
Property Testing for Sparse Graphs: 
Structural graph theory meets  

Property testing 
Ken-ichi Kawarabayashi 

National Institute of Informatics(NII)& 
JST, ERATO, Kawarabayashi Large Graph Project 

 
Joint work with Yuichi Yoshida(NII).  

STOC’13 



Purpose of this talk 

• How Structural graph theory helps property 
testing?  
 

• Warning: I am NOT an expert on property testing.. 
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Property Testing 

• Dense Graph Model:  
  Connected to Szemeredi’s Regularity Lemma 
(Due to Alon et al. ) 
 
• Bounded Degree Model:  
Connected to Structural Graph Theory and 
Graph Minor (from this work!) 



Property Testing (Informal Definition) 
For a fixed property P and any object O, 
determine whether O has property P, 
or whether  O is far from having property P   
(i.e., far from any other object having P ). 

Task should be performed by querying the object (in as 
few places as possible.  Sublinear or even constant time).  

? ? 

? 

? 
? 



 Examples 

• The object can be a graph (represented 
by its adjacency matrix),  and the 
property can be 3-colorabilty. 
 

• The object can be a string and the 
property can be membership in a given 
regular language L. 
 

• The object can be a function and the 
property can be linearity. 



When can Property Testing be Useful? 

• Object is to too large to even fully scan, 
so must make approximate decision. 

• Object is not too large but  
(1) Exact decision is NP-hard (e.g. coloring) 
(2) Prefer sub-linear approximate algorithm 
to   polynomial exact algorithm. 
 



Actual Computation Results for the 
Shortest Paths Problem Using High-
Performance Computer (HPC)(2011) 

Based on Dijkstra's algorithm (Running time: O(n log n)） 
 Graph of the entire United States (n=24,000,000 points, 58,000,000 

edges): 3 seconds  
 Very large scale graph (n=109 points, 2 ×109 edges): 870s  
     
 

We cannot use Dijkstra’s algorithm！ 

Individual personal computers need >1000 times！ 



Graph Property Testing 
Very general setting: 
P = graph property to test 
(k-colorability, planarity, non-existence of a copy of H, etc.) 
 
Input: graph G on n vertices, n→∞ 
Promise: G∈P (positive) 
  or:  G is ε-far from P (negative) 
(More than ε-percentage of description of Ｇ should be 

changed to get G∈P) 
Algorithm(typically randomized): Constant time(Sublinear)   
G∈P  ⇒   Pr[ A accepts G] ≥ 2/3 
G is ε-far from P ⇒ Pr[ A rejects G] ≥ 2/3 
G∈P,   Pr[ A accepts G] =1      –      one-sided error algorithm  

ここここここここここここここここここ

Edge Addition or 
Edge Deletion 

two-sided error 
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Property Testing in Dense Graphs 
- Formally defined in GGR’98 
(appeared implicitly in combinatorial papers in 70’s, 80’s) 
 
Input graph description: adjacency matrix G=(V,E), V=[n] 
        
 
 
Algorithm: queries the adjacency matrix of G 
                    Want: Constant-time query! 
 
Distance: G is  is ε-far from P if ≥εn2 entries in A(G)  
need to be changed to get  G∈P (addition or deletion) 
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Property Testing in Dense Graphs – Brief 
Summary 

“… It’s all about REGULARITY.” (Alon, Fischer, Newman 
and Shapira’06) 

 
    Every ``heredity property(closed under deletion)” is 

constant-time testable if and only if there is a 
“Szemeredi partition”.  

 
• Very strong (and fruitful) connection between 

property testing in dense graphs and the Szemerédi 
Regularity Lemma and its versions 
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Dense Graph Model - limitations 
• Suitable/tailored for dense graphs only 
 
• Degenerate for many graph properties 
   Ex.  : P = “ G is connected” 
  - Always answer “YES” 
           (Imagine edge addition:  dist(G,P)≤ n-1 << εn2 )   
 



Property Testing 

• Dense Graph Model:  
  Connected to Szemeredi’s Regularity Lemma 
(Due to Alon et al. ) 
 
• Bounded Degree Model:  
Connected to Structural Graph Theory and 
Graph Minor (from this work!) 
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Property Testing in Bounded Degree Graphs 
Introduced by Goldreich and Ron’97(GR97) 
 
• Assumption: max degree of an input graph 

G ≤d=constant,   ε<< 1/d 
 

• Graph representation: by incidence lists 
  L(vi)=(vi,1,…,vi,d)  –  list of neighbors of vi 
 
• Distance: G is ε-far from P if need ≥ εdn 

modifications in incidence lists to get H∈P 
  (addition or deletion) 
 



Bounded Degree Graphs – an Example 
Th. (GR’97): Connectivity in bounded degree model 

can be tested in O(1/ε2) queries 
Proof: Assume: G is ε-far from being connected 
 
 G has ≥ εn connected components 
 
G has ≥ εn/2 con. components of size ≤ 2/ε  (= small 

components) 
 
 ≥ ε/2 percentage of all vertices in small components 
  



Property Testing in Bounded Degree Graphs  
Algorithm: Repeat O(1/ε) times: 
 1. Sample a random vertex v∈RV 
  2. Explore the connected component C(v) of v 

till  accumulate 2/ε vertices 
 3. If |C(v)| ≤ 2/ε – reject  
          (G is ε-far from being connected) 
If never reject – accept 
 
One-sided error algorithm with complexity       
         O(1/ε2) 
More careful analysis      (1/ε) queries  O~



Three reasons of Constant-time 
testability in bounded-degree model 

Properties Why is it testable? 

△-freeness, H-freeness [GR02] Locally determined 
 

k-edge-connectivity [GR02] 

k edge-disjoint spanning trees [ITY’12] 

Edge-augmentation / matroid theory. 

Planarity, H-minor-freeness [BSS08, 

HKNO09] 
Existence of separators 

Is there any other kind of testable properties? 



delete 

 A graph G has a minor H   if 
H can be formed by removing and contracting 
edges of G 

 
 
 

 
 
 

 Otherwise, G is H- minor- free.  
 Minor- closed:  Closed under minor operations.  
 For example,  Planar graphs are minor-closed. 
 Kuratowski’s theorem 

contract 

H 
minor of G 

G 
* 



H-minor-free in 
Constant-time testing(BSS08) 

 
Can figure out  
G has no εdn  edges (or εn vertices) X such that 
G-X has no H-minor (or is nonplanar). 
 
in constant time! 



Three reasons of testability in 
bounded-degree model 

Properties Why is it testable? 

△-freeness, H-freeness [GR02] Locally determined 
 

k-edge-connectivity [GR02] 

k edge-disjoint spanning trees [ITY’12] 

Edge-augmentation / matroid theory. 

Planarity, H-minor-freeness [BSS08, 

HKNO09] 
Existence of separators 

Is there any other kind of testable properties? 



 Given a graph G, if V(G) can be partitioned into  
three parts A,B,C such that  

 1. there is no edge between A and B, and  
 2. |G|/3 <= |A|,|B| < 2|G|/3,  
Then C is called  a separator .  
 
We are interested in a separator of SMALL order, 

i.e, sublinear order. 
Separator Theorem: Every H-minor-free graph has 

a separator of order o(n).  



Using separators: Decomposition lemma 

Consider a  H-minor-free graph G.  
 
 
 
 

∀|H| and ε, ∃s s.t. we 
can decompose G by 
removing εn edges 

into component of 
size ≤ s,  

≤ s 

H-minor-free:  

# of edges crossing  
             is ≤ εdn 



Sketch for H-minor-free  
Constant-time testing(BSS08) 

• Structural graph theory approach 

  Using separators, decompose H-minor-free graphs 
into small graphs (easily follows from separators. ) 

 

• Partitioning oracle (Tools from Property testing) 



Using Decomposition thm: Partitioning oracle 

• It suffices if we can access the graph G’ given 
by the decomposition lemma. How?? 

• Partitioning oracle provide query access to a 
decomposition, designed for H-minor-free 
graphs. [HKNO09] 

 
 
 

 

 

 

 

# of edges crossing  
             is ≤ εdn ≤ s 

H-minor-free:  



  Keys for H-minor-free testing(BSS08) 

Need to combine Structure graph theory and 
Property testing! 

 
• Structural graph theory approach 
  Using separators, decompose H-minor-free graphs 
into small graphs. 
  ⇒ Easy. 
• Partitioning oracle (Tools from Property testing) 
 ⇒ Main Task 
 
How about subdivision-free?  



Subdivision of a graph: replacing each edge  
by a path of length 1 or more.  
 
G contains a subdivision of H if G contains a  
subgraph H’ that is a subdivision of H. 

≤T  
 

Branch Vertices: vertices of H that correspond to ‘’vertices”  
(not in a path of length 1 or more)   



Kuratowski’s Theorem Ver 2 
• A graph is planar (can be embedded in a 

plane without edge crossings) if and only 
if it contains neither K5 nor K3,3 as a 
topological minor(or subdivision). 



Main contribution 

 
 
 

 

Kt-subdivision-freeness is constant-time testable for any t ≥ 1. 

Can figure out   
   G has no εdn  edges (or εn vertices) X such that 
G-X has no Kt-subdivision.  
 
in constant time! 



Main contribution 

 
 
 
• Not locally determined 
• Nothing to do with edge-augmentation / 

matroids. 
• May not have separators 

– an expander graph with max degree t-2.  
• First Property that can contain an expander! 

Kt-subdivision-freeness is constant-time testable for any t ≥ 1. 



 
 Intuitively: a graph for which any “small” subset 

of vertices has a relatively “large” neighborhood. 
 

 Hence no separator of  order o(n).  
 

 Can be defined in Algebraic sense and in 
Probabilistic sense too!  
 

 Property:   It behaves like a (sparse) random 
graph! 
 

 Used many areas in Math and CS! 
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Proof Sketch 



  Reminder: Sketch for H-minor-free testing 

Need to combine the two approaches 
• Structural graph theory approach 
  Using separators, decompose H-minor-free graphs into 
small graphs (easily follows from separators).  
 
• Partitioning oracle (Tools from Property testing) 
   ⇒ Main Task 
Warning: No separator for the subdivision case.  
             So decomposition thm for subdivision case  
             is not trivial. Need “deeper” structural graph   
             approach! (then can combine with property  
              testing) 
 
 



Testing Kt-subdivision-freeness: High level 
Basically following the minor case!  

Combinations of Structural graph  and Property testing! 

Decomposition thm  

• Decompose G into components by removing ε’n edges 

• of constant size, or 

• with large clique minor and no small cut 

• Design a tester that works locally given the 
decomposition. 

Constant-time tester for Kt-sub.-freeness 

• Use and modify “partitioning oracle” to obtain query 
access to the decomposition ⇒ Not hard. 

 



Decomposition lemma 
l-hidden cut C: every component in G – C has 
size at least l|C|. 
• No separator, but using graph minor(tangle), 

we have the following! 
 
 
 
 
 

∀t, t’ and ε, ∃s s.t. we can 
decompose G by removing εn 

edges into components 

1) of size ≤ s, or 

2) with Kt’-minor and no (1/ε)-
hidden cut of size < t - 1. 

≤ s 

≤ s 



Using Decomposition lemma 

Decompose G by removing ε’dn ≪ εdn edges into 

1) small components 

2) components with Kt’-minor and no hidden cut of 
size < t – 1. 

 

It suffices to test the resulting graph G’(after 
removing edges). 
• If G is Kt-sub.-free ⇒ G’ is Kt-sub.-free 

• If G is ε-far ⇒ G’ is (ε-ε’)-far 

 



Our algorithm, at a high level 

Suppose that we can access the decomposition! 

1) small components 

• easy to test (exactly same as the minor case) 

 

Need to look at the following case! 

2) large components with Kt’-minor and no l-
hidden cut of size < t – 1. 

• Estimate # of dangerous vertices w.r.t. small 
neighborhood and accept if it is < εn/4. 

• Can be done in constant time. 
 

 

 



Dangerous 

A vertex v is dangerous w.r.t. S ⊆ V  if v is not 
separated in S by a cut of size < t – 1. 

• We cannot exclude the possibility that v is a 
branch of Kt-subdivision.  

 

Ex.  
v 

S 

v is not dangerous w.r.t. K4  

because of the red cut. 



Correctness 
If G’ is ε-far:  

• Many (≥ εn/2) dangerous vertices as otherwise 
we can remove edges incident to them. 
 

If G’ is Kt-subdivision-free. 

• Want to show there are a few (≤ εn/1000) 

dangerous vertices. 

• How many dangerous vertices can a large 
component have? Use tools from Graph Minor! 
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Suppose that there is a set S of |V (H)| vertices  
that are very far (only depending on |V(H)|)  
from each other, and each having degree > |V(H)|.  
 Suppose there is a large clique minor. 

Graph Minor tells only  
Two possibilities:  
 

(1) There are many disjoint paths from S to the clique minor  
 
⇒ Using the clique minor as a crossbar, we can complete  
the paths into a H-subdivision   
  Winning! 
 

D Marx  () Finding topological subgraphs is FPT 

Tools from graph minors  
 



(2) There is a small separator between S and the clique minor  
 Remember! 

Big Piece: 1 . More than constant size. 
                2. No “hidden” cut. 
                3. contains a large clique minor.  
 
So (2) does not happen!  So small # of dangerous vertices! 
 

Suppose that there is a set S of |V (H)| vertices   
that are very far (only depending on |V(H)|)  
from each other, and each having degree > |V(H)|.  
 Suppose there is a large clique minor. 
 

Graph Minor tells only  
Two possibilities:  
 

Tools from graph minors  



Correctness 
If G’ is Kt-sub-free. 

• Each large component has c dangerous vertices. 

• There are at most n / s large components. 

• Thus, there are at most cn / s ≪ εn/1000 

dangerous vertices. 

• Remaining task:  

  How to access the decomposition?? 

 



Last step: How to access the decomposition? 
Constant-time tester 



Reminder: Partitioning oracle 

• Partitioning oracle provide query access 
to a decomposition, originally designed 
for H-minor-free grahps. [HKNO09] 

 
 
 

 

 

 

 

# of edges crossing  
             is ≤ εdn ≤ s 

H-minor-free:  



Reminder: Decomposition lemma for subdivision 

l-hidden cut C: every component in G – C 
has size at least l|C|. 
• Hard for local algorithms to detect 
 
 
 
 
 

∀t, t’ and ε, ∃s s.t. we can 
decompose G by removing εn 

edges into components 

1) of size ≤ s, or 

2) with Kt’-minor and no (1/ε)-
hidden cut of size < t - 1. 

≤ s 

≤ s 



Modified Partitioning oracle 
Modify [HKNO09] to give query access to G’ for 
Kt-sub.-free graph. (not hard) 

 

 

 

 

 

 

Though we have a little error, it does not affect 
the # of dangerous vertices too much. 

 

# of edges crossing  
             is ≤ εdn 

≤ s 

≤ s 

H-sib.-free 



Conclusions  
Main result:  
Kt-sub.-freeness is constant-time testable. 

 

Structure Graph Theory: Decomposition 

Property Testing: Accessing the decomposition 

 

Nice combination of Structural graph theory and 
Property testing! 

Previously, property testing is harder, but in our 
case, structural part is harder! 

 



Property Testing 

• Dense Graph Model:  

  Connected to Szemeredi’s Regularity Lemma 

(Due to Alon et al. ) 

 

• Bounded Degree Model:  

Connected to Structural Graph Theory and 
Graph Minor (from this work!) 



Future work 

Open problems: 

• Query complexity: 2^(d^poly(ε/2poly(t))). 
• Can we test H-(topological-)minor-

freeness in adjacency list model? 

• Some other classes? (Immersion is done 
by this work, but what else?) 

 

 



Thank you for your 
attention! Any Question? 

Many Thanks ! 



A sufficient condition to have Kt-tm 

Kt’-minor 

Kt-topological- 

minor 

∀t and l, ∃t’, c, and r such that 
• Kt’-minor  

• no l-hidden cut of size < t – 1. 
• ≥ c dangerous vertices w.r.t. radius-r balls 

⇒ Kt-topological-minor 



Main Tools 
Th.  P = “G is Kt-subdivision-free” 
P can be tested in time Oε(1) in bounded degree 

graphs by a 2-sided error algorithm. 
 
Main Tools 
1. Extension of partitioning oracle(correctness based 

on graph minor) 
2. Tools from graph minor! 
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