Property Testing for Sparse Graphs: Structural graph theory meets Property testing

Ken-ichi Kawarabayashi National Institute of Informatics(NII)& JST, ERATO, Kawarabayashi Large Graph Project

> Joint work with Yuichi Yoshida(NII). STOC'13

Purpose of this talk

How Structural graph theory helps property testing?

• Warning: I am NOT an expert on property testing..

Contents

- What is the property testing?
- Dense graphs model.
- Bounded degree graphs with separators.
- Bounded degree graphs with no separators our main contribution
- Tools from property testing and graph minors
- Summary

Property Testing

• Dense Graph Model:

Connected to Szemeredi's Regularity Lemma (Due to Alon et al.)

• Bounded Degree Model:

Connected to Structural Graph Theory and Graph Minor (from this work!)

Property Testing (Informal Definition)

For a fixed property P and any object O, determine whether O has property P, or whether O is far from having property P (i.e., far from any other object having P).

Task should be performed by querying the object (in as few places as possible. Sublinear or even constant time).

Examples

- The object can be a graph (represented by its adjacency matrix), and the property can be 3-colorability.
- The object can be a string and the property can be membership in a given regular language L.
- The object can be a function and the property can be linearity.

When can Property Testing be Useful?

- Object is to too large to even fully scan, so must make approximate decision.
- Object is not too large but

 (1) Exact decision is NP-hard (e.g. coloring)
 (2) Prefer sub-linear approximate algorithm
 to polynomial exact algorithm.

Actual Computation Results for the Shortest Paths Problem Using High-Performance Computer (HPC)(2011)

Based on Dijkstra's algorithm (Running time: O(n log n))

- Graph of the entire United States (n=24,000,000 points, 58,000,000 edges): 3 seconds
- Very large scale graph ($n=10^9$ points, 2×10^9 edges): 870s

Individual personal computers need >1000 times !

We cannot use Dijkstra's algorithm !

Graph Property Testing

Contents

- What is the property testing?
- Dense graphs model
- Bounded degree graphs with separators
- Bounded degree graphs with no separators our main contribution
- Tools from property testing and graph minors
- Summary

Property Testing in Dense Graphs

- Formally defined in GGR'98 (appeared implicitly in combinatorial papers in 70's, 80's)

Input graph description: <u>adjacency matrix</u> G=(V,E), V=[n]

$$A_{n \times n} \qquad a_{ij} = \begin{cases} 1, & (i, j) \in E(G) \\ 0, & otherwise \end{cases}$$

<u>Algorithm</u>: queries the adjacency matrix of G Want: Constant-time query!

<u>Distance</u>: G is is ε -far from P if $\ge \varepsilon n^2$ entries in A(G) need to be changed to get $G \in P$ (addition or deletion) <u>Property Testing in Dense Graphs - Brief</u> <u>Summary</u>

"... It's all about <u>REGULARITY</u>." (Alon, Fischer, Newman and Shapira'06)

Every ``heredity property(closed under deletion)" is constant-time testable if and only if there is a "Szemeredi partition".

 Very strong (and fruitful) connection between property testing in dense graphs and the Szemerédi Regularity Lemma and its versions **Dense Graph Model - limitations**

- Suitable/tailored for dense graphs only
- Degenerate for many graph properties
 <u>Ex.</u> : P = "G is connected"
 - Always answer "YES"
 (Imagine edge addition: dist(G,P)≤ n-1 << εn²)

Property Testing

• Dense Graph Model:

Connected to Szemeredi's Regularity Lemma (Due to Alon et al.)

• Bounded Degree Model:

Connected to Structural Graph Theory and Graph Minor (from this work!)

Contents

- What is the property testing?
- Dense graphs model
- Bounded degree graphs with separator
- Bounded degree graphs with no separators: our main contribution
- Tools from property testing and graph minors
- Summary

Property Testing in Bounded Degree Graphs

Introduced by Goldreich and Ron'97(GR97)

- <u>Assumption</u>: max degree of an input graph G ≤ d=constant, ε<< 1/d
- <u>Graph representation</u>: by incidence lists $L(v_i)=(v_{i,1},...,v_{i,d})$ - list of neighbors of v_i
- <u>Distance</u>: G is ε -far from P if need $\ge \varepsilon dn$ modifications in incidence lists to get $H \in P$ (addition or deletion)

Bounded Degree Graphs - an Example

<u>Th.</u> (GR'97): Connectivity in bounded degree model can be tested in $O(1/\epsilon^2)$ queries

Proof: Assume: G is *e*-far from being connected

G has $\geq \varepsilon n$ connected components

G has $\geq \epsilon n/2 \ con$. components of size $\leq 2/\epsilon$ (= small <u>components</u>)

 $\geq \epsilon/2$ percentage of all vertices in small components

Property Testing in Bounded Degree Graphs

<u>Algorithm</u>: Repeat $O(1/\varepsilon)$ times:

1. Sample a random vertex $v \in_{\mathcal{R}} V$

2. Explore the connected component C(v) of v till accumulate $2/\varepsilon$ vertices

3. If
$$|C(v)| \leq 2/\varepsilon - \frac{\text{reject}}{1}$$

(G is *ɛ*-far from being connected)

If never reject - <u>accept</u>

One-sided error algorithm with complexity $O(1/\varepsilon^2)$ More careful analysis $\tilde{O}(1/\varepsilon)$ queries

Three reasons of Constant-time testability in bounded-degree model

Properties	Why is it testable?
Δ -freeness, <i>H</i> -freeness [GR02]	Locally determined
<i>k</i> -edge-connectivity [GR02] <i>k</i> edge-disjoint spanning trees [ITY' 12]	Edge-augmentation / matroid theory.
Planarity, <i>H</i> -minor-freeness [BSS08, HKNO09]	Existence of separators

Is there any other kind of testable properties?

Graph Minors A graph G has a minor H if H can be formed by removing and contracting edges of G

H-minor-free in Constant-time testing(BSS08)

Can figure out

G has no *Edn* edges (or *En vertices) X such that G-X* has no H-minor (or is nonplanar).

in constant time!

Three reasons of testability in bounded-degree model

Properties	Why is it testable?
Δ –freeness, H –freeness [GR02]	Locally determined
<i>k</i> -edge-connectivity [GR02] <i>k</i> edge-disjoint spanning trees [ITY' 12]	Edge-augmentation / matroid theory.
Planarity, <i>H</i> -minor-freeness [BSS08, HKNO09]	Existence of separators

Is there any other kind of testable properties?

Given a graph G, if V(G) can be partitioned into three parts A,B,C such that
1. there is no edge between A and B, and
2. |G|/3 <= |A|,|B| < 2|G|/3,
Then C is called a separator.

We are interested in a separator of SMALL order, i.e, sublinear order. Separator Theorem: Every H-minor-free graph has a separator of order o(n). Using separators: Decomposition lemma Consider a H-minor-free graph G.

 $\forall |H|$ and ε , $\exists s$ s.t. we can decompose G by removing εn edges into component of size $\leq s$, *H*-minor-free:

of edges crossing —— is $\leq \varepsilon dn$ Sketch for H-minor-free Constant-time testing(BSS08)

• Structural graph theory approach

Using separators, decompose H-minor-free graphs into small graphs (easily follows from separators.)

• Partitioning oracle (Tools from Property testing)

Using Decomposition thm: Partitioning oracle

- It suffices if we can access the graph G' given by the decomposition lemma. How??
- Partitioning oracle provide query access to a decomposition, designed for *H*-minor-free graphs. [HKNO09]

H-minor-free:

of edges crossing —— is $\leq \varepsilon dn$

Keys for H-minor-free testing(BSS08)

Need to combine Structure graph theory and Property testing!

• Structural graph theory approach

Using separators, decompose H-minor-free graphs into small graphs.

- ⇒ Easy.
- Partitioning oracle (Tools from Property testing)
 - ⇒ Main Task

How about subdivision-free?

Subdivision of a graph: replacing each edge by a path of length 1 or more.

G contains a subdivision of H if G contains a subgraph H' that is a subdivision of H.

Branch Vertices: vertices of H that correspond to "vertices" (not in a path of length 1 or more)

Kuratowski's Theorem Ver 2

• A graph is planar (can be embedded in a plane without edge crossings) if and only if it contains neither K_5 nor $K_{3,3}$ as a

Main contribution

 K_t -subdivision-freeness is constant-time testable for any $t \ge 1$.

Can figure out G has no *ɛdn* edges (or *ɛn vertices)* X such that G-X has no K_t-subdivision.

in constant time!

Main contribution

 K_t -subdivision-freeness is constant-time testable for any $t \ge 1$.

- Not locally determined
- Nothing to do with edge-augmentation / matroids.
- May not have separators

 an expander graph with max degree t-2.
- First Property that can contain an expander!

- Intuitively: a graph for which any "small" subset of vertices has a relatively "large" neighborhood.
- \square Hence no separator of order o(n).
- Can be defined in Algebraic sense and in Probabilistic sense too!
- Property: It behaves like a (sparse) random graph!
- Used many areas in Math and CS!

Contents

- What is the property testing?
- Dense graphs model
- Bounded degree graphs with separators
- Bounded degree graphs with no separators our main contribution
- Tools from property testing and graph minors
- Summary

Proof Sketch

Reminder: Sketch for H-minor-free testing

Need to combine the two approaches

- Structural graph theory approach Using separators, decompose H-minor-free graphs into small graphs (easily follows from separators).
- Partitioning oracle (Tools from Property testing)
 Main Tools
 - ⇒ Main Task

Warning: No separator for the subdivision case. So decomposition thm for subdivision case

is not trivial. Need "deeper" structural graph approach! (then can combine with property testing)

- Testing K_t -subdivision-freeness: High level Basically following the minor case!
- Combinations of Structural graph and Property testing!
- **Decomposition thm**
- Decompose G into components by removing $\mathcal{E}'n$ edges
 - of constant size, or
 - with large clique minor and no small cut
- Design a tester that works locally given the decomposition.
- Constant-time tester for K_t -sub.-freeness
- Use and modify "partitioning oracle" to obtain query access to the decomposition ⇒ Not hard.

Decomposition lemma

l-hidden cut *C*: every component in G - C has size at least l|C|.

 No separator, but using graph minor(tangle), we have the following!

$$\forall t, t' \text{ and } \varepsilon, \exists s \text{ s.t. we can}$$

decompose *G* by removing εn
edges into components
1) of size $\leq s$ or

- 1) of size $\leq s$, or
- 2) with $K_{t'}$ -minor and no $(1/\varepsilon)$ hidden cut of size $\leq t - 1$.

Using Decomposition lemma

Decompose G by removing $\varepsilon' dn \ll \varepsilon dn$ edges into

- 1) small components
- 2) components with $K_{t'}$ -minor and no hidden cut of size < t 1.

It suffices to test the resulting graph G'(after removing edges).

- If G is K_t -sub.-free \Rightarrow G' is K_t -sub.-free
- If G is ε -far \Rightarrow G' is $(\varepsilon \varepsilon')$ -far

Our algorithm, at a high level

Suppose that we can access the decomposition! 1) small components

easy to test (exactly same as the minor case)

Need to look at the following case!

- 2) large components with $K_{t'}$ -minor and no l-hidden cut of size < t 1.
- Estimate # of dangerous vertices w.r.t. small neighborhood and accept if it is $< \epsilon n/4$.
- Can be done in constant time.

Dangerous

- A vertex v is dangerous w.r.t. $S \subseteq V$ if v is not separated in S by a cut of size < t 1.
- We cannot exclude the possibility that v is a branch of K_t -subdivision.

v is not dangerous w.r.t. K_4 because of the red cut.

Correctness

If G' is ε -far:

• Many ($\geq \epsilon n/2$) dangerous vertices as otherwise we can remove edges incident to them.

If G' is K_t -subdivision-free.

- Want to show there are a few ($\leq \epsilon n/1000$) dangerous vertices.
- How many dangerous vertices can a large component have? Use tools from Graph Minor!

Contents

- What is the property testing?
- Dense graphs model.
- Bounded degree graphs with separator
- Bounded degree graphs with no separators: our main contribution
- Tools from property testing and graph minors.
- Summary

Tools from graph minors

Suppose that there is a set S of |V(H)| vertices that are very far (only depending on |V(H)|) from each other, and each having degree > |V(H)|. Suppose there is a large clique minor.

Graph Minor tells only Two possibilities:

(1) There are many disjoint paths from S to the clique minor

⇒ Using the clique minor as a crossbar, we can complete the paths into a H-subdivision Winning!

Tools from graph minors

Suppose that there is a set S of |V(H)| vertices that are very far (only depending on |V(H)|) from each other, and each having degree > |V(H)|. Suppose there is a large clique minor.

Graph Minor tells only Two possibilities:

(2) There is a small separator between S and the clique minor

Remember! Big Piece: 1 . More than constant size. 2. No "hidden" cut. 3. contains a large clique minor.

So (2) does not happen! So small # of dangerous vertices!

Correctness

If G' is K_t -sub-free.

- Each large component has c dangerous vertices.
- There are at most n / s large components.
- Thus, there are at most $cn / s \ll \epsilon n/1000$ dangerous vertices.
- Remaining task:

How to access the decomposition??

Last step: How to access the decomposition? Constant-time tester

Reminder: Partitioning oracle

 Partitioning oracle provide query access to a decomposition, originally designed for *H*-minor-free grahps. [HKNO09]

Reminder: Decomposition lemma for subdivision

l-hidden cut *C*: every component in G - C has size at least l|C|.

• Hard for local algorithms to detect

 $\forall t, t' \text{ and } \varepsilon, \exists s \text{ s.t. we can}$ decompose G by removing εn edges into components 1) of size $\leq s$, or 2) with $K_{t'}$ -minor and no $(1/\varepsilon)$ -

hidden cut of size $\leq t - 1$.

Modified Partitioning oracle Modify [HKNO09] to give query access to G' for K_t -sub.-free graph. (not hard)

H-sib.-free

Though we have a little error, it does not affect the # of dangerous vertices too much.

Conclusions

Main result:

 K_t -sub.-freeness is constant-time testable.

- Structure Graph Theory: Decomposition Property Testing: Accessing the decomposition
- Nice combination of Structural graph theory and Property testing!
- Previously, property testing is harder, but in our case, structural part is harder!

Property Testing

• Dense Graph Model:

Connected to Szemeredi's Regularity Lemma (Due to Alon et al.)

Bounded Degree Model:

Connected to Structural Graph Theory and Graph Minor (from this work!)

Future work

Open problems:

- Query complexity: $2^{(d^{poly}(\epsilon/2^{poly}(t)))}$.
- Can we test *H*-(topological-)minorfreeness in adjacency list model?
- Some other classes? (Immersion is done by this work, but what else?)

Thank you for your attention!

Any Question?

Many Thanks !

A sufficient condition to have K_t -tm

 $\forall t \text{ and } l, \exists t', c, \text{ and } r \text{ such that}$

- $K_{t'}$ -minor
- no l-hidden cut of size < t 1.
- $\geq c$ dangerous vertices w.r.t. radius-r balls

 $\Rightarrow K_t$ -topological-minor

<u>Main Tools</u>

- <u>Th.</u> P = "G is K_t-subdivision-free"
- P can be tested in time $O_{\varepsilon}(1)$ in bounded degree graphs by a 2-sided error algorithm.
- Main Tools
- 1. Extension of partitioning oracle(correctness based on graph minor)
- 2. Tools from graph minor!