest eigenvalue of the TI operator)

Free energy per site f = −kBT

N
Z = ε0 −

kBT

2
ln
(

2πmkBT
)

The second term is non-singular with T. Therefore, if there is a phase transition, it shows up in the
variation of ε0 versus T.

The problem is thus to find the eigenvalues (and eigenfunctio ns) of the transfer integral
operator.
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Similar calculations give

• The order parameter σ = 〈y〉 =
∫

+∞
−∞ dy y |φ0|2

• Correlation functions

C(n) = 〈(yn − σ)(y0 − σ)〉 =
+∞
∑

i=1

|〈φi|y|φ0〉|2e−β(εi−ε0)|n|

Solving for the eigenstates of the TI operator:
For the harmonic coupling W(yn, yn−1) = 1

2K(yn − yn−1)2 the calculation can be made analytically in
the limit of strong coupling between sites (bad for DNA, but useful to understand qualitatively).
We want to solve

∫

+∞

−∞
dx e

−β
[

1
2

K(y−x)2+V(y)

]

φ(x) = e−βεφ(y)

Where x is base-pair stretching at site n − 1 and y the stretching at site n. If K is large enough we
can define z by x = y + z and expand φ(y + z) in powers of z

∫

+∞

−∞
dz e

−β
[

1
2Kz2
]

[

φ(y) + zφ′(y) +
1

2
z2φ′′(y)

]

= e−β[ε−V(y)]φ(y) .

Then we perform the Gaussian integrals in z (the odd one vanishes)
√

2π

βK

[

φ(y) +
1

2βK
φ′′(y)

]

= e−β[ε−V(y)]φ(y)
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√

2π

βK

[

φ(y) +
1

2βK
φ′′(y)

]

= e−β[ε−V(y)]φ(y)

The prefactor can be integrated in the exponent of the r.h.s. as

[

φ(y) +
1

2βK
φ′′(y)

]

= exp
{

− β
[

ε +
1

2β
ln(2π/βK) − V(y)

]}

φ(y)

Define ε̃ = ε + 1
2β ln(2π/βK) and expand the exponential if βD < 1 (the Morse potential is bounded

by D)
[

φ(y) +
1

2βK
φ′′(y)

]

≈
[

1 + βV(y) − βε̃
]

φ(y)

We then obtain an equation formally identical to the Schrödinger equation of a particle in the
potential V(y):

− 1

2K
φ′′(y) + β2V(y)φ(y) = β2ε̃φ(y)

21/(k T )1B
1/(k T )B 2

2

T < T  localized eigenstate T > T  non−localized eigenstatec c

<y> finite <y> infinite
At low T the effective Morse
potential is deep enough to have
a localized ground state.
For T > Tc =

2
√

2KD
akB

the
ground state is non-localized ⇒
denaturation
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Discussion of the results.

The transition becomes very sharp when we introduce anharmonic stacking:
agrees with experiments.

F = U − TS

Application: the model can be used to model actual DNA denaturation
experiments (heteropolymers)

In this case the transfer integral is calculated numerically exactly
T.S. van Erp, S. Cuesta-Lopez, J.-G. Hagmann, M. Peyrard, Phys. Rev. Lett. 95, 218104 (2005) )
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Another point of view: nonlinear science helping statistic al mechanics.
(T. Dauxois, N. Theodorakopoulos, M. Peyrard, J. Stat. Phys. 107 869 (2002) )

Transition due to the motion of Domain Walls

y±DW(x) =
1

a
ln
[

1 + e
√

S/2 (x−x0)
]

with S =
K

Da2

E+DW(x0 ± ℓ) − E+DW(x0) = ∓2ℓD

⇒ at T = 0 “zips” the chain back

Add thermal fluctuations:

FDW = const +D(
kBT

2

√

2Da2

K
− 2)

x0

ℓ
at Tc fluctuations stabilize the DW.
The energy of the wall is infinite ⇒ allows the 1D transition.
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Discreteness effects on the thermodynamics of DNA melting.
N. Theodorakopoulos, M. Peyrard and R.S. Mackay, Phys. Rev. Lett. 93, 258101 (2004)

Domain wall minimizes Φ =
∑N

n=0

1

2
S(Yn+1 − Yn)2

+

[
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The solution is not unique (trapping by discreteness): one stable solution with
minimal energy

The spectrum around the domain wall has a local mode in the gap

Free energy from the discrete spectrum→ small correction to Tc
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From statistics to dynamics: the limitations of the model

Simulation→ 20 ns
Experiment:

• lifetime of an open state 30 to 300 ns

• lifetime of a closed base pair 1 to 10 ms

Nonlinear model: discrete breathers.

they may have a lifetime of hundreds of picoseconds (with
thermal fluctuations) but opening and closing have periods of
a few ps.

Disagreement by several orders of magnitude!
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The Morse potential
must be changed:

F = U − TS

For a mesoscopic model, the “potential” is a
free energy
(includes missing degrees of freedom)
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The equilibrium properties are hardly affected (the
melting transition gets sharper)

Morse Modified Morse
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The dynamics is drastically changed:

Morse Modified M.
Lifetime
open

0.08 ns 7 ns

Lifetime
closed

0.4 ns 0.4 µs
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A new class of discrete breathers

H =

N/2
∑

n=−N/2

p2
n

2m
+

1
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The effect of the sequence: a new challenge
(work in progress)

Y. Zeng, A. Montrichok, G.

Zocchi, J. Mol. Biol. 339

67-75 (2004)
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Conclusion
Why does a physicist study DNA?

• Of course fascinating topic !

• It allows experiments that would be unthinkable in a “purely physical system”,
thanks to the tools developed by biologists.

• It raises fundamental questions such as the phase transition in 1D, localization
of thermal fluctuations, non local sequence effects . . .

It should attract the attention of mathematicians too!

• Mechanism for nonlinear localization by breather collisions (define a global
measure and calculates its time evolution ?)

• New model with a breather that oscillates around a point which is unstable in
the anticontinuum limit

• The phase transition in one dimension (diverging partition function, nature of
the transition)
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