
Chapter 1

Multiple Polylogarithms1

In this chapter we consider single- and multi-variable generalizations of the natural logarithm,

called the polylogarithms and the multiple polylogarithms, respectively.

1.1 Chen’s iterated integrals

We briefly recall the theory of Chen’s iterated integrals in this section. It is an indispensable

tool in the subsequent study of the analytic properties of multiple polylogarithms.

For r > 1 define inductively∫ b

a

f1(t) dt · · · fr(t) dt =

∫ b

a

f1(τ) dτ · · · fr−1(τ)

(∫ τ

a

fr(t)dt

)
dτ.

When r = 0 one sets the integral to be 1 as a convention. More generally, let w1, . . . , wr be

some 1-forms (repetition allowed) on a manifold M and let α : [0, 1] → M be a piecewise

smooth path. Write α∗wi = fi(t)dt and define the iterated integral∫
α

w1 · · ·wr :=

∫ 1

0

f1(t) dt · · · fr(t)dt.

Remark 1.1.1. Here our order of the 1-forms in the iteration is opposite to Chen’s original

order.

The following results are crucial in the application of the Chen’s theory of iterated path

integrals.

Lemma 1.1.2. Let wi (i ≥ 1) be C-valued 1-forms on a manifold M .

(i) The value of
∫
α
w1 · · ·wr is independent of the parametrization of α.

(ii) If α, β : [0, 1] −→M are composable paths (i.e. α(1) = β(0)), then∫
βα

w1 · · ·wr =

r∑
j=0

∫
β

w1 · · ·wi
∫
α

wi+1 · · ·wr

where βα denotes the composition of α and β and we set
∫
α
φ1 · · ·φm = 1 if m = 0.

1Prepared by Jianqiang Zhao for the workshop “Polylogarithms as a Bridge between Number Theory and

Particle Physics, July 3, 2013 to July 13, 2013, at Durham University, UK. This is also the first draft of one

book chapter in progress. There is a long list of references which cover not only multiple polylogarithms but

also multiple harmonic sums and multiple zeta values. Your comments are very welcome: zhaoj@eckerd.edu.
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(iii) For every path α, ∫
α−1

w1 · · ·wr = (−1)r
∫
α

wr · · ·w1.

(iv) For every path α,∫
α

w1 · · ·wr
∫
α

wr+1 · · ·wr+s =
∑
σ

∫
α

wσ(1) · · ·wσ(r+s)

where σ ranges over all shuffles of type (r, s), i.e., permutations σ of r + s letters with

σ−1(1) < · · · < σ−1(r) and σ−1(r + 1) < · · · < σ−1(r + s).

Proof. (i) can be derived from the theorem on [73, p. 361]. (ii) and (iii) are formulas (1.6.1)

and (1.6.2) of [73] respectively. Ree [292] discovered the shuffle relation (iv) which appeared

as (1.5.1) in [73].

Lemma 1.1.3. If w
(j)
i are closed 1-forms for 1 ≤ i ≤ r and 1 ≤ j ≤ n such that∑

j w
(j)
1 ∧w

(j)
2 =

∑
j w

(j)
2 ∧w

(j)
3 = · · · =

∑
j w

(j)
r−1∧w

(j)
r = 0 then

∑
j

∫
α
w

(j)
1 w

(j)
2 · · ·w

(j)
r only

depends on the homotopy class of α.

Proof. The case j = 1 is proved on [73, p. 366]. The case r = 2 can be found on [73, p. 368].

The general case follows from a similar argument.

1.2 Classical polylogarithms

The Riemann zeta value ζ(n) for positive integer n > 1 can be regarded as a special value of

the classical polylogarithm

Lin(x) :=

∞∑
k=1

xk

kn
, |x| ≤ 1

when x = 1. If n = 1 one sees easily that

Li1(x) :=

∞∑
k=1

xk

k
= − log(1− x), |x| < 1.

Notice that one can express Lin(x) using the following iterated integral

Lin(x) =

∫ x

0

(
dt

t

)n−1
dt

1− t
,

from which one obtains an analytic continuation of Lin(x) to C as a multi-valued function

with singularities at 1. Since multi-valued functions are hard to grasp there have been several

attempts to find their single-valued cousins. Lewin [234] defined the following polylogarithm

of real variable x < 1:

Ln(x) =

n∑
j=0

(− log |x|)j

j!
Lin−j(x) +

(− log |x|)n−1

n!
log |1− x|, (1.1)

which can be extended to x ∈ R by setting Ln(x) = (−1)n−1Ln(1/x) for x ≥ 1. He further

conjectured that Ln(x) should satisfy “clean” functional equations and proved this for those
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equations found by Kummer with n < 5. Another version of single-valued polylogarithm is

defined by Ramakrishnan [287, 351] for complex variable x with |x| ≤ 1

Dn(x) =

{
Re

Im

n∑
j=0

(− log |x|)j

j!
Lin−j(x)− (− log |x|)n

2 · n!

if n is odd;

if n is even,
(1.2)

and then extend it to C by Dn(x) = (−1)n−1Dn(1/x) for |x| ≥ 1. Notice that this function is

real analytic. But it seems that Zagier’s version of single-valued polylogarithms Ln in [353]

behaves the most regularly. It is defined on CP1 for any positive integer n ≥ 2 by

Ln(x) =

{
Re

Im

n∑
j=0

2jBj
j!

logj |x|Lin−j(x)
if n is odd;

if n is even,
(1.3)

where Bj is the j-th Bernoulli number and Li0(x) = 1. These functions are all single-valued

and real-analytic by straight-forward monodromy computations. In particular Ln(0) =

Ln(∞) = L2n(0) = 0, and L2n+1(1) = ζ(2n+ 1).

We turn now briefly to the discussion of polylogarithm functional equations. In high

school students already know that log |x| + log |y| = log |xy|. For dilogarithm one has the

following fact (see [356, p. 9]): if 1/x+ 1/y + 1/z = 1 then (see Exercise 1.1)

Li2(x) + Li2(y) + Li2(z) =
1

2

[
Li2

(
− xy

z

)
+ Li2

(
− yz

x

)
+ Li2

(
− zx

y

)]
. (1.4)

In fact this is equivalent to the so-called five-term relation discovered by Abel [1], which says,

in terms of L2(x), that for all x, y 6= 0, 1 and x 6= y

L2(x)− L2(y) + L2

(y
x

)
− L2

(1− x−1

1− y−1

)
+ L2

(1− x
1− y

)
= 0. (1.5)

It has a more symmetric form, see Exercise (1.2).

Similar result holds for trilogarithm L3(x): for all x, y, z

L3(−xyz) +
⊕

Cyc(x,y,z)

{
L3(zx− x+ 1) + L3

(zx− x+ 1

zx

)
− L3

(zx− x+ 1

z

)
+ L3

( x(yz − z + 1)

−(zx− x+ 1)

)
+ L3

( yz − z + 1

y(zx− x+ 1)

)
+ L3(z)− L3

( yz − z + 1

yz(zx− x+ 1)

)}
= 3L3(1).

(1.6)

Here
⊕

Cyc(x,y,z) f(x, y, z) = f(x, y, z) + f(y, z, x) + f(z, x, y). This was discovered first by

Goncharov [142] when he proved the following Zagier’s Conjecture for ζF (3) where ζF (s) is

the Dedekind zeta function over a number field F . Zagier proved his conjecture for ζF (2) in

[350].

Conjecture 1.2.1. (Zagier’s Conjecture) Let F be a number field and let σ1, . . . , σr1 : F → R
be the real embeddings and σ1+r1 = σr1+1+r2 , . . . , σr1+r2 = σr1+2r2 : F → C be the complex

embeddings. For integer n ≥ 2 let r(n) = r2 if n is odd, r(n) = r1 + r2 if n is even. Then

there exists y1, . . . , yr(n+1) ∈ Q[F \ {0, 1}] such that

ζF (n) = πnr(n)D
−1/2
F det

[
Ln
(
σi(yj)

)]
1≤i,j≤r(n+1)

.

where DF is the discriminant of F .



4 CHAPTER 1. MULTIPLE POLYLOG

1.3 Multiple polylogarithms

Multiple polylogarithms are iterated generalizations of polylogarithms to the multi-variable

situation.

Definition 1.3.1. Let d, n1, . . . , nd be positive integers, and let x1, . . . , xd be complex vari-

ables such that |
∏i
j=1 xj | < 1 for all i = 1, . . . , d. The multiple polylogarithm of depth d is

defined by

Lin1,...,nd(x1, . . . , xd) =
∑

k1>k2>···>kd≥1

xk11 x
k2
2 · · ·x

kd
d

kn1
1 kn2

2 · · · k
nd
d

. (1.7)

As in the definition of multiple zeta functions the order of indices in (1.7) is sometimes

reversed in research papers, even by the author himself. Note also that occasionally the term

“multiple polylogarithm” means the single variable function Lin1,n2...,nd(t, 1, 1, . . . , 1) in the

literature, which will in fact be needed in this book later (see § 1.11).

Now by setting ai =
∏i
j=1 x

−1
j it is not hard to see (Exercise 1.3)

Lin1,...,nd(x1, . . . , xd) =

∫ 1

0

(
dt

t

)n1−1
dt

a1 − t
· · ·
(
dt

t

)nd−1
dt

ad − t
. (1.8)

It is an iterated path integral in the sense of Chen [73, 74] whose path lies in C. One thus

can easily enlarge its domain of definition to some open subset of Cn. However, it is difficult

to study the monodromy of the multiple polylogarithms by this integral expression.

1.4 Analytic continuation of multiple logarithms

In this section we describe a method of defining the analytic continuation of multiple log-

arithms by Chen’s iterated integrals. This can be generalized to arbitrary multiple poly-

logarithms (see [370]) but the notation is too cumbersome so we leave it to the interested

reader.

For any positive integer n we set Ln(x) = Li 1,...,1︸︷︷︸
n times

(x), define the index set

Sn = {0, 1}n = {i = (i1, . . . , in) : it = 0 or 1 ∀t = 1, . . . , n}, (1.9)

and write 0 = (0, · · · , 0) and 1 = (1, . . . , 1). The weight function on the indices |(i1, . . . , in)| =∑n
t=1 it is the number of nonzero components.

Lemma 1.4.1. Let x = (x1, . . . , xn) be an ordered set of complex variables. Let

xj = (x1, . . . , xj−1, xjxj+1, xj+2, . . . , xn)

for j = 1, . . . , n− 1 and xn = (x1, . . . , xn−1). Then the total differential

dLn(x) =

n∑
j=1

djLn(x) =

n∑
j=1

{
Ln−1(xj)dxj/(1− xj) + Ln−1(xj−1)dxj/xj(xj − 1)

}
(1.10)

=

n∑
j=1

Ln−1(xj)d log

(
1− x−1

j+1

1− xj

)
, (1.11)

where xn+1 =∞, L0(x1) = 1 and when t = 1 the second term in the sum of (1.10) does not

appear.
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Proof. Suppose j > 1 (the case j = 1 is simpler). Then by definition

djLn(x) =
∑

k1>···>k̂j>···>kj−1

xk11 · · · x̂
kj
j · · ·x

kd
d

k1 · · · k̂j · · · kd

kj−1−1∑
kj=kj+1+1

x
kj−1
j dxj

=
∑

k1>···>k̂j>···>kj−1

xk11 · · · x̂
kj
j · · ·x

kd
d

k1 · · · k̂j · · · kd
·
x
kj−1−1
j − xkj+1

j

xj − 1
dxj

=Ln−1(xj)dxj/(1− xj) + Ln−1(xj−1)dxj/xj(xj − 1),

which proves (1.10). The second equation (1.11) now follows immediately (Exercise 1.4).

Suppose i = (i1, . . . , in) has weight k and iτ1 = · · · = iτk = 1. We define

x(i) = y = (y1, . . . , yk), where ym =

τm∏
α=1+τm−1

xα, 1 ≤ m ≤ k (1.12)

with τ0 = 0. Set w0(x) = 0 and

wt(x) := d log
(1− x−1

t+1

1− xt

)
, for 1 ≤ t ≤ n.

We now define a partial order ≺ on Sn as follows: Given i = (i1, . . . , in) and j = (j1, . . . , jn),

j ≺ i (or, equivalently, i � j) if jt ≤ it for every 1 ≤ t ≤ n and js < is for some s.

Theorem 1.4.2. Let x = (x1, . . . , xn) be an ordered set of complex variables. The multiple

logarithm Ln(x) is a multi-valued holomorphic function on

S′n = Cn \

(x1, . . . , xn) :
∏

1≤j≤n

(1− xj)
∏

1≤j<k≤n

(
1− xj · · ·xk

)
= 0

 (1.13)

and can be expressed by

Ln(x) =
∑

06=j1≺···≺jn,
j1,...,jn∈Sn

∫ x

0

wjn−jn−1
(x(jn)) · · ·wj2−j1(x(j2))w1(x(j1)), (1.14)

where the subtraction − : Sn → Z is a binary operation such that

(i1, . . . , in)− (j1, . . . , jn) =

{
s, if is = js + 1 and i` = j` ∀` 6= s;

0, otherwise.

Proof. The proof is straight-forward so we leave it as an exercise.

It is clear that every nonzero term in the sum of (1.14) is provided by some vector index

(j1, . . . , jn) ∈ Sn
n with |j`| = ` for all ` = 1, . . . , n, which we call admissible for convenience.

Example 1.4.3. When n = 1,

Li1(x) =

∫ x

0

d log
( 1

1− x

)
= − log(1− x).

When n = 2, S2 = {(0, 0), (0, 1), (1, 0), (1, 1)} and there are two admissible elements in S2
2:

((1, 0), (1, 1)) and ((0, 1), (1, 1)). Let x = (x, y) then

x(1, 0) = x, x(0, 1) = xy, x(1, 1) = (x, y).
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Thus

Li1,1(x, y) =

∫ x

0

w2(x)w1(x(1, 0)) + w1(x)w1(x(0, 1))

=

∫ (x,y)

(0,0)

dy

1− y
dx

1− x
+

(
dx

1− x
+

dy

y(y − 1)

)
d(xy)

1− xy
.

The iterated path integrals are understood in the sense of Chen. For example, if α : [0, 1]→
C2 is the path from (0, 0) to (x0, y0) then∫ (x0,y0)

(0,0)

dy

1− y
dx

1− x
=

∫ 1

0

(∫ t

0

d x ◦ α(s)

1− x ◦ α(s)

)
d y ◦ α(t)

1− y ◦ α(t)
,

where x ◦ α(s) (resp. y ◦ α(s)) is the x- (resp. y-) coordinate of α(s). When n = 3 let

x = (x, y, z). Then

x(1, 0, 0) =x, x(0, 1, 0) = xy, x(0, 0, 1) = xyz, x(1, 1, 0) = (x, y),

x(1, 0, 1) =(x, yz), x(0, 1, 1) = (xy, z), x(1, 1, 1) = (x, y, z).

Thus

Li1,1,1(x, y, z) =

∫ (x,y,z)

(0,0,0)

dz

1− z
dy

1− y
dx

1− x
+

dz

1− z

(
dx

1− x
+

dy

y(y − 1)

)
d(xy)

1− xy

+

(
dx

1− x
+

dy

y(y − 1)

)
dz

1− z
d(xy)

1− xy
+

(
dy

1− y
+

dz

z(z − 1)

)
d(yz)

1− yz
dx

1− x

+

(
dy

1− y
+

dz

z(z − 1)

)(
dx

1− x
+

d(yz)

yz(yz − 1)

)
d(xyz)

1− xyz

+

(
dx

1− x
+

dy

y(y − 1)

)(
d(xy)

1− xy
+

dz

z(z − 1)

)
d(xyz)

1− xyz
.

1.5 Monodromy of multiple logarithms

The main goal of this section is to define the variation matrix associated with the multiple

logarithms by utilizing the vector index set S as defined in (1.9), together with the partial

order ≺.

Write x = (x1, . . . , xn) as before. We know the n-tuple logarithm Ln(x) is related to

multiple logarithms of lower weights. This can be seen easily, for instance, when we take the

derivatives as given by Lemma 1.4.1.

Definition 1.5.1. Suppose i ∈ Sn has weight k. We define the i-th retraction map ρi :

Sn → Sk as follows.

(1) If i 6� j then ρi(j) = (0, . . . , 0)

(2) Suppose i � j and j has weight l. Suppose further that the 1’s occur at the positions

τ1, . . . , τk in i and t1, . . . , tl in j, respectively. Then we can put tr = ταr for 1 ≤ r ≤ l.

Set the entry of ρi(j) to be 1 if it is at the αr-th (1 ≤ r ≤ l) component and 0 otherwise.

For instance ρ(1101)

(
(1100)

)
= (110) ∈ S3 and ρ(1101)

(
(0100)

)
= (010). In general,

ρi(i) = 1k for all i with |i| = k.

We are now ready to define the entries of the 2n × 2n variation matrix M[n](x) :=

M 1,...,1︸︷︷︸
n times

(x) associated with the n-tuple logarithm Ln(x).
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Definition 1.5.2. Fix a point x ∈ Sn where

Sn = Cn \

(x1, . . . , xn) :
∏

1≤j≤n

xj(1− xj)
∏

1≤j<k≤n

(
1− xj · · ·xk

)
= 0

 (1.15)

For 1 ≤ s ≤ n write as = as(x) =: (x1 · · ·xs)−1 and

θs = θs(x) =
dt

t− as
=

dt

t− as(x)
.

(1) If j 6≺ i then we define the (i, j)-th entry of M[n](x) to be 0.

(2) Suppose i � j as given in Definition 1.5.1(2). Recall from equation (1.12) we have

x(i) = y = (y1, . . . , yk), ym =

τm∏
α=1+τm−1

xα =
aτm−1

(x)

aτm(x)
, 1 ≤ m ≤ k.

with τ0 = 0, a0(x) = 1. Set t0 = α0 = 0, tl+1 = n + 1, αl+1 = k + 1, an+1(x) =

ak+1(y) = 0. Define the (i, j)-th entry of M[n](x) as (2πi)lEi,j(x) where

Ei,j(x) = γkρi(j)(y) :=(−1)k−l
l∏

r=0

∫ aαr (y)

aαr+1
(y)

θαr+1(y) · · · θαr+1−1(y)

=(−1)k−l
l∏

r=0

∫
pr

θταr+1
(x) · · · θταr+1−1

(x)

(1.16)

Here the l + 1 paths p0, . . . , pl for the l + 1 integrals are independent of i where pr

is any fixed contractible path from atr+1
(x) to atr (x) in the punctured complex plane

C \
⋃
tr<s<tr+1

{as(x)}, and the integral
∫
pr

= 1 if αr + 1 = αr+1. We get the second

equality by observing that

am(y) = (y1 · · · ym)−1 = aτm(x) =⇒ aαr (y) = aταr (x) = atr (x).

Proposition 1.5.3. Suppose i and j are given as in Definition 1.5.2(2). As multi-valued

functions

Ei,j(x) =

l∏
r=0

Lαr+1−αr−1

(
atr (x)− atr+1

(x)

aταr+1
(x)− atr+1

(x)
, · · · ,

aταr+1−2(x)− atr+1(x)

aταr+1−1
(x)− atr+1

(x)

)
(1.17)

=Lk−αl
(
x1+tl · · ·xταl+1

, · · · , x1+τk−1
· · ·xτk

)
·

·
l−1∏
r=0

Lαr+1−αr−1

(
1− x1+tr · · ·xtr+1

1− x1+ταr+1
· · ·xtr+1

, · · · ,
1− x1+ταr+1−2

· · ·xtr+1

1− x1+ταr+1−1
· · ·xtr+1

)
. (1.18)

Here L0 = 1 and a0 = 0.

Proof. By direct and simple calculation using substitution we get

(−1)αr+1−αr−1

∫
pr

θταr+1
(x) · · · θταr+1−1

(x)

= Lαr+1−αr−1

(
atr (x)− atr+1

(x)

aταr+1
(x)− atr+1

(x)
, · · · ,

aταr+1−2(x)− atr+1(x)

aταr+1−1
(x)− atr+1

(x)

)
.

The proposition follows immediately.
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Example 1.5.4. On the last row of M[n](x) one has

E1,j(x) =γnj (x) =

l∏
r=0

Ltr+1−tr−1

( atr − atr+1

atr+1 − atr+1

, · · · ,
atr+1−2 − atr+1

atr+1−1 − atr+1

)
(1.19)

=

l∏
r=0

Ltr+1−tr−1

(1− x1+tr · · ·xtr+1

1− x2+tr · · ·xtr+1

, · · · ,
1− xtr+1−1xtr+1

1− xtr+1

)
where L0 = 1 and xn+1 =∞. In particular, E1,0 = γn0 (x) = Ln(x) and E1,1 = γn1 (x) = 1.

For any n ≥ 2 let Ln = Ln(x) = [C0 . . . C1] be the matrix with 2n columns Cj (j ∈ Sn)

where

Cj =
∑
i�j

γ
|i|
ρi(j)

(
x(i)

)
ei

where ei is the i-th standard unit column vector. In listing the columns we have used a

complete order “<” on Sn: If |i| < |j| then i < j (or, equivalently, j > i). If |i| = |j| then the

usual lexicographic order from left to right is in force with 1 < 0 (not 0 < 1!).

We now fix a standard basis {ei : i ∈ Sn} of C2n consisting of column vectors. Suppose

|i| = k. It follows from definition that the i-th row is

Ri :=
∑
j≺i

(2πi)|j|γkρi(j)
(
x(i)

)
eTj = (2πi)keTi +

∑
j�i

(2πi)|j|γkρi(j)
(
x(i)

)
eTj (1.20)

where eTj are now row vectors. Note that γkρi(i) = γk1k = 1 by definition. It is clear that the

first entry (i.e. j = 0) of this row is Lk
(
x(i)

)
.

Example 1.5.5. Using the above definition we can easily get the variation matrix associated

with the double logarithm:

M1,1(x, y) =


1

Li1(x) 2πi

Li1(xy) 2πi

Li1,1(x, y) 2πiLi1(y) 2πi(Li1(x)− Li1(y)− log y) (2πi)2

 .

For any k = 0, . . . , n let us call the minor of M[n](x) consisting of rows beginning with

k-tuple logarithms (corresponding to i = ({1}k, 0, . . . , 0)) and ending just before the (k+ 1)-

tuple logarithms the k-th block. It has
(
n
k

)
rows with row indices |i| = k.

Lemma 1.5.6. The matrix M[n](x) is a lower triangular matrix. Moreover, the columns

with |j| = k of the k-th block of M[n](x) is (2πi)k times the identity matrix of rank
(
n
k

)
.

Proof. The lemma follows directly from equation (1.20) because if j � i then j < i.

Lemma 1.5.7. The j-th column of M[n](x) is

(2πi)|j|Cj = (2πi)|j|
∑
i�j

γ
|i|
ρi(j)

(
x(i)

)
ei

where x(i) is defined by equation (1.12) depending on i.

Proof. Use equation (1.20).
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Proposition 1.5.8. The columns of M[n](x) form the set of the fundamental solutions of

the following system of differential equations
dX0 =0,

dXi =
∑

|k|=|i|−1,k≺i

Xk d γ
|i|
ρi(k)

(
x(i)

)
for all 1 ≤ |i| ≤ n (1.21)

where x(i) is determined as in equation (1.12).

Proof. We prove the proposition by induction on n. It is easy to see the proposition is valid

for n = 1 and n = 2. We assume that n ≥ 3 and the proposition is true for ≤ n − 1. Let

us now consider the j-th column as expressed in Lemma 1.5.7. The cases |i| = 1 or j > i are

obvious. Suppose

(1) 1 < |i| < n and j ≤ i. There are two cases. (i) j 6≺ i. This is trivial because each term

of both sides is zero. (ii) j ≺ i. Then there is a t such that it = jt = 0. We denote i′ ∈ Sn−1

the corresponding index after deleting the it-th component. By induction∑
|k′|=|i′|−1, j′≺k′≺i′

γ
|k′|
ρk′ (j

′)

(
x′(k′)

)
d γ
|i′|
ρi′ (k

′)

(
x′(i′)

)
= d γ

|i′|
ρi′ (j

′)

(
x′(i′)

)
where we set x′ = (x1, . . . , xit−1, xitxit+1, xit+2, . . . , xn). Since |i′| = |i| and |k′| = |k| we

can get the desired equation by inserting 0 before the it-th components of i′, j′ and k′.

(2) i = 1 and |j| = l. We need to show

dγnj (x) =
∑

|k|=n−1, j≺k

γn−1
ρk(j)

(
x(k)

)
dγnk (x). (1.22)

This is trivial when l = n. The case l = 0 follows from (1.11) of Lemma 1.4.1:

dLn(x) =

n∑
t=1

Ln−1(x1, . . . , xt−1, xtxt+1, xt+2, . . . , xn) d log
1− x−1

t+1

1− xt
.

So we may assume 0 < l < n, jt1 = · · · = jtl = 1 and jt = 0 for all other indices t. By

definition (1.19) we have

dγnj (x) =

l∑
r=0

∑
tr<s<tr+1

γn−1
ρvs (j)

(
x(vs)

)
dγnvs(x)

where t0 = 0, tl+1 = n+ 1 and

vs = (1, . . . , 1, . . . . . . . . . , 1, 0, 1, . . . . . . . . . , 1, . . . , 1).

↑ ↑ ↑
tr-th place s-th place tr+1-th place

Under the retraction map ρvs the numbering of the indices changes as follows: t t if t < s

and t t− 1 if t > s. We also have

at
(
x(vs)

)
=

at(x) if t < s,

at+1(x) if t > s.

Hence for each s such that tr < s < tr+1 the integral expression of γn−1
ρk(j)

(
x(k)

)
is unchanged

under ρk (j ≺ k) except the vs-term. Equation (1.22) now follows immediately from Leibniz

rule and so the proposition is proved.
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Theorem 1.5.9. Let M[n](x) =
[
Ei,j(x)

]
i,j∈Sn

where Ei,j(x) are defined by (1.16). Let

1 ≤ j ≤ k ≤ n and qjk ∈ π1(Sn,x) (resp. 1 ≤ j < n and qj0) enclose Djk = {xj . . . xk = 1},
(resp. Dj0 = {xj = 0}) only once but no other irreducible component of Dn such that∫
qjk

d log(1− xj . . . xk) = 2πi (resp.
∫
qj0
d log xj = 2πi). Then

M(qj0) = I +
[
ni,j
]
i,j∈Sn

, M(qjk) = I +
[
mi,j

]
i,j∈Sn

where I is the identity matrix of rank 2n,

ni,j =

−1 if tr ≤ n− j ≤ tr+1 − 2, r ≥ 1, i = j + us+1 and n− j ≤ s ≤ tr+1 − 2

0 otherwise,

(1.23)

and

mi,j =


1 if tr = j ≤ n− k ≤ tr+1 − 2, r ≥ 1, i = j + un−k+1

−1 if tr + 1 ≤ i ≤ n− k = tr+1 − 1, r ≥ 0, i = j + ui

0 otherwise.

(1.24)

Here i and j in the case of mi,j = ±1 and ni,j = −1 satisfy the condition in Definition 1.5.2(2).

Proof. . If we analytically continue every integral entry of M[n](x) along a same loop q ∈
π1(Sn,x) we will denote this action of q by Θ(q). By definition it is clear that if i 6� j then

Θ(q)Ei,j(x) = Ei,j(x) which is either 0 or 1. Thus we are only concerned with Ei,j with i � j.

We now fix some j. If |j| = n then clearly (Θ(q) − I)C1 = [0, . . . , 0]T for any loop q.

This proves the proposition for |j| = n. We now assume |j| < n. Let i and j be given as in

Definition 1.5.2(2). Then the theorem follows from the explicit expression (1.18) using the

monodromy computations contained in Theorem 4.3, Propositions 5.4 and 5.5 of [370].

Corollary 1.5.10. The monodromy representation of M[n](x)

ρx : π1(Sn,x) −→ GL2n(Z)

is unipotent.

1.6 Varition matrix for multiple polylogarithms

In this section we provide the general rule to construct the variation matrixMn(x) associated

to general multiple polylogarithm Lin(x).

Let n = (n1, . . . , nd) and n = |n|. Let x = (x1, . . . , xd) and aj =
∏j
k=1 xk for all

j = 1, . . . , d. We now give the construction of the entries in the last row ofMn(x) (say, with

column number c) together with the first column entry with row number also equal to c.

The other rows can follow the same pattern since every row starts with some multiple poly-

logarithm by merging some the variables in x (merging means multiplying some consecutive

variables).

Set a0 and rename the ordered tuple (1, {0}n1−1, a1, . . . , {0}nd−1, ad, 0) as (b0, b1, . . . , bn, bn+1).

Now we choose i0 < i1 < · · · < i` < i`+1 subject to the following conditions:

(i) i0 = 0, b0 is the leading 1 and, i`+1 = n+ 1 and bn+1 is the last 0.

(ii) For all 1 ≤ j ≤ l, either ij + 1 = ij+1 or one of bij and bij+1
is nonzero.
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(iii) For fixed 1 ≤ j ≤ d, when choosing the 0’s between aj−1 and aj (if there are any) always

start from the first 0 (denoted by bis) immediately after aj−1 and choose consecutively

until, say, bit .

Set b′is = bis except in case (iii) if bit is not the last 0 immediately before aj then we define

b′is = aj−1 (one may think of a collapse of these consecutive 0’s onto aj−1 if not all of the 0’s

between aj−1 and aj are chosen). For each such choice of 1 ≤ i1 < · · · < i` ≤ n satisfying

(i)-(iii) above we set the corresponding column entry of Mn(x) as

(−1)#{j:bij 6=0}
∫ 1

0

dt

t− bi1
· · · dt

t− bi`
(1.25)

and the corresponding row entry as

I(b0; b1, . . . , bi1−1; bi1)I(b′i1 ; bi1+1, . . . , bi2−1; bi2) · · · I(b′i` ; bi`+1, . . . , bn; bn+1), (1.26)

where

I(b′k; bk+1, . . . , bm−1; bm) =

{
1, if m = k + 1;

(−1)#{j:bj 6=0,k<j<m} ∫ b′k
bm

dt
t−bk+1

· · · dt
t−bm−1

, if m > k + 1.

As a check, the value in (1.26) should always be nonzero. Notice that in the above iterated

integral I(b′k; · · · ; bm) we have the two boundary values reversed. Sometimes different choices

of subsets of bj ’s may give rise to the same column entry, then we need to combine all the

corresponding row entries into one entry by adding them up (for example, try Exercise 1.10

for M2,2(x, y)). A general choice looks like the following:

(1, {0}m1−1, ai1 , . . . , {0}mj−1, aij , . . . , {0}m`−1, ai` , 0)

where 1 ≤ i1 < · · · < i` ≤ d and the block of zeros {0}mj−1 (for mj > 1) must be chosen

from a block of consecutive 0’s between ar and ar+1 (starting from the 0 immediately after

ar) for some r satisfying 0 ≤ ij−1 ≤ r < ij ≤ d. The correspond column entry is then given

by Lim1,...,m`(1/ai1 , ai1/ai2 , . . . , ai`−1
/ai`). We order these entries by the following complete

ordering: (i) m1 < m2 if |m1| < |m2|, and (ii) if |m1| = |m2| then we order by the indices i

using the lexicographic order with 1 < 2 < · · · . For example, Li2(x) (with (i1) = (1)) comes

before Li1,1(x, y) (with (i1, i2) = (1, 1)) which in turn comes before Li2(xy) (with (i1) = (2)).

Usually it is tedious to write down explicitly the variation matrix associated with any

given multiple polylogarithm Lim1,...,mn(x). However, the following general result has been

proved by Deligne and Goncharov [94] (see next section for relevant definitions):

The multiple polylogarithm Lin1,...,nd(x) underlies a good unipotent graded-polarizable

variation of mixed Hodge-Tate structures (Vn1,...,nd ,W•,F•) over

Sd = Cd \
{ d∏
i=1

xi(1− xi)
∏

1≤i<j≤d

(
1− xi . . . xj

)
= 0
}

with the weight-graded quotients grW−2k being given by ck copies of the Tate struc-

ture Z(k) which are nonzero only for 0 ≤ k ≤ n := n1 + · · ·+ nd.

Here ck is the number of different ways to pick ordered (k + 2)-tuples (bi0 , . . . , bik+1
) from

the ordered numbers (b0, . . . , bn+1) in the following tableau∣∣∣ b0∣∣∣ · · · ∣∣∣ bn+1

∣∣∣ =
∣∣∣ a0

∣∣∣ 0
∣∣∣ · · · ∣∣∣ 0︸ ︷︷ ︸

n1−1 times

∣∣∣ a1

∣∣∣ · · · · · · ∣∣∣ ad−1

∣∣∣ 0
∣∣∣ · · · ∣∣∣ 0︸ ︷︷ ︸

nd−1 times

∣∣∣ ad ∣∣∣ 0
∣∣∣ (1.27)
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such that all three conditions (i)-(iii) above are satisfied. It is apparent that

ck ≥ dk(n1, . . . , nd) :=
∑

k1+···+kd=k
0≤kj<nj ∀j

1.

Each term in the sum corresponds to the following choice: for every j = 1, . . . , n, choose kj

0’s immediately after aj−1.

Example 1.6.1. By the definition, we always have c0 = cn = 1. When n1 = · · · = nd = 1

tableau (1.27) becomes ∣∣∣ b0∣∣∣ · · · ∣∣∣ bn+1

∣∣∣ =
∣∣∣ 1

∣∣∣ · · · ∣∣∣ 1︸ ︷︷ ︸
n+1 times

∣∣∣ 0
∣∣∣

Hence ck is the number of ways to choose k elements from the set {b1, . . . , bn}, i.e., ck =
(
n
k

)
.

For ease of statement let us put a box on a number whenever we choose it.

Example 1.6.2. This example will help you to do Exercise 1.8 and 1.9. For let’s consider

Li2,1. There are six nontrivial ways to put boxes on
∣∣ 1
∣∣ a1

∣∣ a2

∣∣ 0
∣∣ 0
∣∣:

(1)
∣∣∣ 1
∣∣∣0 ∣∣∣ a1

∣∣∣ a2

∣∣∣ 0
∣∣∣ (2)

∣∣∣ 1
∣∣∣0 ∣∣∣ a1

∣∣∣ a2

∣∣∣ 0
∣∣∣ (3)

∣∣∣ 1
∣∣∣ 0
∣∣∣ a1

∣∣∣ a2

∣∣∣ 0
∣∣∣

(4)
∣∣∣ 1
∣∣∣ 0
∣∣∣ a1

∣∣∣ a2

∣∣∣ 0
∣∣∣ (5)

∣∣∣ 1
∣∣∣ 0
∣∣∣ a1

∣∣∣ a2

∣∣∣ 0
∣∣∣ (6)

∣∣∣ 1
∣∣∣ 0
∣∣∣ a1

∣∣∣ a2

∣∣∣ 0
∣∣∣

Together with the trivial choice
∣∣∣ 1
∣∣∣0 ∣∣∣a1

∣∣∣ a2

∣∣∣ 0
∣∣∣ we get c0 = c3 = 1, c1 = 2 and c2 = 3.

However, for Li1,2 we have altogether only six ways to do this:

(1)
∣∣∣ 1
∣∣∣ a1

∣∣∣ 0
∣∣∣a2

∣∣∣ 0
∣∣∣ (2)

∣∣∣ 1
∣∣∣ a1

∣∣∣ 0
∣∣∣ a2

∣∣∣ 0
∣∣∣ (3)

∣∣∣ 1
∣∣∣ a1

∣∣∣ 0
∣∣∣ a2

∣∣∣ 0
∣∣∣

(4)
∣∣∣ 1
∣∣∣ a1

∣∣∣ 0
∣∣∣ a2

∣∣∣ 0
∣∣∣ (5)

∣∣∣ 1
∣∣∣ a1

∣∣∣ 0
∣∣∣ a2

∣∣∣ 0
∣∣∣ (6)

∣∣∣ 1
∣∣∣ a1

∣∣∣ 0
∣∣∣ a2

∣∣∣ 0
∣∣∣

Thus c0 = c3 = 1, c1 = c2 = 2.

1.7 Variations of mixed Hodge structures of multiple

polylogarithms

1.7.1 Definition of variations of MHS: a review

In this section we briefly review the theory of variations of mixed Hodge structures (for which

we use the abbreviate MHS only in this chapter).

A pure (Z-)Hodge structure (HS) of weight k consists of a finitely generated abelian

group H(Z) and a decreasing Hodge filtration F• on H(C) := H(Z)⊗Z C such that H(C) =

Fp ⊕ Fk−p+1 for all integers p. Here the “bar” is the complex conjugation on the second

factor of the tensor product. A special example is the Tate structure Z(−k) of weight 2k

consists of H(Z) = Z and the filtration Fp = 0 for p > k and Fp = H(C) for p ≤ k. If we

replace Z by Q in the above then we get a pure (Q-)HS of weight k.

A MHS consists of a finitely generated abelian group H(Z) and two filtrations: an in-

creasing weight filtration W• on H(Q) := H(Z)⊗ZQ and a decreasing filtration F• on H(C),
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which are compatible in the following sense. On each graded piece of the weight filtration

grWk = Wk/Wk−1 the induced Hodge filtration determined by

Fp(grWk )(C) = (Fp ∩Wk(C) +Wk−1(C))/
Wk−1(C)

is a pure Hodge structure of weight k where Wk(C) := Wk ⊗Z C. If all the pure Hodge

structures induced as above are direct sums of Tate structures then we say the MHS is a

Tate structure. For a mixed Hodge-Tate structure we can put a framing as in [22, §1.3.4,

§1.4].

Following Steenbrink and Zucker [308, Definitions 3.1, 3.2 and 3.4] we have

Definition 1.7.1. A variation of HS of weight k defined over Q and a complex manifold S

is a collection of data (VQ,F•) where

(a) VQ is a locally constant sheaf (local system) of Q-vector spaces on S,

(b) F• is a decreasing filtration by holomorphic subbundles of the locally free sheaf

V = OS ⊗Q VQ.

(c) At each s ∈ S, F• induces the Hodge filtration F•s of a Hodge structure of weight k

on the fiber Vs of V such that

(i) whenever p + q = k one has Vs = Fps ⊕ F
q+1
s , where the “bar” denotes the

complex conjugation,

(ii) equivalently, one has Vs =
⊕

p+q=kH
p,q
s where Hp,q

s = Fps ∩ F
q
s .

(d) (Griffiths transversality) Under the connection ∇ in V,

∇Fp ⊂ Ω1
S ⊗OS Fp+1 for all p.

Definition 1.7.2. A polarization over Q of a variation of Hodge structure of weight k over

Q is a non-degenerated and flat bilinear pairing:

β : VQ × VQ −→ Q,

such that β is (−1)k-symmetric, and the Hermitian form βs(Csv, w̄) is positive on each fiber.

Here Cs denotes the Weil operator with respect to Fs, namely the direct sum of multiplication

by ip−1 on Hp,q
s . A variation is called polarizable (over Q) if it admits a polarization (over

Q).

Definition 1.7.3. A variation of MHS defined over Q and a complex manifold S is a

collection of data (VQ,W•,F•) where

(a) VQ is a local system of Q-vector spaces on S,

(b) W• is an increasing filtration of the VQ by local subsystems,

(c) F• is a decreasing filtration by holomorphic subbundles of V = OS ⊗Q VQ.

(d) ∇Fp ⊂ Ω1
S ⊗OS Fp+1 for all p.

(e) The data (
grWk VQ,F•

(OS ⊗E Wk
/
OS ⊗E Wk−1

))
(1.28)

is a variation of HS of weight k defined over Q; or equivalently, on the fiber over s ∈ S,

(Vs,Ws,Fs) is a MHS defined over Q.

(f) If the induced collection of variations of HS (1.28) are all polarizable then the MHS

is called graded-polarizable.
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Remark 1.7.4. By extension of scalars in VQ one can define VF for any field F such that

Q ⊂ F ⊂ R.

Giving a local system VQ is equivalent to specifying its monodromy representation

ρx : π1(S, x) −→ AutQ Vx.

A variation is called unipotent if this representation is unipotent. From Proposition 1.3 of

[165] we know that a variation of MHS (VQ,W•,F•) is unipotent if and only if each of the

variations of Hodge structure grWk VQ is constant.

In general, the behavior of a variation of MHS over a non-compact base S at “infinity”

is very hard to control. Steenbrink and Zucker [308] consider the case when S is a curve

and define the admissibility condition at infinity. For higher dimensional S, Kashiwara, M.

Saito, and others define a variation over S to be admissible if its restriction to every curve is

admissible in the sense of Steenbrink-Zucker.

However, the behavior of unipotent variations of MHS at infinity can be controlled rather

easily. We have the classical result of Deligne [87, Proposition 5.2] which defines the canonical

extension Ṽ of V.

Theorem 1.7.5. (Deligne) Let S̃ be a normalization of S. Let (VQ,W•,F•) be a unipotent

variation of MHS over S. Then

(a) There is a unique extension Ṽ of V over S̃ satisfying the following equivalent conditions:

(i) Inside every section of Ṽ, every flat section of V increases at most at the rate

of O(logk ||x||) (k large enough) on every compact set of D = S̃ − S.

(ii) Similarly, every flat section of V∨ (the dual) increases at most at the rate of

O(logk ||x||) (k large enough).

(b) The combination of the two conditions (i) and (ii) is equivalent to the combination of the

following two conditions:

(iii) In terms of any local basis of Ṽ the connection matrix ω of V has at most

logarithmic singularities along D.

(iv) The residue of ω along any irreducible component of D is nilpotent.

We will verify conditions (iii) and (iv) by Proposition 1.5.8 for the multiple logarithm

variations of MHS. They are unipotent variations by Theorem 1.5.9.

Definition 1.7.6. Let S̃ be a compactification of S. Then a unipotent variation of MHS

(VQ,W•,F•) over S is said to be good if it satisfies the following conditions at infinity

(1) the Hodge filtration bundles F• extend over S̃ to sub-bundles F̃• of the

canonical extension Ṽ of V such that they induce the corresponding thing for

each pure subquotient grWk VQ,

(2) for the nilpotent logarithm Nj of a local monodromy transformation about a

component Dj of D, the weight filtration of Nj relative to W• exists.

A slightly different definition first appeared in [164, 165] with the extra assumption that

D = S̃ − S is a normal crossing divisor. In these papers Hain and Zucker classified good

unipotent variations of MHS on algebraic manifolds. With constant pure weight subquotients

these variations behave well at infinity.
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1.7.2 MHS of multiple logarithms

Fix an embedding Cn ↪→ CPn. Let Dn = Dn ∪ (CPn \Cn). Let M2n(C) be the set of 2n× 2n

matrices over C. Put

ω =
(
ci,j

)
i,j∈Sn

∈ H0(CPn,Ω1
CPn(log(Dn)))⊗M2n(C) (1.29)

where

ci,j =

dγ
|i|
ρi(j)

(
x(i)

)
if |j| = |i| − 1, j ≺ i,

0 otherwise.

It is not difficult to check that all of the 1-forms in ω have logarithmic singularity on Dn.

Moreover, because M[n](x) is invertible and ω is closed we get

dω = 0, ω∧ω = 0. (1.30)

This shows that ω is integrable.

Now we define a meromorphic connection ∇ on the trivial bundle

CPn × C2n −→ CPn (1.31)

by

∇f = df − ωf

where f : Sn → C2n is a section. This connection has regular singularities along Dn because

ω is integrable by (1.30) and all the 1-forms in ω are logarithmic in any compactification of

Sn. By the explicit construction of ω we see immediately that the conditions (iii) and (iv) of

Theorem 1.7.5 are satisfied. Proposition 1.5.8 further implies that the columns (2πi)|j|Cj(x)

of M[n](x) satisfy ∇f = 0 and are therefore flat sections of (1.31). Even though they are

multi-valued, their Z-linear span is well defined thanks to Theorem 1.5.9. Hence V[n](x)

forms a local system over Sn.

Definition 1.7.7. The local system V[n](x) is called the n-tuple logarithm local system.

To define the MHS on V[n] we can define the weight filtration by putting W2k+1 = W2k

and

W−2kV[n](x) = 〈(2πi)|i|Ci : |i| ≥ k〉Q

which is the Q vector space with basis {(2πi)|i|Ci : |i| ≥ k}. In particular, W−2kV[n](x) = 0

if k > n and W2kV[n](x) = V[n](x) if k ≥ 0. By regarding ei’s as column vectors one can

define the Hodge filtration on V[n](x)⊗ C = V[n],C as follows:

F−kV[n],C := 〈ei : |i| ≤ k〉C.

So in particular, F−kV[n],C = 0 for k < 0 and F−kV[n],C = V[n],C for k ≥ n.

By induction on n and using Lemma 1.5.6 it is easy to show that

F−p ∩W−2kV[n],C =


0 if p ≤ k − 1

〈(2πi)|i|ei : k ≤ |i| ≤ p〉 if k ≤ p ≤ n

〈(2πi)|i|ei : k ≤ |i| ≤ n〉 if p ≥ n

.
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This implies that

F−p grW−2k V[n],C =

0 if p ≤ k − 1

W−2kV[n],C/W−2k−1V[n],C if p ≥ k.

In other words, Fq grW−2k V[n],C = 0 for q ≥ −k + 1 and Fq grW−2k V[n],C = grW−2k V[n],C for

q ≤ −k. This means that the Hodge filtration induces a pure HS of weight −2k on each weight

graded piece. Furthermore, it is not hard to see by checking the powers of 2πi appearing

on the diagonal of M[n](x) that this induced structure on grW−2k V[n],C is isomorphic to the

direct sum of
(
n
k

)
copies of the Tate structure Z(k) by Lemma 1.5.6.

1.8 Limit MHS of multiple logarithms

Let the monodromy of M[n](x) at any subvariety D of CPn be given by the matrix TD and

the local monodromy logarithm by ND = log TD/(2πi). Note that TD is unipotent so ND is

well-defined.

Now let us recall the construction of the unipotent variations of limit MHS at the “infinity”

with normal crossing. Let S be a complex manifold of dimension d. Suppose that S is

embedded in S̃, via the mapping j, such that D = S̃ − S is a divisor with normal crossings.

Let V be any unipotent local system of complex vector spaces on S, and V the corresponding

vector bundle. According to Theorem 1.7.5 by Deligne there is a canonical extension Ṽ of V
over S̃. Moreover, when the local monodromy is nilpotent Ṽ is a subsheaf of j∗V. The local

picture of S ⊂ S̃ is (∆∗)r ×∆d−r ⊂ ∆d where ∆ is the unit disk and ∆∗ is the punctured

one. We let t1, . . . , tr denote the variables on (∆∗)r, and N1, . . . , Nr the (commuting) local

nilpotent logarithms of the associated monodromy transformations of the fibre. For z1, . . . , zr

in the upper half-plane, the universal covering mapping for (∆∗)r is given by

tj = exp(2πizj), j = 1, · · · , r.

Let v1, . . . , vm be a basis of the multi-valued sections of V over (∆∗)r ×∆d−r, the formula

[ṽ1, . . . , ṽm] = [v1, . . . , vm] exp

− r∑
j=1

2πizjNj

 = [v1, . . . , vm]

r∏
j=1

t
−Nj
j

determines a basis of the sections of V over ∆d and these provide, by definition, the generators

of Ṽ over ∆d.

In our situation, although the divisor Dn is not normal crossing Theorem 1.7.5 is still

valid because the image of the global holomorphic logarithmic forms in the complex of smooth

forms on S is independent of the normal crossings compactification (see [163, Prop. (3.2)]).

In fact, the forms we are considering lie in the subcomplex generated by 1-forms of the type

df/f where f is a rational function. Such forms are automatically logarithmic in any com-

pactification and therefore our connection is automatically regular. Hence the admissibility

and the existence of the limit MHS is an automatic consequence of the admissibility of our

variations restricted to every curve in Sn. Moreover, the pullback to S̃n of our trivial bundle

(1.31) restricted to Sn is exactly Deligne’s canonical extension of (1.31), and the pullbacks of

the subbundles F• and W• are the correct extended Hodge and weight subbundles. Therefore

we have
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Theorem 1.8.1. The n-tuple logarithm underlies a good unipotent graded-polarizable varia-

tion of mixed Hodge-Tate structures (V[n],W•,F•) over

Sn = Cn \
{ ∏

1≤j≤n

xj(1− xj)
∏

1≤i<j≤n

(
1− xi . . . xj

)
= 0
}
.

with the weight-graded quotients grW−2k being given by
(
n
k

)
copies of the Tate structure Z(k).

Proof. It is clearly that all the odd graded weight quotients are zero so that we can let the

polarizations on the weight graded quotients grW−2k be the ones that give each vector 2πiej

(|j| = k) length 1. Then everything is clear except the Griffiths transversality condition. But

this condition is also satisfied because dCj = ωCj for every j ∈ Sn by Proposition 1.5.8 since

all the entries of ω on and above the main diagonal are zero.

If we want to determine the limit MHS of multiple logarithms explicitly we can still apply

the techniques used in the normal crossing case. We will carry this out only for the depth

two and three cases. The general picture is similar but much more complicated.

1.8.1 Limit MHS of double logarithm

First we look at the double logarithm variation of MHS. We have

M1,1(x, y) =


1

L1(x) 2πi

L1(xy) 0 2πi

L2(x, y) 2πiL1(y) 2πih(x, y) (2πi)2


where h(x, y) = L1(x)− L1(y)− log y.

(i) Let us first try to extend the MHS to the divisor D20 = {y = 0} along the tangent vector

∂/∂y. We have

T{y=0} =


1

0 1

0 0 1

0 0 −1 1

 , N{x=0} =
log T{x=0}

2πi
=


0

0 0

0 0 0

0 0 − 1
2πi 0

 .
Let M1,1(x, y) = [C0(x, y) · · ·C3(x, y)]. Define

[s0 s1 s2 s3] = lim
t→0
M1,1(x, t)


1

0 1

0 0 1

0 0 log t/(2πi) 1



=


1

L1(y) 2πi

0 0 2πi

0 0 2πiL1(x) (2πi)2

 .
Let VQ,{y=0} be the Q-linear span of s0, s1, s2, s3, and VC,{y=0} = C⊗VQ,{y=0}. Let {ej : j =

0, · · · , 3} be the standard basis of C4 where the only nonzero entry of ej is at the (j + 1)st

component. Then the limit MHS on {(x, y) : y = 0, x 6= 1} along ∂/∂y are given by

((VQ,{y=0},W•), (VC,{y=0}, F
•))
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where for k = 0, . . . , 3

W−2kVQ,{x=0} = 〈sk, . . . , s3〉,W−2k = W−2k+1 (1.32)

and

F−kVC,{x=0} = 〈e0, . . . , ek〉. (1.33)

(ii) A similar calculation shows that along the tangent vector ∂/∂y the limit MHS on the

divisor D22 = {(x, 1) : x 6= 1} is the Q-linear span of s0, . . . , s3 where

[s0 s1 s2 s3] =


1

L1(x) 2πi

L1(x) 0 2πi

L2(x, 1) 0 2πiL1(x) (2πi)2

 .

It is easy to see by differentiation that L2(x, 1) =
(
L1(x)

)2
/2.

(iii) The extension of MHS to D11 = {(1, y) : y 6= 0, 1} along the tangent vector ∂/∂x is given

by the Q-linear span of s0, . . . , s3 where

[s0 s1 s2 s3] =


1

0 2πi

−Li1( y
y−1 ) 0 2πi

Li2( y
y−1 ) 2πiLi1(y) −2πi log y

y−1 (2πi)2

 .
(iv) Limit MHS on D12 = {(x, 1/x) : x 6= 0, 1} along the tangent vector ∂/∂y is given by the

Q-linear span of s0, . . . , s3 where

[s0 s1 s2 s3] =


1

−Li1( x
x−1 ) 2πi

0 0 2πi

−Li2( x
x−1 ) 2πi log x

x−1 0 (2πi)2

 .
(v) D20∩D11 = (1, 0). From (i) we see that there are limit MHS on the open set D20\{(1, 0)}
of D20. We now can easily extend these MHS to (1, 0) along the vector ∂/∂x and find the

limit MHS at (1, 0) to be the Q-linear span of s0, · · · , s3 where

[s0 s1 s2 s3] =


1

0 2πi

0 0 2πi

0 0 0 (2πi)2

 .
If we start from (iii) and then extend the MHS to (1, 0) along tangent vector ∂/∂x we will

get the same limit MHS.

(vi) D22 ∩ D12 = D12 ∩ D11 = D11 ∩ D22 = (1, 1). We can start from either case (ii) or (iii)

or (iv). Extending the limit MHS of case (ii) we see immediately that the along the tangent

vector ∂/∂y the limit MHS at (1, 1) is given by the Q-linear span of

[s0 s1 s2 s3] =


1

0 2πi

0 0 2πi

E4,1 0 0 (2πi)2

 . (1.34)



1.9. SINGLE-VALUED MULTIPLE POLYLOGARITHMS 19

If we extend the limit MHS of case (iii) to (1, 1) along tangent vector ∂/∂x we find that only

the lower left corner entry is different from the above. Instead of 0 it is

E4,1 = lim
y→1

Li2(
y

y − 1
) +

1

2
log2(1− y)− log y log(1− y) = −Li2(1) = −π

2

12
,

since

Li2(1− t) + Li2(1− 1/t) +
1

2
log2 t = 0 ∀t 6= 0. (1.35)

But if we take s′0 = s0 − s3/48 we get the same basis as in (1.34). The same phenomenon

occurs if we start from case (iv) and then use tangent vector ∂/∂y.

If we extend the limit MHS of (iv) to the point (1, 1) along the tangent vector ∂/∂x then

we find that

E4,1 = lim
x→1
−Li2(

x

x− 1
)− 1

2
log2(1− x) = Li2(1) =

π2

12

by taking t = 1− x in (1.35). Now if we let s′0 = s0 + 1
48s3 then we get the same basis as in

(1.34). This phenomenon happens in higher logarithm cases too.

In Exercise 1.11 you will see another example of limit MHS. From all these examples we

put forward the following

Conjecture 1.8.2. The variations of mixed Hodge-Tate structures associated to every multi-

ple polylogarithm can be produced as the variations of some limit mixed Hodge-Tate structures

related to some suitable choice of multiple logarithm.

1.9 Single-valued multiple polylogarithms

Using the monodromy of multiple polylogarithms obtained from section 1.5 we can construct

single-valued multiple polylogarithms. Although this procedure can be carried out in general

the computation in each particular case will involve very complicated notations. So we will

just treat several lower weight cases in detail to illustrate the main idea.

1.9.1 General procedure of construction

In this subsection we first describe the general procedure to define the single-valued real

analytic version of Lim1,...,mn(s), denoted by Lm1,...,mn(x), provided the variation matrix

Mm1,...,mn(x) is already found. We will work with the multiple logarithms below, but the

idea is exactly the same for the general case.

Let M[n] =M[n](x) = Ln(x)τn(2πi) where

τn(λ) = diag
[
λ|j|
]
j∈Sn

.

Define the matrix

B[n] = τn(i)M[n]M
−1

n τn(i)

where Mn is the complex conjugation of M[n]. By the monodromy computation we see

that B[n] is a single-valued matrix function defined over Sn because all the monodromy

automorphisms are given by real matrices. Now both M[n] and M−1

[n] are lower triangular

matrices, so is B[n]. Moreover its diagonal is given by τn(i)τn(2πi)τn(2πi)
−1
τn(i) = I where

I is the identity matrix. Hence we may assume B[n] = I + N where N a nilpotent matrix.

We see that logB is well defined and since Bn = B−1
[n] it satisfies

logB[n] = − logB[n],
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namely, logB[n] is a pure imaginary matrix. Then we define i2[n/2]−1/2 times the lower

left corner entry of logB[n] to be Ln(x) which is a single-valued real analytic version of the

multiple logarithm Ln(x).

Remark 1.9.1. Our method is slightly different from that in [21]. In fact in the polylogarithm

case the matrix B[n] constructed as above is the conjugate of the one in [21] by τ(i).

1.9.2 Single-valued double logarithms

We have seen from Example 1.5.5 that M1,1(x, y) = L1,1(x, y)τ1,1(2πi) where

L1,1(x, y) =


1

Li1(x) 1

Li1(xy) 1

Li1,1(x, y) Li1(y) log y−1
y(1−x) 1

 and τ1,1(λ) =


1

λ

λ

λ2

 .

Let B1,1(x, y) = τ1,1(i)L1,1(x, y)τ1,1(−1)L1,1(x, y)
−1
τ1,1(i). Then B1,1(x, y) is unipotent

and single-valued. An easy calculation shows

logB1,1(x, y) =


0

−2i log |1− x| 0

−2i log |1− xy| 0

−2iL1,1(x, y) −2i log |1− y| 2i log
∣∣ y−1
y(1−x)

∣∣ 0


where

L1,1(x, y) = Im
(
Li1,1(x, y)

)
− arg(1− x) log |1− y|+ arg(1− xy) log

∣∣∣ y − 1

y(1− x)

∣∣∣ (1.36)

is the single-valued real analytic version of Li1,1(x, y).

By differentiation it is easy to check that

Li1,1(x, y) = Li2

(xy − x
1− x

)
− Li2

( x

x− 1

)
− Li2(xy). (1.37)

So by using the single-valued dilogarithm function L2(z) = Im
(
Li2(z)

)
+ arg(1 − z) log |z|

we can also recover (1.36) as

L1,1(x, y) = L2

(xy − x
1− x

)
− L2

( x

x− 1

)
− L2(xy). (1.38)

Further, using the five term relation we find

L1,1(x, y) + L1,1(y, x) + L2(xy) = 0.

One can check quickly L1,1 satisfies the functional equation

L1,1(x, y) = −L1,1

( x

x− 1
, 1− y

)
by using the functional equation L2(x) = −L2(1− x) = −L2(1/x).

1.9.3 Single-valued double polylogarithms L1,2 and L2,1

By [352] a single-valued version of Li3(x) can be defined as

L3(z) = Re
(
Li3(z)

)
− log |z|Re

(
Li2(z)

)
− 1

3
(log |z|)2 log |1− z|. (1.39)



1.10. AOMOTO POLYLOGARITHMS 21

We now consider Li2,1(x, y) and Li1,2(x, y). By the procedure outlined in section 1.9.1

we find that the single-valued version of Li2,1(x, y) is (see Exercise 1.8):

L2,1(x, y) = ReLi2,1(x, y)− arg(1− xy)
[
L2(x) + L2(y)

]
+ log |1− y|ReLi2(x)

− log |x|ReLi1,1(x, y)− log |1− y−1|ReLi2(xy)− 1

3
log |x2y| log |1− xy| log

∣∣∣1− y−1
∣∣∣

+
1

3
log |x|

(
2 log |1− x| log |1− y|+ log |1− xy| log |y(1− x)|

)
.

The single-valued version of Li1,2(x, y) is (see Exercise 1.9):

L1,2(x, y) = ReLi1,2(x, y) + arg(1− xy)
[
L2(x) + L2(y)

]
− arg(1− x)L2(y)

+ log |1− x|ReLi2(xy)− log |y|ReLi1,1(x, y) +
1

3
log |1− x| log |xy| log |1− xy|

+
1

3
log |y|

[
log |1− x| log |1− y|+ log |1− xy| log

∣∣∣y(1− x)

1− y

∣∣∣].
Using the single-valued versions of dilogarithm L2(z) and trilogarithm L3(z) we can ex-

press L1,2(y, x) by the trilogarithms

L1,2(y, x) = L3(1 − xy) + L3(1 − y) − L3

( 1− y
1− xy

)
− L3(x) + L3

(x− xy
1− xy

)
− L3(1),

where L3 is the single-valued trilogarithm given by (1.39). This follows from the relation

first discovered by Zagier after Goncharov’s conviction that such identity should exist:

Li1,2(x, y) = Li3(1− xy) + Li3(1− x)− Li3
( 1− x

1− xy

)
− Li3(y) + Li3

(y − xy
1− xy

)
− Li3(1)

− log(1− xy)
(
Li2(1) + Li2(1− x)

)
− log

( 1− x
1− xy

)
Li2(y) +

1

2
log(y) log2(1− xy). (1.40)

The geometric origin of this identity can be found in [362, Remark 3.18]. By straightforward

computation one can find the following interesting formula:

L1,2(x, y) + L2,1(y, x) + L3(xy) = 2 log |y|Re(Li1(y)Li1(x)).

One should compare this with

Li1,2(x, y) + Li2,1(y, x) + Li3(xy) = Li2(y)Li1(x).

Finally, one can expressed the triple logarithm L1,1,1(x, y, z) using the trilogarithm (see

Exercise 1.13). Thus in weight three we essentially only need trilogarithm. But it may be

a little surprising that similar identities in higher weight cases do not exist in general from

geometric considerations (see [362, p. 146]). For example, L2,2(x, y) cannot be expressed by

only tetralogarithms L4.

1.10 Aomoto polylogarithms

For many people it is much easier to grasp a concept when geometric figures are attached to

it. This is certainly true when we study multiple polylogarithms. Many deep results have

been obtained for them up to weight three especially because in these lower weights we can

draw pictures and visualize/discover various relations between them. Moving up to higher

dimensions it is natural to consider the so-called Aomoto polylogarithms.
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Definition 1.10.1. Let F be a fixed field of at least two elements. Fix a positive integer

n. By a simplex in the projective spaces PnF we mean an ordered set of hyperplanes L =

(L0, . . . , Ln). It is nondegenerate if the intersection of all the hyperplanes Li is empty. A

face of L is any nonempty intersection of the hyperplanes. A pair of simplices is admissible

if they do not have common faces of the same dimension. It is a generic pair if all the faces

of the two simplices are in general position.

Table 1.1: An admissible non-generic pair of triangles.

M2

M1 M0
L1

L2

L0

By projective invariance to be defined below, given a nondegenerate simplex L we may

choose the coordinate system [t0, . . . , tn] in PnF such that Li = {ti = 0} for 0 ≤ i ≤ n. If

F = C then we define the canonical differential form associated to L as

ωL =
dt1
t1
∧dt2
t2
∧ . . .∧dtn

tn
.

The Aomoto n-logarithm is a multi-valued function on configurations of nondegenerate ad-

missible pairs of simplices (L; M) in CPn defined as follows:

Λn(L; M) =

∫
∆M

ωL,

where ∆M is the n-cycle representing a generator of the relative homologyHn(CPn,∪nj=0Mj ;Z).

We now define the double scissors congruence groups An(F ) whose defining relations

should reflect (conjecturally all of) the functional equations of Aomoto polylogarithms. Fur-

thermore, the associated graded object should form a Hopf algebra which provides a bridge

to the study of motivic polylogarithmic complexes.

Definition 1.10.2. Define A0(F ) = Z. If n > 0 then An(F ) is the abelian group generated

by admissible pairs of n-simplices (L; M) subject to the following relations:

(R1) Nondegeneracy. (L; M) = 0 if and only if L or M is degenerate.

(R2) Trivial intersection. Suppose L0, . . . , Ln and M0, . . . ,Mn are hyperplanes in Pn+1
F . If

N = Li or N = Mi for some i then

(N |L; M) :=
(
(L0 ∩N, . . . , Ln ∩N); (M0 ∩N . . . ,Mn ∩N)

)
= 0.

(R3) Skew symmetry. For every permutation σ of {0, . . . , n}

(σL; M) = (L;σM) = sgn(σ)(L; M),

where σ(L0, . . . , Ln) = (Lσ(0), . . . , Lσ(n)).
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(R4) Additivity in L and M . For any hyperplanes L0, . . . , Ln+1 and n-simplex M in PnF
n+1∑
j=0

(−1)j((L0, . . . , L̂j , . . . , Ln+1); M) = 0

if every pair ((L0, . . . , L̂j , . . . , Ln+1); M) is admissible. A similar relation is satisfied

by any n-simplex L and hyperplanes M0, . . . ,Mn+1.

(R5) Projective invariance. For every g ∈ PGLn+1(F )

(gL; gM) = (L; M).

Remark 1.10.3. The additivity relation (R4) can be visualized in dimension two by the

following picture:

M1
M2

M3

M0
−

M1
M2

M3

M0
+

M1
M2

M3

M0

−
M1

M2

M3

M0
=

M1
M2

M3

M0

Example 1.10.4. We now consider the simplest case: n = 1. By projective invariance (R5) we

may assume without loss of generality that L = (∞, 0) and M = (1, a) for some a 6= 0, 1,∞.

Then de Rham cohomology H1
dR(CP1\L) = H1(C∗) is generated by [dz/z] where the relative

singular homology H1(CP1,M) is generated by [∆M ] where ∆M is the line segment from 1

to a. So we get the period ∫ a

1

dz

z
= log a.

Example 1.10.5. Let n = 2. Take L1 = {x = 0}, L2 = {y = 0} and L0 = {z = 0}. Let

M0 = {x = z}, M1 = {y = tz}, and M2 = {x+ y = z}. We have the following picture:

Table 1.2: A real picture for dilogarithm.

x
L2

y

L1
L0

M1

M0

M2

1

t

1

Hence the period is given by∫
0<1−x<y<t

dx

x

dy

y
= −

∫
0<x<y<t

dy

y

dx

1− x
= −Li2(t).
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Definition 1.10.6. The n-simplex L whose faces are Li = {ti = 0} (0 ≤ i ≤ n) is called the

standard (coordinate) simplex. For an arbitrary field F we denote by Λn1,...,nd the subgroup

of An (n = n1 + · · ·+nd) generated by all multiple polylogarithmic pairs Λn1,...,nd(x1, . . . , xd)

corresponding to the multiple polylogarithms (all possible x1, . . . , xd). Specifically, we can

represent Λn1,...,nd(x1, . . . , xd) by (L; M) where L is the standard simplex in PnF and M is

determined as follows: Take aj = 1/(x1 . . . xj) and the vertex facing M0 to be

m0 = [z0, . . . , zn] = [ 0, . . . , 0︸ ︷︷ ︸
n1−1 times

,−a1, 0, . . . , 0︸ ︷︷ ︸
n2−1 times

,−a2, . . . , 0, . . . , 0︸ ︷︷ ︸
nd−1 times

,−ad, 1].

The vertex mj (1 ≤ j ≤ n) facing Mj is given by

mi = [z1 + 1, . . . , zj + 1, zj+1, . . . , zn, 1].

If F = C and M = Λn1,...,nd(x1, . . . , xd) a real simplex then the integral∫
∆M

dt1
t1
∧ · · · ∧dtn

tn
= (−1)dLin1,...,nd(x1, . . . , xd), (1.41)

where ∆M is the convex real span by the faces of M . This is the origin of the name multiple

polylogarithmic pair.

The key to the study of the double scissors congruence group An is to equip it with a

good Hopf algebra structure. In lower weight cases (≤ 4) this can be done explicitly using

some geometric combinatorial argument (see [362]) but in general this is still unclear. The

product µ is easy to define but the coproduct is highly nontrivial. If this can be done for

arbitrary n then we have the following surprising conjecture.

Conjecture 1.10.7. The restricted coproduct provides a complex

A>0 −→ A>0 ⊗A>0 −→ A>0 ⊗A>0 ⊗A>0 −→ · · ·

whose graded n-piece

An −→
n−1⊕
k=1

Ak ⊗An−k −→ · · ·

gives

Hi
(n)(A•,Q) ∼= grγnK2n−i(F )Q

where grγnK2n−i(F )Q is the γ-filtration of K-groups.

In fact, according to the Tannakian formalism the category MTM(F ) of mixed Tate

motives over a field F is supposed to be equivalent to the category of graded modules over a

certain graded commutative Hopf algebra A• (see [24] and [145, Ch. 3]). Therefore the Ext

groups in the category MTM(F ) of mixed Tate motives over Spec(F ) are isomorphic to the

cohomology of the Hopf algebra A•. Beilinson et al. conjecture that A• is isomorphic to A•
and therefore the groups An ⊗ Q should have a Hopf algebra structure over Q. This is the

primary motivation to study the groups An. Further, by Beilinson’s conjecture, there is a

negatively graded Lie algebra L•(F ) over Q such that

ExtiMTM(F )(Q(0),Q(n)) ∼= Hi
(n)(L•(F )) ∼= grnγ K2n−i(F )⊗Q.

This is why we have Conjecture 1.10.7.
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One hopes to construct the motivic Lie algebra L•(F ) explicitly, at least when the weight

is not too large. To this end, let Bn(F ) = Z[P1
F ]/Rn(F ) where the subgroup Rn(F ) reflects

(conjecturally all of) the functional equations of the single-valued polylogarithm Ln(z) de-

fined by (1.3). A lot of evidence [141] shows that Bn(F ) ⊗ Q (for n = 1, 2, 3) is dual to the

motivic Lie algebra L−n(F ) (the dual is between the ind and pro Q-vector spaces). It follows

from this line of thought [142] that the following conjecture should be true.

Conjecture 1.10.8. Let Πn =
⊕n−1

j=1 µ(Aj ⊗An−j) be the subgroup of prisms of An then

(An/Πn)⊗Q ∼= L−n(F )∨

and for n = 1, 2, 3

(An/Πn)⊗Q ∼= L−n(F )∨ ∼= Bn(F )⊗Q.

The first isomorphism means that the dual to the Hopf algebra A• ⊗Q is isomorphic to

the universal enveloping algebra of the Lie algebra L•(F ). This conjecture is trivial when

n = 1 since all are isomorphic to F×⊗Q by the cross ratio (see Exercise 1.2). For n = 2 the

first isomorphism is proved in [23] by taking L−2(F )∨ to be the Bloch group B2(F ) which

is the quotient group of Z[P1
F ] modulo the five-term relations.2 It is known that for number

fields B2(F ) ∼= B2(F ).

Similar to B2(F ) the group B3(F ) is defined by Goncharov [142] as the quotient of Z[P1
F ]

by the subgroup generated by the generic seven-term relations of some generalized cross ratio

r3 and the Kummer-Spence relations (see [362, section 2.4] for details). The main result of

[362] is that modulo torsions one has

A3(F )/Π3(F ) ∼= B3(F ).

1.11 Other multiple polylogarithms

In the study of multiple zeta values one often needs to consider the one variable multiple

polylogarithms. Let s = (s1, . . . , sd) ∈ Nd and define

L̃is(z) =

∫ z

0

(
dt

t

)s1−1
dt

1− t
· · ·
(
dt

t

)sd−1
dt

1− t
=

∑
k1>···>kd≥1

zk1

ks11 · · · k
sd
d

, |z| < 1. (1.42)

It is easy to see that L̃is(z) = Lis(z, 1, . . . , 1)).

Proposition 1.11.1. We have

d

dz
L̃is(z) =

{
L̃is1−1,s2,...,sd(z)/z, if s1 > 1;

L̃is2,s3,...,sd(z)/(1− z), if s1 = 1.

Proof. The case s1 > 1 is obvious. An easy application of geometric series summation formula

proves the case s1 = 1 immediately.

To study the so called multiple zeta star values (see Chapter ??) it is useful to consider

the following variation of one variable multiple polylogarithms. s = (s1, . . . , sd) ∈ Nd and

define

Les(z) =
∑

k1≥···≥kd≥1

zk1

ks11 · · · k
sd
d

, |z| < 1. (1.43)

2In the literature the Bloch group sometimes refers to the subgroup of B2(F ) which is isomorphic to the

indecomposable part of K3(F ) modulo torsions.
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1.12 Historical notes

It is well-known that logarithm was first invented by John Napier in 1614. Although the

original intention was to simplify the multiplication and the division to the level of addition

and subtraction logarithms have found many other applications in modern sciences.

Polylogarithms found their applications in modern physics as early as in the 1950s al-

though they sometimes appeared in disguised forms (see, for example, [200, Appendix]

and [18, p. 916]). It was discovered later that they should play an important role in the

computation of Feynman integrals in perturbative quantum field theory [54]. In recent

years, multiple polylogarithms are related to the study of conformal field theory [119, 211],

amplitudes [56, 151] and Feynman graphs [39, 65, 249, 299] in physics as well as Hopf

and Lie algebras, combinatorics (double shuffle relations) [264, 265], algebraic geometry

[133, 132, 141, 142, 362, 363, 367], modular forms [134], and cluster algebras [118, 140]

in mathematics.

The first serious study of classical polylogarithms seemed to be carried out by Jonquière

[197]. Starting from 1950s Leonard Lewin, an engineer, systematically studied polylogarithms

by generalizing many results for dilogarithm [233, 234]. Apparently he chose the notation

Li because of “polylogarithm integral”. Later on with his collaborators he found many very

interesting ladder relations such as the following one of order 12 [2]: let ρ = (
√

5− 1)/2 then

Lin(ρ12)

12n−1
− 3

2

Lin(ρ6)

6n−1
− Lin(ρ4)

4n−1
+

11

48

Lin(ρ2)

2n−1

=
13

48

logn(ρ)

n!
− ζ(2)

48

logn−2(ρ)

(n− 2)!
+

19ζ(4)

1728

logn−4(ρ)

(n− 4)!
+

67ζ(5)

6912

logn−5(ρ)

(n− 5)!
, 1 ≤ n ≤ 5.

A few higher order relations have been discovered since, some of which are only numerically

(see, for example, [16, 81]).

In a series of papers spanning over twenty years K.-T. Chen developed his far-reaching the-

ory of iterated integrals [72, 73, 74] which was unfortunately overlooked for several decades.

Since 1990s, especially because of its applications in multiple zeta and multiple polyloga-

rithms, its importance has been gradually recognized by more and more mathematicians.

Richard Hain, one of Chen’s Ph.D. students, has played a pivotal role in this process.

During his study of monodromy properties of Lin(x) Ramakrishnan [287] implicitly came

upon the functions defined in (1.2) (written donw by Zagier explicitly in [351] and by Wo-

jtkowiak in a modified form in [341]). When n = 2 this coincides with the Bloch-Wigner

dilogarithm which was brought to prominence in Bloch’s famous Irvine’s lectures [32]. Notice

that the function (1.3) also generalizes the Bloch-Wigner function.

Around 2000 Herbert Gangl investigated various functional equations of polylogarithms

Lin(x) for n ≤ 7 (see [129, 130]). Although there are a lot of information available for these

functional equations when n is small the most general functional equation of Lin(x) is still

a mystery whose complete solution will provide key information in the construction of some

motivic complexes [141, 142].

In [133] Gangl and Müller-Stach discovered a cycle-version of the five-term relation (1.5)

satisfied by the dilogarithm in some higher Chow group. They also proved a certain Kum-

mer relation in the cycle-version holds for the trilogarithm. This has been generalized to

trilogarithm’s 22-term relation (1.6) in [367].

Turning to the multiple polylogarithms, E. Kummer, H. Poincaré, I. Lappo-Danilevsky

and K.-T. Chen all studied them in various disguised forms from different points of view rang-
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ing from differential equations to iterated integrals. In the mid 1990s, Goncharov utilized

these functions to solve some difficult problems in number theory and algebraic geometry.

Sometimes, the term “hyperlogarithm” (see, for e.g. [210]) is used instead of multiple polylog-

arithm, but this is not standard since for other people (see, for example [285]) hyperlogarithm

means different functions.

Back in early 1980s Deligne [88] noticed that the dilogarithm gives rise to a good unipo-

tent variation of mixed Hodge-Tate structures. In his survey paper [162] Richard Hain gave

a detailed account of the polylogarithm local systems as variations of mixed Hodge structure

building on Ramakrishna’s explicit computation of the monodromy of polylogarithms [287].

The monodromy computation also yields the single-valued variant Ln(z) of the polyloga-

rithms [21, 31]. These functions in turn have significant applications in arithmetic algebraic

geometry such as Zagier’s Conjecture 1.2.1. On the other hand, as pointed out by Gon-

charov in [143], “higher cyclotomy theory” should study the multiple polylogarithm motives

at roots of unity, not only those of the polylogarithms. This is the reason why it is im-

portant to consider the variations of mixed Hodge structures associated with the multiple

polylogarithms.

The idea in section 1.9 follows closely that of Beilinson and Deligne [21] as given in

[31]. By this approach one can easily construct the single-valued version of any multiple

polylogarithm as long as one can determine its associated variation matrix explicitly.

In order to understand the motivic origin of multiple polylogarithms it is beneficial to

work with Aomoto polylogarithms [9] which are geometrically more intuitive. Our treatment

here is quite superficial and avoids a lot of technical details but hopeful still gives the reader

a glance of what can possibly be done with this powerful concept. In particular, the double

scissors congruence groups are first introduced in [24] and then studied by Beilinson et al. in

two companion papers [22, 23]. They were able to construct the weight two motivic com-

plex modulo torsions using the geometric combinatorial properties satisfied by the double

scissors congruence group of pairs of triangles on the projective plane. This is generalized

to dimension three in [362]. Notice that in their original definition, Beilinson et al. imposed

another type of relations called Intersection Additivity. However, in [361] we showed that

these relations follow from the others.

Exercises

Exercise 1.1. Verify (1.4) by differentiation .

Exercise 1.2. Define the cross-ratio

r(a, b, c, d) =
(a− c)(b− d)

(a− d)(b− c)

for all distinct a, b, c, d ∈ CP1. Show that for any five distinct points x0, . . . , x4 ∈ CP1 we

have the five term relation of dilogarithm

4∑
i=0

(−1)iL2(r(x0, . . . , x̂i, . . . , x4)) = 0,

where x̂i means xi is removed.

Exercise 1.3. Prove (1.8) by geometric series expansion.
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Exercise 1.4. Derive (1.11) from (1.10) by breaking it into two sums and making an index

substitution.

Exercise 1.5. Prove Theorem 1.4.2 by induction on n using Lemma 1.4.1.

Exercise 1.6. Derive (1.18) from (1.17) in Proposition 1.5.3, using substitutions and the

integral expression of multiple polylogarithms given by (1.8).

Exercise 1.7. Verify the double logarithm variation matrix in Example 1.5.5 by Defini-

tion 1.5.2.

Exercise 1.8. Check that the variation matrix M2,1(x, y) associated with Li2,1(x, y) over

S2 is

1 0 0 0 0 0 0

Li1(x) 1 0 0 0 0 0

Li1(xy) 0 1 0 0 0 0

Li2(x) log(x) 0 1 0 0 0

Li1,1(x, y) Li1(y) Li1
(

1−xy
1−y

)
0 1 0 0

Li2(xy) 0 log(xy) 0 0 1 0

Li2,1(x, y) Li1(y) log(x) g(x, y) Li1(y) log x −Li1(y−1) 1


τ2,1(2πi)

where

g(x, y) = −
∫ 1

a2

dt

t

dt

t− a1
= Li2(x)− Li2(y−1)− log(xy)Li1(y−1).

The columns of M2,1(x, y) form the fundamental solutions of the differential equation over

S2

dλ =



0 0 0 0 0 0

dLi1(x) 0 0 0 0 0

dLi1(xy) 0 0 0 0 0

0 dLi1(y) dLi1
(

1−xy
1−y

)
0 0 0

0 d log(x) 0 0 0 0

0 0 d log(xy) 0 0 0

0 0 0 d log(x) dLi1(y) −dLi1(y−1) 0


λ

Exercise 1.9. Check the variation matrix M1,2(x, y) associated with Li1,2(x, y) over S2 is

1 0 0 0 0 0

Li1(x) 1 0 0 0 0

Li1(xy) 0 1 0 0 0

Li1,1(x, y) Li1(y) Li1
(

1−xy
1−y

)
1 0 0

Li2(xy) 0 log(xy) 0 1 0

Li1,2(x, y) Li2(y) f(x, y) log y Li1(x) 1


τ1,2(2πi)

where

f(x, y) = −
∫ 1

a2

dt

t− a1

dt

t
= Li2(y−1)− Li2(x) + log(xy)Li1(x).
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The columns of M1,2(x, y) form the fundamental solutions of the differential equation over

S2

dλ =



0 0 0 0 0 0

dLi1(x) 0 0 0 0 0

dLi1(xy) 0 0 0 0 0

0 dLi1(y) dLi1
(

1−xy
1−y

)
0 0 0

0 0 d log(xy) 0 0 0

0 0 0 d log y dLi1(x) 0


λ

Exercise 1.10. Write down the variation matrices M2,2(x, y) and M3,1(x, y) associated

with Li2,2(x, y) and Li3,1(x, y), respectively, over S2 using the rule given in section 1.6.

Exercise 1.11. Compute the limit MHS of the triple logarithm L3(x, y, z) on D11 = {x = 1}
over {(1, y, z) : yz(1− y)(1− z)(1− yz) 6= 0} along the vector ∂/∂x. Show that the variation

matrix is essentially M2,1

(
y
y−1 ,

z(y−1)
yz−1

)
. This gives some evidence for Conjecture 1.8.2.

Exercise 1.12. Prove the functional equation (1.35) of dilogarithm by differentiation.

Exercise 1.13. Prove the identity

Li1,1,1(x, y, z) = Li1,2

( 1

1− y
,
z(1− y)

z − 1

)
− Li1,2

(1− yx
1− y

,
z(1− y)

z − 1

)
− log(1− x)Li2

( z

z − 1

)
− log(1− z)Li1,1(x, y)

by differentiation. Then use (1.40) to show that

L1,1,1(x, y, z) =L3

( (y − 1)(1− xyz)
y(1− x)(1− z)

)
+ L3

( y

y − 1

)
+ L3(yz)− L3

(1− xyz
1− z

)
− L3

( 1− xyz
yz(1− x)

)
− L3

(y − xy
y − 1

)
− L3

(y − yz
y − 1

)
+ L3(1− z)

modulo products of logs and dilogs.

Exercise 1.14. Prove (1.41) for d = 2 and d = 3.
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Appendix A

Answers to Some Exercise

Problems

1.10. In this solution we use the notation `n(x) = logn(x)/n!. For Li2,2(x, y) set a0 = 1,

a1 = 1/x and a2 = 1/(xy). Then we have

Li2,2(x, y) = I(1; 0, a1, 0, a2; 0) = I(1; 01, a1, 02, a2; 0).

Here, in order to distinguish the two interior 0’s we have used the set {01, a1, 02, a2}. For

each choice of its subset we write α⊗ β to mean the corresponding column entry α and row

entry β. Here are the possible choices:

1. ∅: 1⊗ Li2,2(x, y)

2. {a1}: −I(1; a1; 0)⊗−I(1; 01; a1)I(a1; 02, a2; 0) = Li1(x)⊗ `1(x)Li2(y)

3. {a2}: −I(1; a2; 0)⊗−I(1; 01, a1, 02; a2) = Li1(xy)⊗ k(x, y)

4. {01, a1}: −I(1; 01, a1; 0)⊗−I(a1; 02, a2; 0) = Li2(x)⊗ Li2(y)

5. {01, a2}: −I(1; 01, a2; 0) ⊗ −I(01; a1, 02; a2) = Li2(xy) ⊗ Li2(y−1) (Note there is no

collapse of 0’s! Row entry Li2(y−1) to be combined with Li2(x) from the next case.)

6. {02, a2}: −I(1; 02, a2; 0)⊗−I(1; 01, a1; 02) = Li2(xy)⊗ Li2(x)

7. {a1, a2}: I(1; a1, a2; 0)⊗ I(1; 01; a1)I(a1; 02; a2) = Li1,1(x, y)⊗ `1(x)`1(y)

8. {a1, 02, a2}: I(1; a1, 02, a2; 0)⊗ I(1; 01; a1) = Li1,2(x, y)⊗ `1(x)

9. {01, a1, a2}: I(1; 01, a1, a2; 0)⊗ I(a1; 02; a2) = Li2,1(x, y)⊗ `1(y)

10. {0, a1, 0, a2}: Li2,2(x, y)⊗ 1

31
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Thus the variation matrix M3,1(x, y) associated with Li3,1(x, y) over S2 is

1

Li1(x) 1

Li1(xy) 0 1

Li2(x) `1(x) 0 1

Li1,1(x, y) Li1(y) h(x, y) 0 1

Li2(xy) 0 `1(xy) 0 0 1

Li2,1(x, y) `1(x)Li1(y) g(x, y) Li1(y) `1(x) α(y) 1

Li1,2(x, y) Li2(y) f(x, y) 0 `1(y) Li1(x) 0 1

Li2,2(x, y) `1(x)Li2(y) k(x, y) Li2(y) `1(x)`1(y)
Li2(y−1)
+Li2(x)

`1(y) `1(x) 1



τ2,2(2πi)

where

α(y) =− Li1(y−1) = −Li1(y)− `1(y),

h(x, y) =− I(1; a1; a2) = −I
(

1;
a1 − a2

1− a2
; 0
)

= Li1

(1− xy
1− y

)
= Li1(x)− Li1(y)− `1(y),

f(x, y) =− I(1; a1, 02; a2) = −I
(

1;
a1 − a2

1− a2
,
−a2

1− a2
; 0
)

= Li1,1

(1− xy
1− y

, 1− y
)

=Li2(y−1)− Li2(x) + `1(xy)Li1(x),

g(x, y) =− I(1; 01, a1; a2) = −I
(

1;
−a2

1− a2
,
a1 − a2

1− a2
; 0
)

= Li1,1

(
1− xy, 1

1− y

)
=Li2(x)− Li2(y−1)− `1(xy)Li1(y−1)

by using (1.37), and

k(x, y) =− I(1; 01, a1, 02; a2) = −I
(

1;
−a2

1− a2
,
a1 − a2

1− a2
,
−a2

1− a2
; 0
)

=− Li1,1,1
(

1− xy, 1

1− y
, 1− y

)
=2Li3(x)− `1(x)Li2(x)− 2Li3(y−1) + `1(y)Li2

( 1− xy
x(1− y)

)
− `1(y)Li2(y−1)

−`1(xy)
(
Li2(y−1)− `1(y)Li1(y−1)

)
− `1(y)Li2

(
1− 1

xy

)
− `1(y)Li2

(1− xy
1− y

)
by using Exercise 1.13, equation (1.40) and the following identities:

Li3(y−1)− Li3(y) = `3(y), Li2(y−1) + Li2(y) = 2Li2(1)− `2(y). (A.1)

For Li3,1(x, y) set a0 = 1, a1 = 1/x and a2 = 1/(xy). Then we have

Li3,1(x, y) = I(a0; 0, 0, a1, a2; 0) = I(1; 0, 0, a1, a2; 0).

We have the following possible choices of the subsets of {0, 0, a1, a2} = {01, 02, a1, a2}:

1. ∅: 1⊗ Li3,1(x, y)

2. {a1}: −I(1; a1; 0)⊗−I(1; 0, 0; a1)I(a1; a2; 0) = Li1(x)⊗ `2(x)Li1(y)

3. {a2}: −I(1; a2; 0)⊗−I(1; 0, 0, a1; a2) = Li1(xy)⊗ l(x, y)

4. {01, a1}: −I(1; 01, a1; 0) ⊗ −I(1; 02; a1)I(a1; a2; 0) = Li2(x) ⊗ `1(x)Li1(y) (collapse of

01 onto a0 = 1)
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5. {01, a2}: −I(1; 01, a2; 0)⊗−I(1; 02, a1; a2) = Li2(xy)⊗ g(x, y) (collapse of 01)

6. {a1, a2}: I(1; a1, a2; 0)⊗ I(1; 0, 0; a1) = Li1,1(x, y)⊗ `2(x)

7. {01, a1, a2}: I(1; 01, a1, a2; 0)⊗ I(1; 02; a1) = Li2,1(x, y)⊗ `1(x) (collapse of 01)

8. {0, 0, a1}: −I(1; 0, 0, a1; 0)⊗−I(a1; a2; 0) = Li3(xy)⊗ Li1(y)

9. {0, 0, a2}: −I(1; 0, 0, a2; 0)⊗−I(0; a1; a2)

10. {0, 0, a1, a2}: Li3,1(x, y)⊗ 1

Thus the variation matrix M3,1(x, y) associated with Li3,1(x, y) over S2 is

1

Li1(x) 1

Li1(xy) 0 1

Li2(x) `1(x) 0 1

Li1,1(x, y) Li1(y) h(x, y) 0 1

Li2(xy) 0 `1(xy) 0 0 1

Li3(x) `2(x) 0 `1(x) 0 0 1

Li2,1(x, y) `1(x)Li1(y) g(x, y) Li1(y) `1(x) α(y) 0 1

Li3(xy) 0 `2(xy) 0 0 `1(xy) 0 0 1

Li3,1(x, y) `2(x)Li1(y) l(x, y) `1(x)Li1(y) `2(x) g̃(x, y) Li1(y) `1(x) α(y) 1



τ3,1(2πi)

where g̃(x, y) = g(x, y)− Li2(x) and

l(x, y) =− I(1; 0, 0, a1; a2) = −I
(

1;
−a2

1− a2
,
−a2

1− a2
,
a1 − a2

1− a2
; 0
)

=− Li1,1,1
(

1− xy, 1, 1

1− y

)
=Li3(x)− Li3(y−1)− `1(xy)Li2(y−1)− `2(xy)Li1(y−1).

by using Exercise 1.13, (1.40), (A.1) and the following identities:

Li3(1− y−1) + Li3(1− y) + Li3(y) =Li3(1) + `2(y)Li1(y) + `3(y),

Li2(1− y−1) + Li2(1− y) =− `2(y).
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type series for zeta values, Adv. Appl. Math. 49 (2012), pp. 218-238; preprint arXiv:

1108.1893[NT].

[170] Kh. Hessami Pilehrood and T. Hessami Pilehrood, On q-analogues of two-one for-

mulas for multiple harmonic sums and multiple zeta star values, preprint arXiv:

1304.0269[NT].

[171] Kh. Hessami Pilehrood, T. Hessami Pilehrood, and R. Tauraso, New properties of

multiple harmonic sums modulo p and p-analogues of Leshchiner’s series, Trans. Amer.

Math. Soc., preprint 1206.0407[NT].

[172] M.E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), pp. 275–290.

[173] M.E. Hoffman, The algebra of multiple harmonic series, J. Alg. 194 (1997), pp. 477-495.

[174] M.E. Hoffman, Quasi-shuffle products, J. Alg. Combin. 11 (2000), pp. 49–68.

[175] M.E. Hoffman, Periods of mirrors and multiple zeta values, Proc. Amer. Math. Soc.

130 (2002), pp. 971–974.

[176] M.E. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, preprint

arXiv: math/0401319.

[177] M.E. Hoffman, The Hopf algebra structure of multiple harmonic sums, Nuclear Phys.

B (Proc. Suppl.) 135 (2004), 214-219.

[178] M.E. Hoffman, Algebraic aspects of multiple zeta values, in: Zeta Functions, Topology

and Quantum Physics, T. Aoki et. al. (eds.), Developments in Math. 14, Springer, New

York, 2005, pp. 51-74;

[179] M.E. Hoffman, Algebra of multiple zeta values and Euler sums, in: Mini-Conference on

Zeta Functions, Index and Twisted K-Theory: Interactions with Physics, Oberwolfach,

Germany, May 2, 2006. www.usna.edu/Users/math/meh

[180] M.E. Hoffman, A character on the quasi-symmetric functions coming from multiple

zeta values, Electron. J. Combin. 15(1) (2008), R97.

[181] M. E. Hoffman, On multiple zeta values of even arguments, arXiv: 1205.7051.

[182] M.E. Hoffman, References on Multiple Zeta values and Euler sums,

http://www.usna.edu/Users/math/meh/biblio.html

[183] M.E. Hoffman and C. Moen, Sums of triple harmonic series, J. Number Theory

60(1996), pp. 329–331.

[184] M.E. Hoffman and Y. Ohno, Relations of multiple zeta values and their algebraic

expression, J. Algebra 262 (2003), pp. 332-347.

[185] I. Horozov, Multiple zeta functions, modular forms and adeles, preprint, arXiv:math/

0611849

[186] I. Horozov, Multiple Dedekind zeta functions, preprint, arXiv:1101.1594



46 BIBLIOGRAPHY

[187] M. Igarashi, A generalization of Ohno’s relation for multiple zeta values, J. Number

Theory 132 (2012), pp. 565–578.

[188] M. Igarashi, Note on relations among multiple zeta-star values, arXiv:1106.0481

[189] Y. Ihara, Profinite braid groups, Galois representations and complex multiplications,

Ann. Math. 123 (1986), pp. 43–106.

[190] Y. Ihara, The Galois representation arising from P1−{0, 1,∞} and Tate twists of even

degree, in: Galois groups over Q, Publ. MSRI 16 (1989), Springer-Verlag, pp. 299–313.

[191] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple

zeta values, Compos. Math. 142 (2006), pp. 307–338.

[192] K. Ihara, J. Kajikawa, Y. Ohno and J. Okuda, Multiple zeta values vs. multiple zeta-

star values, J. Algebra 332 (2011), pp. 187–208.

[193] K. Ihara and H. Ochiai, Symmetry on linear relations for multiple zeta values, Nagoya

Math. J. 189 (2008), pp. 49–62.

[194] K. Imatomi, T. Tanaka, K. Tasaka and N. Wakabayashi, On some combinations of

multiple zeta-star values, arXiv: 0912.1951.

[195] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Grad-

uate Texts in Math. Vol. 84, 2nd Edition, Spring-Verlag, Berlin, New York, 1990.

[196] C. Ji, A simple proof of a curious congruence by Zhao, Proc. Amer. Math. Soc. 133

(2005), pp. 3469–3472.

[197] A. Jonquière, Note sur la srie
∑∞
n=1

xn
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