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Electrical impedance tomography (EIT)

Problem: EIT is high contrast, but low resolution:

Figure 1: EIT tank and measurements. Source: Kaipio lab, Univ. of Kuopio, Finland
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Hybrid imaging

“Multi-wave” methods often combine
illumination and measurement modalities,
one having

• high contrast sensitivity/low resolution (EIT,.)

and the other exhibiting

• low contrast/high resolution (ultrasound. . . )

Use two different types of waves, linked by
a physical coupling.

Mathematically: couple an elliptic PDE with
a hyperbolic / real principal type PDE
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Current work: virtual ‘hybrid’ imaging

Use only one kind of wave: electrostatic.

Good propagation of singularities is obtained
not via coupling with another physics, but by
mathematical analysis.

Exploit complex principal type operator
geometry underlying CGO solutions =⇒
Singularities propagate efficiently
along 2D characteristics to all of ∂Ω (in R2).

Formally: if σ is pws with jumps (edges), can
stably reconstruct leading singularities.
Can image inclusions within inclusions.



Astala-Päivärinta CGO solutions in 2D

Ω ⊂ R2 = C, (x, y) = x+ iy = z, (ξ, η) = ξ + iη = ζ
σ ∈ L∞(Ω), 0 < c1 ≤ σ(z) ≤ c2 <∞,
σ ≡ 1 near ∂Ω, extended to R2.

=⇒ conductivity σ−1 is similar
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Ω ⊂ R2 = C, (x, y) = x+ iy = z, (ξ, η) = ξ + iη = ζ
σ ∈ L∞(Ω), 0 < c1 ≤ σ(z) ≤ c2 <∞,
σ ≡ 1 near ∂Ω, extended to R2.

=⇒ conductivity σ−1 is similar

Exponentially growing/decaying solutions:

For k ∈ C a complex frequency, ∃ u1, u2 s.t.

∇ · σ∇u1 = 0, ∇ · σ−1∇u2 = 0, on R2,

u1, u2 ∼ eikz
(

1 + O
(
1/|z|

))
, |z| → ∞.



Beltrami equations

Let µ = µσ = 1−σ
1+σ , so |µ| ≤ 1− ε, µσ−1 = −µσ.

Look for CGO solns fµ(z) of ∂zfµ = µ∂zfµ,
similarly f−µ for −µ :

f±µ(z, k) = eikz
(
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Beltrami equations

Let µ = µσ = 1−σ
1+σ , so |µ| ≤ 1− ε, µσ−1 = −µσ.

Look for CGO solns fµ(z) of ∂zfµ = µ∂zfµ,
similarly f−µ for −µ :

f±µ(z, k) = eikz
(
1 + ω±(z, k)

)
, ω± = O

(
1/|z|

)
.

(u1, u2)↔ (fµ, f−µ)

ω± can be computed from D2N data for σ.

Focus on ω+ =: ω.



Huhtanen and Perämäki solutions (2012)

Let
ek(z) = ei(kz+kz) = ei 2Re (kz),

so that |ek(z)| = 1, ek = e−k.

Define

α(z, k) = −ike−k(z)µ(z), β(z, k) = e−k(z)µ(z)



Huhtanen and Perämäki solutions (2012)

Let
ek(z) = ei(kz+kz) = ei 2Re (kz),

so that |ek(z)| = 1, ek = e−k.

Define

α(z, k) = −ike−k(z)µ(z), β(z, k) = e−k(z)µ(z)

Then ω(z, k) satisfies a R-Beltrami equation:

(1) ∂ω − β∂ω − αω = α.

H.-P. show that ∃! ω ∈ W 1,p(C), 2 < p < pε.
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f (z′)
z − z′

d2z′, Sf (z) = −1

π

∫
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f (z′)
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so that ∂P = I, S = ∂P and S∂ = ∂ on C∞0 (C).

Define u = −∂ω = −(∂ω) ∈ Lp. Then

ω = −Pu and ∂ω = −Su and (1) becomes

(1′)
(
I + Aρ

)
u = −α,

where ρ = complex conjugation and

A = −(αP + βS)
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Neumann series

Expand u ∼
∑∞
n=0 un, u0 = −α, un+1 = −Aun

=⇒ ω = −Pu ∼
∑∞
n=0 ωn, ωn = −Pun .

Focus on

u0 = −α, ω0 = Pα,

u1 = Aα = −(αP + βS)(α), ω1 = P (αPα + βSα).

ω0|z∈∂Ω: Stably determines singularities of µ.

ωn|z∈∂Ω, n ≥ 1: Contribute scattering, which
explains artifacts in numerics.

Note: ωn is an (n + 1)-linear operator of µ.



We can currently carry this out on level of

• WF set analysis: all ω̃n for general σ ∈ L∞.



We can currently carry this out on level of

• WF set analysis: all ω̃n for general σ ∈ L∞.

• Operator theory: σ pws with jumps across
curved interfaces =⇒ ω̃1, ω̃2 are in Ip,l spaces.



We can currently carry this out on level of

• WF set analysis: all ω̃n for general σ ∈ L∞.

• Operator theory: σ pws with jumps across
curved interfaces =⇒ ω̃1, ω̃2 are in Ip,l spaces.

• Higher order terms in Neumann series
create a strong artifact at t = 0 and weaker
ones via multiple scattering of points in WF (µ).
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ik

π

∫
C

ei 2Re(kz′)µ(z′)
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d2z′

1. Polar coordinates in k: write k = τeiϕ

2. Partial Fourier transform τ → t:

ω̃0(z, t, eiϕ) :=

∫
R
e−itτω0(z, τeiϕ) dτ

=
eiϕ

π

∫
R

∫
C

(iτ )
e−iτ (t−2Re(eiϕz′))

z − z′
µ(z′) d2z′ dτ

= −2eiϕ
∫
C

δ′(t− 2Re(eiϕz′))
z − z′

µ(z′) d2z′



Recall: σ ∈ L∞, σ ≡ 1 near ∂Ω, µ ≡ 0 near ∂Ω.
Assume supp(µ) ⊂ Ω0 ⊂⊂ Ω.

Define T0 : E ′(Ω0)→ D′(C× R× S1),

µ(z′) −→ (T0µ)(z, t, eiϕ) := ω̃0(z, t, eiϕ).



Recall: σ ∈ L∞, σ ≡ 1 near ∂Ω, µ ≡ 0 near ∂Ω.
Assume supp(µ) ⊂ Ω0 ⊂⊂ Ω.

Define T0 : E ′(Ω0)→ D′(C× R× S1),

µ(z′) −→ (T0µ)(z, t, eiϕ) := ω̃0(z, t, eiϕ).

Schwartz kernel of T0:

K0(z, t, eiϕ, z′) =
(−2eiϕ

z − z′
)
δ′(t− 2Re(eiϕz′)).

First factor is smooth for z /∈ Ω0, z
′ ∈ Ω0 =⇒

T0 is a generalized Radon transform and thus
a Fourier integral operator (FIO).



Define T
z0
0 : E ′(Ω0)→ D′(R× S1) by

µ(z′) −→ (T
z0
0 µ)(t, eiϕ) := ω̃0(z0, t, e

iϕ).



Define T
z0
0 : E ′(Ω0)→ D′(R× S1) by

µ(z′) −→ (T
z0
0 µ)(t, eiϕ) := ω̃0(z0, t, e

iϕ),

• T z0
0 is a weighted and differentiated version

of the Radon transform on C ' R2.

• T z0
0 is an FIO of order 1

2, T
z0
0 ∈ I

1
2(C), with

same canonical relation as std. Radon transf.

C = N∗
{
t = 2Re(eiϕz′)

}′ ⊂ T ∗(R× S1)× T ∗Ω0.

•C is a canonical graph.



•C is independent of z0, but symbol

σprin(T
z0
0 ) =

(−ieiϕ) sgn(τ )|τ |
1
2

z0 − z′
,

is not.

•The factor (z0−z′)−1 is smooth and 6= 0, but
causes

(i) A fall-off in detectability of jumps,
at rate ∼ d(z′, z0)−1.

(ii) Artifacts, esp. when µ has singularities
at z′ close to z0, due to the large magnitude
and phase gradient of (z0 − z′)−1.
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Figure 2: Conductivity phantom: a small circular inclusion.
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Figure 3: Re ω̃(z0, t, e
iϕ) (axes: ϕ= horiz., t= vert.)
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Figure 4: Backprojected reconstruction from ω(z0, ·, ·).



Weighted ‘averages’ in z0

Let a(z0) be a C-valued weight on ∂Ω. Form

(3) ω̃a0(t, ϕ) :=
1

2πi

∫
∂Ω
ω̃0(z0, t, ϕ) a(z0) dz0,

Let T a0 be the operator µ→ ω̃a0 .



Weighted ‘averages’ in z0

Let a(z0) be a C-valued weight on ∂Ω. Form

(2) ω̃a0(t, ϕ) :=
1

2πi

∫
∂Ω
ω̃0(z0, t, ϕ) a(z0) dz0,

Let T a0 be the operator µ→ ω̃a0 .

Then T a0 ∈ I
1
2(C) and (T a0 )∗T a0 ∈ Ψ1(Ω0), with

σprin
(
(T a0 )∗ T a0

)
(z′, ζ ′) = 2π2|α(z′)|2|ζ ′|, z′ ∈ Ω0,

where

α(z′) =
1

2πi

∫
∂Ω

a(z0) dz0

z0 − z′
, z′ ∈ Ω

is the Cauchy (line) integral of a(·)



Pick a ≡ 1/
√

2 on ∂Ω in (2). (
∫
∂Ω a dz0 = 0 !)

Then α(z′) ≡ 1/
√

2 on Ω0 and

(T a0 )∗T a0 = (−∆)
1
2 mod Ψ0(Ω0),



Pick a ≡ 1/
√

2 on ∂Ω in (3). (
∫
∂Ω a dz0 = 0 !)

Then α(z′) ≡ 1/
√

2 on Ω0 and

(T a0 )∗T a0 = (−∆)
1
2 mod Ψ0(Ω0),

Gives local-tomography type imaging of µ,
good for detection of singularities of σ from
the singularities of ω̃ (which correspond to
high frequency behavior of ω).
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Figure 5: Re ω̃a(z0, t, e
iϕ) for a ≡ 1/(2

√
2)
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Figure 6: Reconstruction from ω̃a(·, ·) for a ≡ 1/
√

2.



So far, microlocal analysis does not seem to
be needed: can express ωa0 in terms of the
Radon transform.

However: the figures above were created
after filtering out certain artifacts.



So far, microlocal analysis does not seem to
be needed: can express ωa0 in terms of the
Radon transform.

However: the figures above were created
after filtering out certain artifacts.

Singularities of ω̃z0, ω̃a occur at

(i) t = 0 for any µ with singularities, and

(ii) at other values of t, ϕ, depending on µ.

Explained by wave-front set analysis of the
higher order terms in the Neumann series,
which are multilinear FIOs.



ω̃
z0
1 (t, ϕ) =

∫
e−itτω1(z0, τe

iϕ) dτ

=

∫
Ω

∫
Ω
K
z0
1 (t, eiϕ; z′, z′′) · µ(z′) · µ(z′′) d2z′d2z′′

Bilinear operator acting on µ⊗ µ, w/ kernel

K
z0
1 (t, eiϕ; z′, z′′) =

1

π2

(e2iϕδ′′(t + 2Re(eiϕ(z′ − z′′)))
(z′ − z0)(z′′ − z′)

+
eiϕδ′(t + 2Re(eiϕ(z′ − z′′)))

(z′ − z0)(z′′ − z′)2

)



•WF (ω̃n) can be described in terms of
(n + 1)-fold scatterings of WF (µ).

• Still to do: estimates to control smoothness
of ω̃n for n ≥ 3.



•WF (ω̃n) can be described in terms of
(n + 1)-fold scatterings of WF (µ).

• Still to do: estimates to control smoothness
of ω̃n for n ≥ 3.

•Can currently do this for n = 1, 2 under
prior on σ which includes pws with jumps
across curved interfaces.

•Rigorous justification of the Neumann se-
ries will require a mixture of multilinear
microlocal and harmonic analysis.



Figure 7: Stroke phantoms within low conductivity skull:
Clot (left), haemorrhage (right).



Figure 8: Stroke phantoms reconstructions: Clot (left),
haemorrhage (right).


