
Property Testing for Sparse Graphs:
Structural graph theory meets

Property testing
Ken-ichi Kawarabayashi

National Institute of Informatics(NII)&
JST, ERATO, Kawarabayashi Large Graph Project

Joint work with Yuichi Yoshida(NII).

STOC’13

Purpose of this talk

• How Structural graph theory helps property
testing?

• Warning: I am NOT an expert on property testing..

Contents

• What is the property testing?
• Dense graphs model.
• Bounded degree graphs with separators.
• Bounded degree graphs with no separators
 our main contribution
• Tools from property testing and graph minors
• Summary

Property Testing

• Dense Graph Model:
 Connected to Szemeredi’s Regularity Lemma
(Due to Alon et al.)

• Bounded Degree Model:
Connected to Structural Graph Theory and
Graph Minor (from this work!)

Property Testing (Informal Definition)
For a fixed property P and any object O,
determine whether O has property P,
or whether O is far from having property P
(i.e., far from any other object having P).

Task should be performed by querying the object (in as
few places as possible. Sublinear or even constant time).

? ?

?

?
?

 Examples

• The object can be a graph (represented
by its adjacency matrix), and the
property can be 3-colorabilty.

• The object can be a string and the
property can be membership in a given
regular language L.

• The object can be a function and the
property can be linearity.

When can Property Testing be Useful?

• Object is to too large to even fully scan,
so must make approximate decision.

• Object is not too large but
(1) Exact decision is NP-hard (e.g. coloring)
(2) Prefer sub-linear approximate algorithm
to polynomial exact algorithm.

Actual Computation Results for the
Shortest Paths Problem Using High-
Performance Computer (HPC)(2011)

Based on Dijkstra's algorithm (Running time: O(n log n)）
 Graph of the entire United States (n=24,000,000 points, 58,000,000

edges): 3 seconds
 Very large scale graph (n=109 points, 2 ×109 edges): 870s

We cannot use Dijkstra’s algorithm！

Individual personal computers need >1000 times！

Graph Property Testing
Very general setting:
P = graph property to test
(k-colorability, planarity, non-existence of a copy of H, etc.)

Input: graph G on n vertices, n→∞
Promise: G∈P (positive)
 or: G is ε-far from P (negative)
(More than ε-percentage of description of Ｇ should be

changed to get G∈P)
Algorithm(typically randomized): Constant time(Sublinear)
G∈P ⇒ Pr[A accepts G] ≥ 2/3
G is ε-far from P ⇒ Pr[A rejects G] ≥ 2/3
G∈P, Pr[A accepts G] =1 – one-sided error algorithm

ここここここここここここここここここ

Edge Addition or
Edge Deletion

two-sided error

Contents

• What is the property testing?
• Dense graphs model
• Bounded degree graphs with separators
• Bounded degree graphs with no separators
 our main contribution
• Tools from property testing and graph minors
• Summary

Property Testing in Dense Graphs
- Formally defined in GGR’98
(appeared implicitly in combinatorial papers in 70’s, 80’s)

Input graph description: adjacency matrix G=(V,E), V=[n]

Algorithm: queries the adjacency matrix of G
 Want: Constant-time query!

Distance: G is is ε-far from P if ≥εn2 entries in A(G)
need to be changed to get G∈P (addition or deletion)

1, (,) ()
0,ij

i j E G
a

otherwise
∈

=
n nA ×

Property Testing in Dense Graphs – Brief
Summary

“… It’s all about REGULARITY.” (Alon, Fischer, Newman
and Shapira’06)

 Every ``heredity property(closed under deletion)” is

constant-time testable if and only if there is a
“Szemeredi partition”.

• Very strong (and fruitful) connection between

property testing in dense graphs and the Szemerédi
Regularity Lemma and its versions

13

Dense Graph Model - limitations
• Suitable/tailored for dense graphs only

• Degenerate for many graph properties
 Ex. : P = “ G is connected”
 - Always answer “YES”
 (Imagine edge addition: dist(G,P)≤ n-1 << εn2)

Property Testing

• Dense Graph Model:
 Connected to Szemeredi’s Regularity Lemma
(Due to Alon et al.)

• Bounded Degree Model:
Connected to Structural Graph Theory and
Graph Minor (from this work!)

Contents

• What is the property testing?
• Dense graphs model
• Bounded degree graphs with separator
• Bounded degree graphs with no separators:
 our main contribution
• Tools from property testing and graph minors
• Summary

Property Testing in Bounded Degree Graphs
Introduced by Goldreich and Ron’97(GR97)

• Assumption: max degree of an input graph

G ≤d=constant, ε<< 1/d

• Graph representation: by incidence lists
 L(vi)=(vi,1,…,vi,d) – list of neighbors of vi

• Distance: G is ε-far from P if need ≥ εdn

modifications in incidence lists to get H∈P
 (addition or deletion)

Bounded Degree Graphs – an Example
Th. (GR’97): Connectivity in bounded degree model

can be tested in O(1/ε2) queries
Proof: Assume: G is ε-far from being connected

 G has ≥ εn connected components

G has ≥ εn/2 con. components of size ≤ 2/ε (= small

components)

 ≥ ε/2 percentage of all vertices in small components

Property Testing in Bounded Degree Graphs
Algorithm: Repeat O(1/ε) times:
 1. Sample a random vertex v∈RV
 2. Explore the connected component C(v) of v

till accumulate 2/ε vertices
 3. If |C(v)| ≤ 2/ε – reject
 (G is ε-far from being connected)
If never reject – accept

One-sided error algorithm with complexity
 O(1/ε2)
More careful analysis (1/ε) queries O~

Three reasons of Constant-time
testability in bounded-degree model

Properties Why is it testable?

△-freeness, H-freeness [GR02] Locally determined

k-edge-connectivity [GR02]

k edge-disjoint spanning trees [ITY’12]

Edge-augmentation / matroid theory.

Planarity, H-minor-freeness [BSS08,

HKNO09]
Existence of separators

Is there any other kind of testable properties?

delete

 A graph G has a minor H if
H can be formed by removing and contracting
edges of G

 Otherwise, G is H- minor- free.
 Minor- closed: Closed under minor operations.
 For example, Planar graphs are minor-closed.
 Kuratowski’s theorem

contract

H
minor of G

G
*

H-minor-free in
Constant-time testing(BSS08)

Can figure out
G has no εdn edges (or εn vertices) X such that
G-X has no H-minor (or is nonplanar).

in constant time!

Three reasons of testability in
bounded-degree model

Properties Why is it testable?

△-freeness, H-freeness [GR02] Locally determined

k-edge-connectivity [GR02]

k edge-disjoint spanning trees [ITY’12]

Edge-augmentation / matroid theory.

Planarity, H-minor-freeness [BSS08,

HKNO09]
Existence of separators

Is there any other kind of testable properties?

 Given a graph G, if V(G) can be partitioned into
three parts A,B,C such that

 1. there is no edge between A and B, and
 2. |G|/3 <= |A|,|B| < 2|G|/3,
Then C is called a separator .

We are interested in a separator of SMALL order,

i.e, sublinear order.
Separator Theorem: Every H-minor-free graph has

a separator of order o(n).

Using separators: Decomposition lemma

Consider a H-minor-free graph G.

∀|H| and ε, ∃s s.t. we
can decompose G by
removing εn edges

into component of
size ≤ s,

≤ s

H-minor-free:

of edges crossing
 is ≤ εdn

Sketch for H-minor-free
Constant-time testing(BSS08)

• Structural graph theory approach

 Using separators, decompose H-minor-free graphs
into small graphs (easily follows from separators.)

• Partitioning oracle (Tools from Property testing)

Using Decomposition thm: Partitioning oracle

• It suffices if we can access the graph G’ given
by the decomposition lemma. How??

• Partitioning oracle provide query access to a
decomposition, designed for H-minor-free
graphs. [HKNO09]

of edges crossing
 is ≤ εdn ≤ s

H-minor-free:

 Keys for H-minor-free testing(BSS08)

Need to combine Structure graph theory and
Property testing!

• Structural graph theory approach
 Using separators, decompose H-minor-free graphs
into small graphs.
 ⇒ Easy.
• Partitioning oracle (Tools from Property testing)
 ⇒ Main Task

How about subdivision-free?

Subdivision of a graph: replacing each edge
by a path of length 1 or more.

G contains a subdivision of H if G contains a
subgraph H’ that is a subdivision of H.

≤T

Branch Vertices: vertices of H that correspond to ‘’vertices”
(not in a path of length 1 or more)

Kuratowski’s Theorem Ver 2
• A graph is planar (can be embedded in a

plane without edge crossings) if and only
if it contains neither K5 nor K3,3 as a
topological minor(or subdivision).

Main contribution

Kt-subdivision-freeness is constant-time testable for any t ≥ 1.

Can figure out
 G has no εdn edges (or εn vertices) X such that
G-X has no Kt-subdivision.

in constant time!

Main contribution

• Not locally determined
• Nothing to do with edge-augmentation /

matroids.
• May not have separators

– an expander graph with max degree t-2.
• First Property that can contain an expander!

Kt-subdivision-freeness is constant-time testable for any t ≥ 1.

 Intuitively: a graph for which any “small” subset

of vertices has a relatively “large” neighborhood.

 Hence no separator of order o(n).

 Can be defined in Algebraic sense and in
Probabilistic sense too!

 Property: It behaves like a (sparse) random
graph!

 Used many areas in Math and CS!

Contents

• What is the property testing?
• Dense graphs model
• Bounded degree graphs with separators
• Bounded degree graphs with no separators
 our main contribution
• Tools from property testing and graph minors
• Summary

Proof Sketch

 Reminder: Sketch for H-minor-free testing

Need to combine the two approaches
• Structural graph theory approach
 Using separators, decompose H-minor-free graphs into
small graphs (easily follows from separators).

• Partitioning oracle (Tools from Property testing)
 ⇒ Main Task
Warning: No separator for the subdivision case.
 So decomposition thm for subdivision case
 is not trivial. Need “deeper” structural graph
 approach! (then can combine with property
 testing)

Testing Kt-subdivision-freeness: High level
Basically following the minor case!

Combinations of Structural graph and Property testing!

Decomposition thm

• Decompose G into components by removing ε’n edges

• of constant size, or

• with large clique minor and no small cut

• Design a tester that works locally given the
decomposition.

Constant-time tester for Kt-sub.-freeness

• Use and modify “partitioning oracle” to obtain query
access to the decomposition ⇒ Not hard.

Decomposition lemma
l-hidden cut C: every component in G – C has
size at least l|C|.
• No separator, but using graph minor(tangle),

we have the following!

∀t, t’ and ε, ∃s s.t. we can
decompose G by removing εn

edges into components

1) of size ≤ s, or

2) with Kt’-minor and no (1/ε)-
hidden cut of size < t - 1.

≤ s

≤ s

Using Decomposition lemma

Decompose G by removing ε’dn ≪ εdn edges into

1) small components

2) components with Kt’-minor and no hidden cut of
size < t – 1.

It suffices to test the resulting graph G’(after
removing edges).
• If G is Kt-sub.-free ⇒ G’ is Kt-sub.-free

• If G is ε-far ⇒ G’ is (ε-ε’)-far

Our algorithm, at a high level

Suppose that we can access the decomposition!

1) small components

• easy to test (exactly same as the minor case)

Need to look at the following case!

2) large components with Kt’-minor and no l-
hidden cut of size < t – 1.

• Estimate # of dangerous vertices w.r.t. small
neighborhood and accept if it is < εn/4.

• Can be done in constant time.

Dangerous

A vertex v is dangerous w.r.t. S ⊆ V if v is not
separated in S by a cut of size < t – 1.

• We cannot exclude the possibility that v is a
branch of Kt-subdivision.

Ex.
v

S

v is not dangerous w.r.t. K4

because of the red cut.

Correctness
If G’ is ε-far:

• Many (≥ εn/2) dangerous vertices as otherwise
we can remove edges incident to them.

If G’ is Kt-subdivision-free.

• Want to show there are a few (≤ εn/1000)

dangerous vertices.

• How many dangerous vertices can a large
component have? Use tools from Graph Minor!

Contents

• What is the property testing?
• Dense graphs model.
• Bounded degree graphs with separator
• Bounded degree graphs with no separators:
 our main contribution
• Tools from property testing and graph minors.
• Summary

Suppose that there is a set S of |V (H)| vertices
that are very far (only depending on |V(H)|)
from each other, and each having degree > |V(H)|.
 Suppose there is a large clique minor.

Graph Minor tells only
Two possibilities:

(1) There are many disjoint paths from S to the clique minor

⇒ Using the clique minor as a crossbar, we can complete
the paths into a H-subdivision
 Winning!

D Marx () Finding topological subgraphs is FPT

Tools from graph minors

(2) There is a small separator between S and the clique minor
 Remember!

Big Piece: 1 . More than constant size.
 2. No “hidden” cut.
 3. contains a large clique minor.

So (2) does not happen! So small # of dangerous vertices!

Suppose that there is a set S of |V (H)| vertices
that are very far (only depending on |V(H)|)
from each other, and each having degree > |V(H)|.
 Suppose there is a large clique minor.

Graph Minor tells only
Two possibilities:

Tools from graph minors

Correctness
If G’ is Kt-sub-free.

• Each large component has c dangerous vertices.

• There are at most n / s large components.

• Thus, there are at most cn / s ≪ εn/1000

dangerous vertices.

• Remaining task:

 How to access the decomposition??

Last step: How to access the decomposition?
Constant-time tester

Reminder: Partitioning oracle

• Partitioning oracle provide query access
to a decomposition, originally designed
for H-minor-free grahps. [HKNO09]

of edges crossing
 is ≤ εdn ≤ s

H-minor-free:

Reminder: Decomposition lemma for subdivision

l-hidden cut C: every component in G – C
has size at least l|C|.
• Hard for local algorithms to detect

∀t, t’ and ε, ∃s s.t. we can
decompose G by removing εn

edges into components

1) of size ≤ s, or

2) with Kt’-minor and no (1/ε)-
hidden cut of size < t - 1.

≤ s

≤ s

Modified Partitioning oracle
Modify [HKNO09] to give query access to G’ for
Kt-sub.-free graph. (not hard)

Though we have a little error, it does not affect
the # of dangerous vertices too much.

of edges crossing
 is ≤ εdn

≤ s

≤ s

H-sib.-free

Conclusions
Main result:
Kt-sub.-freeness is constant-time testable.

Structure Graph Theory: Decomposition

Property Testing: Accessing the decomposition

Nice combination of Structural graph theory and
Property testing!

Previously, property testing is harder, but in our
case, structural part is harder!

Property Testing

• Dense Graph Model:

 Connected to Szemeredi’s Regularity Lemma

(Due to Alon et al.)

• Bounded Degree Model:

Connected to Structural Graph Theory and
Graph Minor (from this work!)

Future work

Open problems:

• Query complexity: 2^(d^poly(ε/2poly(t))).
• Can we test H-(topological-)minor-

freeness in adjacency list model?

• Some other classes? (Immersion is done
by this work, but what else?)

Thank you for your
attention! Any Question?

Many Thanks !

A sufficient condition to have Kt-tm

Kt’-minor

Kt-topological-

minor

∀t and l, ∃t’, c, and r such that
• Kt’-minor

• no l-hidden cut of size < t – 1.
• ≥ c dangerous vertices w.r.t. radius-r balls

⇒ Kt-topological-minor

Main Tools
Th. P = “G is Kt-subdivision-free”
P can be tested in time Oε(1) in bounded degree

graphs by a 2-sided error algorithm.

Main Tools
1. Extension of partitioning oracle(correctness based

on graph minor)
2. Tools from graph minor!

	Property Testing for Sparse Graphs:�Structural graph theory meets �Property testing
	Purpose of this talk
	Contents
	Property Testing
	Property Testing (Informal Definition)
	 Examples
	When can Property Testing be Useful?
	Actual Computation Results for the Shortest Paths Problem Using High-Performance Computer (HPC)(2011)
	Graph Property Testing
	Contents
	Property Testing in Dense Graphs
	Property Testing in Dense Graphs – Brief Summary
	Dense Graph Model - limitations
	Property Testing
	Contents
	Property Testing in Bounded Degree Graphs
	Bounded Degree Graphs – an Example
	Property Testing in Bounded Degree Graphs
	Three reasons of Constant-time testability in bounded-degree model
	Graph Minors
	H-minor-free in�Constant-time testing(BSS08)
	Three reasons of testability in bounded-degree model
	Separator
	Using separators: Decomposition lemma
	Sketch for H-minor-free �Constant-time testing(BSS08)
	Using Decomposition thm: Partitioning oracle
	 Keys for H-minor-free testing(BSS08)
	スライド番号 28
	Kuratowski’s Theorem Ver 2
	Main contribution
	Main contribution
	Expander Graph
	Contents
	Proof Sketch
	 Reminder: Sketch for H-minor-free testing
	Testing Kt-subdivision-freeness: High level
	Decomposition lemma
	Using Decomposition lemma
	Our algorithm, at a high level
	Dangerous
	Correctness
	Contents
	スライド番号 43
	スライド番号 44
	Correctness
	Last step: How to access the decomposition?�Constant-time tester
	Reminder: Partitioning oracle
	Reminder: Decomposition lemma for subdivision
	Modified Partitioning oracle
	Conclusions
	Property Testing
	Future work
	スライド番号 53
	A sufficient condition to have Kt-tm
	Main Tools

