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Purpose of this talk

 How Structural graph theory helps property
testing?

* Warning: | am NOT an expert on property testing..
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Property Testing

 Dense Graph Model:
Connected to Szemeredi’s Regularity Lemma
(Due to Alon et al. )

* Bounded Degree Model:

Connected to Structural Graph Theory and
Graph Minor (from this work!)



Property Testing (Informal Definition)

For a fixed property P and any object O,
determine whether O has property P,

or whether O is far from having property P
(i.e., far from any other object having P ).

Task should be performed by querying the object (in as
few places as possible. Sublinear or even constant time).



Examples

« The object can be a graph (represented
by Its adjacency matrix), and the
property can be 3-colorabilty.

 The object can be a string and the

property can be membership in a given
regular language L.

 The object can be a function and the
property can be linearity.



When can Property Testing be Useful?

 Object is to too large to even fully scan,
so must make approximate decision.

e Object is not too large but
(1) Exact decision is NP-hard (e.g. coloring)
(2) Prefer sub-linear approximate algorithm
to polynomial exact algorithm.



Actual Computation Results for the
Shortest Paths Problem Using High-
Performance Computer (HPC)(2011)

Based on Dijkstra's algorithm (Running time: O(n log n))

+ Graph of the entire United States (n=24,000,000 points, 58,000,000
edges): 3 seconds

+ Very large scale graph (n=10° points, 2 X 10° edges): 870s

Individual personal computers need >1000 times !
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We cannot use Dijkstra’s algorithm !



Graph Property Testing

Very general setting:
P = graph property to test
(k-colorability, planarity, non-existence of a copy of H, etc.)

. Edge Addition or
Input: graph G on n vertices, n—>e° nge Deletion)

Promise: GeP (positive)
or: Gis e-far from P (negative)

(More than e-percentage af description of G should be
changed to get GeP)

Algorithm(typically randomized): Constant time(Sublinear)

GeP = Pr[Aaccepts G] 22/3 @o—sided erD
G is e-far from P = Pr[ A rejects G] = 2/3

GeP, Pr[AacceptsG]=1 - one-sided error algorithm
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Property Testing in Dense Graphs

- Formally defined in GGR’98
(appeared implicitly in combinatorial papers in 70’s, 80’s)

Input graph description: adjacency matrix G=(V,E), V=[n]
1, (1,])eE(G)
A]xn %j = i
0, otherwise

Algorithm: queries the adjacency matrix of G
Want: Constant-time query!

Distance: G is is e-far from P if >2en? entries in A(G)
need to be changed to get G P (addition or deletion)




Property Testing in Dense Graphs - Brief
Summary

".. It's all about REGULARITY." (Alon, Fischer, Newman
and Shapira'06)

Every " " heredity property(closed under deletion)” is
constant-time testable if and only if there is a
"Szemeredi partition”.

« Very strong (and fruitful) connection between
property testing in dense graphs and the Szemerédi
Regularity Lemma and its versions



Dense Graph Model - limitations
 Suitable/tailored for dense graphs only

« Degenerate for many graph properties
Ex. : P=" Gis connected”
- Always answer "YES"
(Imagine edge addition: dist(G,P) n-1 << enf)
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Property Testing

 Dense Graph Model:
Connected to Szemeredi’s Regularity Lemma
(Due to Alon et al. )

* Bounded Degree Model:

Connected to Structural Graph Theory and
Graph Minor (from this work!)
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Property Testing in Bounded Degree Graphs
Introduced by Goldreich and Ron'97(GR97)

« Assumption: max degree of an input graph
G <d=constant, &< 1/d

* Graph representation: by incidence lists
L(v)=(v;;..,v;4) - list of neighbors of v,

 Distance: Gis e-far from Pif need > edn
modifications in incidence lists to get HeP

(addition or deletion)




Bounded Degree Graphs - an Example

Th. (6R'97): Connectivity in bounded degree model
can be tested in O(1/ &%) queries

: Assume: & is e-far from being connected

!

G has 2 en connected components

!

G has > en/2 con. components of size < 2/¢ (= small
components) 1

> ¢/2 percentage of all vertices in small components




Property Testing in Bounded Degree Graphs

: Repeat O(1/¢) times:
Sample a random vertex veylV/

Explore the connected component £(v)of v
till accumulate 2/¢ vertices

If /C(v)] < 2/~ reject
(G is e-far from being connected)
If never reject -

One-sided error algorithm with complexity
== O(1/¢2)

More careful analysis 0 (1/€) queries



Three reasons of Constant-time
testability in bounded-degree model

Properties Why is it testable?
A—freeness, H-freeness [GR02] Locally determined
k—edge—connectivity [GR02] Edge—augmentation / matroid theory.

k edge—disjoint spanning trees [ITY 12]

Planarity, H-minor—freeness [BSS08, Existence of separators
HKNOO09]

Is there any other kind of testable properties?



Graph Minors
= A graph G has a minor H if
H can be formed by removing and contracting
edges of G

-

Otherwise, G is H- minor- .
Minor- closed: Closed under minor operations.
For example, Planar graphs are minor-closed.
Kuratowski's theorem

M N N E



H-minor-free in
Constant-time testing(BSS08)

Can figure out

G has no edn edges (or en vertices) X such that
&-X has no H-minor (or is nonplanar).

in constant timel



Three reasons of testability in
bounded-degree model

Properties Why is it testable?
A—freeness, H-freeness [GR02] Locally determined
k—edge—connectivity [GR02] Edge—augmentation / matroid theory.

k edge—disjoint spanning trees [ITY 12]

Planarity, H-minor—freeness [BSS08, Existence of separators
HKNOO09]

Is there any other kind of testable properties?



Separator

g G, if V(G) can be partitioned into
ree parts A B,C such that

e is no edge between A and B, and
/3 <= |A[,IB] < 2]6]/3,

is called a separator .

We are interested in a separator of SMALL order,
I.e, sublinear order.

Separator Theorem: Every H-minor-free graph has
a separator of order o(n).




Using separators: Decomposition lemma
Consider a H-minor-free graph G.

H—minor—free:

/v\H| and &, IS st we )
can decompose G by
removing €N edges

Into component of

\Size < 5, / # of edges crossing
is < edn




Sketch for H-minor—free
Constant—time testing(BSS08)

e Structural graph theory approach

Using separators, decompose H—-minor—free graphs
into small graphs (easily follows from separators. )

e Partitioning oracle (Tools from Property testing)




Using Decomposition thm: Partitioning oracle

e It suffices if we can access the graph G’ given
by the decomposition lemma. How??

e Partitioning oracle provide query access to a
decomposition, desighed for H-minor—free

graphs. [HKNOOQ9]

H—minor—free:

# of edges crossing
is < edn




Keys for H-minor—free testing(BSS08)

Need to combine Structure graph theory and
Property testing!

e Structural graph theory approach

Using separators, decompose H—minor—free graphs
into small graphs.

= Easy.
e Partitioning oracle (Tools from Property testing)
= Main Task

How about subdivision—free?




Subdivision of a %rafh: replacing each edge
by a path of length 1 or more.

G contains a subdivision of H if G contains a
subgraph H' that is a subdivision of H.

Branch Vertices: vertices of H that correspond to "vertices”
(not in a path of length 1 or more)



A graph is planar (can be embedded in a
plane without edge crossings) if and only
if it contains neither K5 nor K33 as a




Main contribution

LKt—subdivision—freeness Is constant—time testable for any ¢ > 1}

Can figure out
G has no edn edges (or en vertices) X such that
&-X has no K.—subdivision.

in constant timel!



Main contribution

[Kt—subdivision—freeness Is constant—time testable for any ¢ > 1}

 Not locally determined

 Nothing to do with edge-augmentation /
matroids.

 May not have separators
— an expander graph with max degree t-2.

 First Property that can contain an expander!



Expander Graph

Intuitively: a graph for which any “small” subset
of vertices has a relatively “large” neighborhood.

Hence no separator of order o(n).

Can be defined in Algebraic sense and in
Probabilistic sense too!

Prophcl—:rty: It behaves like a (sparse) random
graph!

Used many areas in Math and CS!
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Proof Sketch




Reminder: Sketch for H-minor—free testing

Need to combine the two approaches
e Structural graph theory approach

Using separators, decompose H—minor—free graphs into
small graphs (easily follows from separators).

e Partitioning oracle (Tools from Property testing)
= Main Task
Warning: No separator for the subdivision case.
So decomposition thm for subdivision case
is not trivial. Need “deeper’ structural graph
approach! (then can combine with property
testing)




Testing K.—subdivision—freeness: High level
Basically following the minor case!

Combinations of Structural graph and Property testing!
Decomposition thm
e Decompose G into components by removing € ' n edges
e of constant size, or
e with large cligue minor and no small cut

e Design a tester that works locally given the
decomposition.

Constant—time tester for K,—sub.—freeness

e Use and modify “partitioning oracle” to obtain query
access to the decomposition = Not hard.




Decomposition lemma
|-hidden cut C: every component in G — C has
size at least ||C]|.

e No separator, but using graph minor(tangle),
we have the following!

Kv’t, t’ and g, 39S s.t. we can \

decompose G by removing gn
edges into components

1) of size <s, or
2) with Ki—minor and no (1/¢)-

\ hidden cut of size < t-1. /




Using Decomposition lemma
Decompose G by removing €’dn < edn edges into

1) small components

2) components with K.—minor and no hidden cut of
size <t-1.

It suffices to test the resulting graph G’(after
removing edges).

e If G is Ky sub free = G is K, sub.-free

o If Gis e—far = G’ is (e-g’)—far




Our algorithm, at a high level

Suppose that we can access the decomposition!
1) small components
e easy to test (exactly same as the minor case)

Need to look at the following case!

2) large components with K.—minor and no |-
hidden cut of size <t-1.

e Estimate # of dangerous vertices w.r.t. small
neighborhood and accept if it is < gn/4.

e Can be done in constant time.




Dangerous

A vertex V is dangerous w.rt. S € V if vis not
separated in S by a cut of size <t-1.

e We cannot exclude the possibility that v is a
branch of K—subdivision.

Ex. S

V is not dangerous w.rt. K,
because of the red cut.




Correctness
If G’ is g—far:
e Many (> en/2) dangerous vertices as otherwise
we can remove edges incident to them.

If G’ is KI—subdivision—free.
e Want to show there are a few (£ ¢n/1000)
dangerous vertices.

e How many dangerous vertices can a large
component have? Use tools from Graph Minor!
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Tools from graph minors
ﬁt\i(%pose that there is a set S of |V (H\)Jl—\l/)el

r
are very far (only depending on
from each ther, c(md )éack? having .deglree > ?V(H)I.

Suppose there is a large clique minor.

Graph Minor tells only
Two possibilities:

(1) There are many disjoint paths from S to the clique minor

-~ Using the clique minor as a crossbar, we can complete
the paths into a H-subdivision
Winning!



Tools from graph minors

Su 1Pose that Ther'e isaset S of |V ( r"rlces
are ver far (only depending on |

r'om each other, and each having degr'ee V(H)I.
Suppose there is a large clique minor.

(2) There is a small separator between S and the clique minor

Remember/
Big Piece: 1. More than constant size.

2. No "hidden” cut.
3. contains a large cligue minor.

Graph Minor tells only
Two possibilities:

S0 (2) does not happen! So small # of dangerous vertices/!



Correctness
If G’ is Ki—sub—free.

e Each large component has C dangerous vertices.

* There are at most n/ S large components.

e Thus, there are at most cn/s < en/1000
dangerous vertices.

e Remaining task:

How to access the decomposition??




Last step: How to access the decomposition?
Constant—time tester




Reminder: Partitioning oracle

e Partitioning oracle provide query access

to a decomposition, originally designed
for H-minor—free grahps. [HKNOOQ9]

H—minor—free:

# of edges crossing
is < edn




Reminder: Decomposition lemma for subdivision

|-hidden cut C: every component in G - C
has size at least ||C|.

e Hard for local algorithms to detect

Kv’t, t’ and g, IS s.t. we can \

decompose G by removing gn
edges into components

1) of size <s, or
2) with Ky —minor and no (1/¢)-

\ hidden cut of size < t- 1. /




Modified Partitioning oracle

Modify [HKNOOQ9] to give query access to G’ for
Ki—sub.—free graph. (not hard)

H-sib.—free

# of edges crossing
is < edn

Though we have a little error, it does not affect
the # of dangerous vertices too much.




Conclusions
Main result:

Ki—sub.—freeness is constant—time testable.

Structure Graph Theory: Decomposition
Property Testing: Accessing the decomposition

Nice combination of Structural graph theory and
Property testing!

Previously, property testing is harder, but in our
case, structural part i1s harder!




Property Testing
e Dense Graph Model:

Connected to Szemeredi’ s Regularity Lemma
(Due to Alon et al. )

e Bounded Degree Model:

Connected to Structural Graph Theory and
Graph Minor (from this work!)




Future work
Open problems:
* Query complexity: 2°\(d”poly(e/2rov®)).
e Can we test H-(topological-)minor—
freeness in adjacency list model?

e Some other classes? (Immersion is done
by this work, but what else?)







A sufficient condition to have K—tm

KV”( and:=l- At € and I such that

e K.—minor

\=> K—topological-minor

e no |I-hidden cut of size <t - 1.

e > dangerous vertices w.r.t. radius—T balls
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Main Tools

Th. P="Gis K,-subdivision-free”

P can be tested in time O_(1) in bounded degree
graphs by a 2-sided error algorithm.

Main Tools

1. Extension of partitioning oracle(correctness based
on graph minor)

2. Tools from graph minor!
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