Property Testing for Sparse Graphs:
Structural graph theory meets
Property testing

Ken-ichi Kawarabayashi
National Institute of Informatics(NII)&
JST, ERATO, Kawarabayashi Large Graph Project

Joint work with Yuichi Yoshida(NII).
STOC’13

Purpose of this talk

 How Structural graph theory helps property
testing?

* Warning: | am NOT an expert on property testing..

Contents

What is the property testing?

Dense graphs model.

Bounded degree graphs with separators.
Bounded degree graphs with no separators
our main contribution

Tools from property testing and graph minors
Summary

Property Testing

 Dense Graph Model:
Connected to Szemeredi’s Regularity Lemma
(Due to Alon et al.)

* Bounded Degree Model:

Connected to Structural Graph Theory and
Graph Minor (from this work!)

Property Testing (Informal Definition)

For a fixed property P and any object O,
determine whether O has property P,

or whether O is far from having property P
(i.e., far from any other object having P).

Task should be performed by querying the object (in as
few places as possible. Sublinear or even constant time).

Examples

« The object can be a graph (represented
by Its adjacency matrix), and the
property can be 3-colorabilty.

 The object can be a string and the

property can be membership in a given
regular language L.

 The object can be a function and the
property can be linearity.

When can Property Testing be Useful?

 Object is to too large to even fully scan,
so must make approximate decision.

e Object is not too large but
(1) Exact decision is NP-hard (e.g. coloring)
(2) Prefer sub-linear approximate algorithm
to polynomial exact algorithm.

Actual Computation Results for the
Shortest Paths Problem Using High-
Performance Computer (HPC)(2011)

Based on Dijkstra's algorithm (Running time: O(n log n))

+ Graph of the entire United States (n=24,000,000 points, 58,000,000
edges): 3 seconds

+ Very large scale graph (n=10° points, 2 X 10° edges): 870s

Individual personal computers need >1000 times !

_ L\ — N

v

We cannot use Dijkstra’s algorithm !

Graph Property Testing

Very general setting:
P = graph property to test
(k-colorability, planarity, non-existence of a copy of H, etc.)

. Edge Addition or
Input: graph G on n vertices, n—>e° nge Deletion)

Promise: GeP (positive)
or: Gis e-far from P (negative)

(More than e-percentage af description of G should be
changed to get GeP)

Algorithm(typically randomized): Constant time(Sublinear)

GeP = Pr[Aaccepts G] 22/3 @o—sided erD
G is e-far from P = Pr[A rejects G] = 2/3

GeP, Pr[AacceptsG]=1 - one-sided error algorithm

Contents

What is the property testing?

Dense graphs model

Bounded degree graphs with separators
Bounded degree graphs with no separators
our main contribution

Tools from property testing and graph minors
Summary

Property Testing in Dense Graphs

- Formally defined in GGR’98
(appeared implicitly in combinatorial papers in 70’s, 80’s)

Input graph description: adjacency matrix G=(V,E), V=[n]
1, (1,])eE(G)
A]xn %j = i
0, otherwise

Algorithm: queries the adjacency matrix of G
Want: Constant-time query!

Distance: G is is e-far from P if >2en? entries in A(G)
need to be changed to get G P (addition or deletion)

Property Testing in Dense Graphs - Brief
Summary

".. It's all about REGULARITY." (Alon, Fischer, Newman
and Shapira'06)

Every " " heredity property(closed under deletion)” is
constant-time testable if and only if there is a
"Szemeredi partition”.

« Very strong (and fruitful) connection between
property testing in dense graphs and the Szemerédi
Regularity Lemma and its versions

Dense Graph Model - limitations
 Suitable/tailored for dense graphs only

« Degenerate for many graph properties
Ex. : P=" Gis connected”
- Always answer "YES"
(Imagine edge addition: dist(G,P) n-1 << enf)

13

Property Testing

 Dense Graph Model:
Connected to Szemeredi’s Regularity Lemma
(Due to Alon et al.)

* Bounded Degree Model:

Connected to Structural Graph Theory and
Graph Minor (from this work!)

Contents

What is the property testing?

Dense graphs model

Bounded degree graphs with separator
Bounded degree graphs with no separators:
our main contribution

Tools from property testing and graph minors
Summary

Property Testing in Bounded Degree Graphs
Introduced by Goldreich and Ron'97(GR97)

« Assumption: max degree of an input graph
G <d=constant, &< 1/d

* Graph representation: by incidence lists
L(v)=(v;;..,v;4) - list of neighbors of v,

 Distance: Gis e-far from Pif need > edn
modifications in incidence lists to get HeP

(addition or deletion)

Bounded Degree Graphs - an Example

Th. (6R'97): Connectivity in bounded degree model
can be tested in O(1/ &%) queries

: Assume: & is e-far from being connected

!

G has 2 en connected components

!

G has > en/2 con. components of size < 2/¢ (= small
components) 1

> ¢/2 percentage of all vertices in small components

Property Testing in Bounded Degree Graphs

: Repeat O(1/¢) times:
Sample a random vertex veylV/

Explore the connected component £(v)of v
till accumulate 2/¢ vertices

If /C(v)] < 2/~ reject
(G is e-far from being connected)
If never reject -

One-sided error algorithm with complexity
== O(1/¢2)

More careful analysis 0 (1/€) queries

Three reasons of Constant-time
testability in bounded-degree model

Properties Why is it testable?
A—freeness, H-freeness [GR02] Locally determined
k—edge—connectivity [GR02] Edge—augmentation / matroid theory.

k edge—disjoint spanning trees [ITY 12]

Planarity, H-minor—freeness [BSS08, Existence of separators
HKNOO09]

Is there any other kind of testable properties?

Graph Minors
= A graph G has a minor H if
H can be formed by removing and contracting
edges of G

-

Otherwise, G is H- minor- .
Minor- closed: Closed under minor operations.
For example, Planar graphs are minor-closed.
Kuratowski's theorem

M N N E

H-minor-free in
Constant-time testing(BSS08)

Can figure out

G has no edn edges (or en vertices) X such that
&-X has no H-minor (or is nonplanar).

in constant timel

Three reasons of testability in
bounded-degree model

Properties Why is it testable?
A—freeness, H-freeness [GR02] Locally determined
k—edge—connectivity [GR02] Edge—augmentation / matroid theory.

k edge—disjoint spanning trees [ITY 12]

Planarity, H-minor—freeness [BSS08, Existence of separators
HKNOO09]

Is there any other kind of testable properties?

Separator

g G, if V(G) can be partitioned into
ree parts A B,C such that

e is no edge between A and B, and
/3 <= |A[,IB] < 2]6]/3,

is called a separator .

We are interested in a separator of SMALL order,
I.e, sublinear order.

Separator Theorem: Every H-minor-free graph has
a separator of order o(n).

Using separators: Decomposition lemma
Consider a H-minor-free graph G.

H—minor—free:

/v\H| and &, IS st we)
can decompose G by
removing €N edges

Into component of

\Size < 5, / # of edges crossing
is < edn

Sketch for H-minor—free
Constant—time testing(BSS08)

e Structural graph theory approach

Using separators, decompose H—-minor—free graphs
into small graphs (easily follows from separators.)

e Partitioning oracle (Tools from Property testing)

Using Decomposition thm: Partitioning oracle

e It suffices if we can access the graph G’ given
by the decomposition lemma. How??

e Partitioning oracle provide query access to a
decomposition, desighed for H-minor—free

graphs. [HKNOOQ9]

H—minor—free:

of edges crossing
is < edn

Keys for H-minor—free testing(BSS08)

Need to combine Structure graph theory and
Property testing!

e Structural graph theory approach

Using separators, decompose H—minor—free graphs
into small graphs.

= Easy.
e Partitioning oracle (Tools from Property testing)
= Main Task

How about subdivision—free?

Subdivision of a %rafh: replacing each edge
by a path of length 1 or more.

G contains a subdivision of H if G contains a
subgraph H' that is a subdivision of H.

Branch Vertices: vertices of H that correspond to "vertices”
(not in a path of length 1 or more)

A graph is planar (can be embedded in a
plane without edge crossings) if and only
if it contains neither K5 nor K33 as a

Main contribution

LKt—subdivision—freeness Is constant—time testable for any ¢ > 1}

Can figure out
G has no edn edges (or en vertices) X such that
&-X has no K.—subdivision.

in constant timel!

Main contribution

[Kt—subdivision—freeness Is constant—time testable for any ¢ > 1}

 Not locally determined

 Nothing to do with edge-augmentation /
matroids.

 May not have separators
— an expander graph with max degree t-2.

 First Property that can contain an expander!

Expander Graph

Intuitively: a graph for which any “small” subset
of vertices has a relatively “large” neighborhood.

Hence no separator of order o(n).

Can be defined in Algebraic sense and in
Probabilistic sense too!

Prophcl—:rty: It behaves like a (sparse) random
graph!

Used many areas in Math and CS!

Contents

What is the property testing?

Dense graphs model

Bounded degree graphs with separators
Bounded degree graphs with no separators
our main contribution

Tools from property testing and graph minors
Summary

Proof Sketch

Reminder: Sketch for H-minor—free testing

Need to combine the two approaches
e Structural graph theory approach

Using separators, decompose H—minor—free graphs into
small graphs (easily follows from separators).

e Partitioning oracle (Tools from Property testing)
= Main Task
Warning: No separator for the subdivision case.
So decomposition thm for subdivision case
is not trivial. Need “deeper’ structural graph
approach! (then can combine with property
testing)

Testing K.—subdivision—freeness: High level
Basically following the minor case!

Combinations of Structural graph and Property testing!
Decomposition thm
e Decompose G into components by removing € ' n edges
e of constant size, or
e with large cligue minor and no small cut

e Design a tester that works locally given the
decomposition.

Constant—time tester for K,—sub.—freeness

e Use and modify “partitioning oracle” to obtain query
access to the decomposition = Not hard.

Decomposition lemma
|-hidden cut C: every component in G — C has
size at least ||C]|.

e No separator, but using graph minor(tangle),
we have the following!

Kv’t, t’ and g, 39S s.t. we can \

decompose G by removing gn
edges into components

1) of size <s, or
2) with Ki—minor and no (1/¢)-

\ hidden cut of size < t-1. /

Using Decomposition lemma
Decompose G by removing €’dn < edn edges into

1) small components

2) components with K.—minor and no hidden cut of
size <t-1.

It suffices to test the resulting graph G’(after
removing edges).

e If G is Ky sub free = G is K, sub.-free

o If Gis e—far = G’ is (e-g’)—far

Our algorithm, at a high level

Suppose that we can access the decomposition!
1) small components
e easy to test (exactly same as the minor case)

Need to look at the following case!

2) large components with K.—minor and no |-
hidden cut of size <t-1.

e Estimate # of dangerous vertices w.r.t. small
neighborhood and accept if it is < gn/4.

e Can be done in constant time.

Dangerous

A vertex V is dangerous w.rt. S € V if vis not
separated in S by a cut of size <t-1.

e We cannot exclude the possibility that v is a
branch of K—subdivision.

Ex. S

V is not dangerous w.rt. K,
because of the red cut.

Correctness
If G’ is g—far:
e Many (> en/2) dangerous vertices as otherwise
we can remove edges incident to them.

If G’ is KI—subdivision—free.
e Want to show there are a few (£ ¢n/1000)
dangerous vertices.

e How many dangerous vertices can a large
component have? Use tools from Graph Minor!

Contents

What is the property testing?

Dense graphs model.

Bounded degree graphs with separator
Bounded degree graphs with no separators:
our main contribution

Tools from property testing and graph minors.
Summary

Tools from graph minors
ﬁt\i(%pose that there is a set S of |V (H\)Jl—\l/)el

r
are very far (only depending on
from each ther, c(md)éack? having .deglree > ?V(H)I.

Suppose there is a large clique minor.

Graph Minor tells only
Two possibilities:

(1) There are many disjoint paths from S to the clique minor

-~ Using the clique minor as a crossbar, we can complete
the paths into a H-subdivision
Winning!

Tools from graph minors

Su 1Pose that Ther'e isaset S of |V (r"rlces
are ver far (only depending on |

r'om each other, and each having degr'ee V(H)I.
Suppose there is a large clique minor.

(2) There is a small separator between S and the clique minor

Remember/
Big Piece: 1. More than constant size.

2. No "hidden” cut.
3. contains a large cligue minor.

Graph Minor tells only
Two possibilities:

S0 (2) does not happen! So small # of dangerous vertices/!

Correctness
If G’ is Ki—sub—free.

e Each large component has C dangerous vertices.

* There are at most n/ S large components.

e Thus, there are at most cn/s < en/1000
dangerous vertices.

e Remaining task:

How to access the decomposition??

Last step: How to access the decomposition?
Constant—time tester

Reminder: Partitioning oracle

e Partitioning oracle provide query access

to a decomposition, originally designed
for H-minor—free grahps. [HKNOOQ9]

H—minor—free:

of edges crossing
is < edn

Reminder: Decomposition lemma for subdivision

|-hidden cut C: every component in G - C
has size at least ||C|.

e Hard for local algorithms to detect

Kv’t, t’ and g, IS s.t. we can \

decompose G by removing gn
edges into components

1) of size <s, or
2) with Ky —minor and no (1/¢)-

\ hidden cut of size < t- 1. /

Modified Partitioning oracle

Modify [HKNOOQ9] to give query access to G’ for
Ki—sub.—free graph. (not hard)

H-sib.—free

of edges crossing
is < edn

Though we have a little error, it does not affect
the # of dangerous vertices too much.

Conclusions
Main result:

Ki—sub.—freeness is constant—time testable.

Structure Graph Theory: Decomposition
Property Testing: Accessing the decomposition

Nice combination of Structural graph theory and
Property testing!

Previously, property testing is harder, but in our
case, structural part i1s harder!

Property Testing
e Dense Graph Model:

Connected to Szemeredi’ s Regularity Lemma
(Due to Alon et al.)

e Bounded Degree Model:

Connected to Structural Graph Theory and
Graph Minor (from this work!)

Future work
Open problems:
* Query complexity: 2°\(d”poly(e/2rov®)).
e Can we test H-(topological-)minor—
freeness in adjacency list model?

e Some other classes? (Immersion is done
by this work, but what else?)

A sufficient condition to have K—tm

KV”(and:=l- At € and I such that

e K.—minor

\=> K—topological-minor

e no |I-hidden cut of size <t - 1.

e > dangerous vertices w.r.t. radius—T balls

=

/

- T T ,’— |
' » !
——’ ’,
@ = -

- /
\\ ,
- -

o ~
, S
/ AN

\
/
&----" _‘

Ky—minor

» Ktopological-

minor

Main Tools

Th. P="Gis K,-subdivision-free”

P can be tested in time O_(1) in bounded degree
graphs by a 2-sided error algorithm.

Main Tools

1. Extension of partitioning oracle(correctness based
on graph minor)

2. Tools from graph minor!

	Property Testing for Sparse Graphs:�Structural graph theory meets �Property testing
	Purpose of this talk
	Contents
	Property Testing
	Property Testing (Informal Definition)
	 Examples
	When can Property Testing be Useful?
	Actual Computation Results for the Shortest Paths Problem Using High-Performance Computer (HPC)(2011)
	Graph Property Testing
	Contents
	Property Testing in Dense Graphs
	Property Testing in Dense Graphs – Brief Summary
	Dense Graph Model - limitations
	Property Testing
	Contents
	Property Testing in Bounded Degree Graphs
	Bounded Degree Graphs – an Example
	Property Testing in Bounded Degree Graphs
	Three reasons of Constant-time testability in bounded-degree model
	Graph Minors
	H-minor-free in�Constant-time testing(BSS08)
	Three reasons of testability in bounded-degree model
	Separator
	Using separators: Decomposition lemma
	Sketch for H-minor-free �Constant-time testing(BSS08)
	Using Decomposition thm: Partitioning oracle
	 Keys for H-minor-free testing(BSS08)
	スライド番号 28
	Kuratowski’s Theorem Ver 2
	Main contribution
	Main contribution
	Expander Graph
	Contents
	Proof Sketch
	 Reminder: Sketch for H-minor-free testing
	Testing Kt-subdivision-freeness: High level
	Decomposition lemma
	Using Decomposition lemma
	Our algorithm, at a high level
	Dangerous
	Correctness
	Contents
	スライド番号 43
	スライド番号 44
	Correctness
	Last step: How to access the decomposition?�Constant-time tester
	Reminder: Partitioning oracle
	Reminder: Decomposition lemma for subdivision
	Modified Partitioning oracle
	Conclusions
	Property Testing
	Future work
	スライド番号 53
	A sufficient condition to have Kt-tm
	Main Tools

