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Electrical impedance tomography (EIT)

Problem: EIT is high contrast, but low resolution:

Figure 1: EIT tank and measurements. Source: Kaipio lab, Univ. of Kuopio, Finland
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Hybrid imaging

“Multi-wave” methods often combine
illumination and measurement modalities,
one having

e high contrast sensitivity /low resolution (EIT,.)

and the other exhibiting

e low contrast/high resolution (ultrasound...)

Use two different types of waves, linked by
a physical coupling.

Mathematically: couple an elliptic PDE with
a hyperbolic / real principal type PDE
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Current work: virtual ‘hybrid’ imaging

Use only one kind of wave: electrostatic.

Good propagation of singularities is obtained
not via coupling with another physics, but by
mathematical analysis.

Exploit complex principal type operator
geometry underlying CGO solutions —
Singularities propagate efficiently

along 2D characteristics to all of 9Q (in R?).

Formally: if ¢ is pws with jumps (edges), can
stably reconstruct leading singularities.
Can image inclusions within inclusions.



Astala-Paivarinta CGO solutions in 2D

QOCR =C, (v,y) =x+iy =2z (£n) = E+in =
g€ L), 0<c; <o(z) < ey < oo,
o = 1 near 05, extended to RZ.

— conductivity ¢! is similar



Astala-Paivarinta CGO solutions in 2D

QOCR =C, (x,y) =x+iy =z (§,n) =E+in =
o€ L>®Q),0<c; <o(z) < < o0,

o = 1 near 05, extended to R-.

1

—> conductivity ¢~ is similar

Exponentially growing/decaying solutions:

For £ € C a complex frequency, d uy, us s.t.
V-oVu; =0, V- (7_1Vu2 =0, on RQ,

UL, U ~ eikz(l +- O(l/\z])), 2| — 0.
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l—0o

Let u = pio = 175, 80 || <1 —€, py—1 = —fio-

Look for CGO solns f,(z) of ngu = p: fu,
similarly f_, for —pu :

fau(z, k) =™ (1 +wE(2, k), wF=0(1/7]).



Beltrami equations

l—0o

Let u = pio = 175, 80 || <1 —€, py—1 = —fio-

Look for CGO solns f,(z) of ngu = p: fu,
similarly f_, for —pu :

fru(z, k) = e® (14 wS(2, k), T =0(1/]2]).

(u1, u2) <> (fu, f—p)

w* can be computed from D2N data for o.

Focus on w' =: w.



Huhtanen and Peramaki solutions (2012)
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k( ) ol i(kz+kz) _ ol 2 Re (kz)
so that |e.(2)| =1, er=e_;.
Define

oz, k) = —ike_(2)u(z), B(z,k) = e_p(2)u(z)



Huhtanen and Peramaki solutions (2012)

Let

k( ) ol i(kz+kz) _ ol 2 Re (kz)
so that |e.(2)| =1, er=e_;.
Define

a(z, k) = —ike_y(2)u(z), Bz, k) = e_p(2)u(z)
Then w(z, k) satisfies a R-Beltrami equation:
(1) Ow — BOw — aw = .

H.-P. show that 3! w € WIP(C), 2 < p < p..



Solid Cauchy and Beurling transforms

Pic) =+ [ s sy - — [ 5

T Joz— 2 T

so that 9P = I, S = 0P and S0 =9 on C§°(C).



Solid Cauchy and Beurling transforms

Prc) = = [ L5 syt = — [ 5

T Joz— 2 T

so that 9P = I, S = 9P and S0 =9 on C§°(C).

Define u = —0w = —(0w) € LP. Then

w = —Pu and 0w = —Su and (1) becomes
(1) (I + Ap)u = —a,

where p = complex conjugation and

A= —(@P +jS)



Neumann series

Expand u ~ Y > gup, ug = —a, upt1 = —Aty



Neumann series

Expand u ~ Y > gup, ug = —a, upt1 = —Aty

Focus on

uO — —Q, CUO — PCV,
up = Aa = —(aP + 3S)(a), wj = PlaPa+ 3Sa).



Neumann series

Expand u ~ Y >° jup, ug = —a, up+] = —Auy,

— w=—-Pu~)> " wn, wp=—Puy, .

Focus on

uy = —a, wy = Pa,
u = Aa = —(aP + 3S)(a), wj = PlaPa+ 3Sa).

wol-ep0: Stably determines singularities of .

wn|,epn,n > 1: Contribute scattering, which
explains artifacts in numerics.

Note: wy, is an (n + 1)-linear operator of L.
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We can currently carry this out on level of

e WF set analysis: all w,, for general o € L°.

e Operator theory: ¢ pws with jumps across
curved interfaces =—> @y, O» are in P! spaces.

e¢ Higher order terms in Neumann series
create a strong artifact at ¢t = 0 and weaker
ones via multiple scattering of points in W F'(u).
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1. Polar coordinates in k: write k = 1'%
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1. Polar coordinates in k: write k = 1'%

2. Partial Fourier transform = — ¢:

Doz, t, e'P) = / e T wo(z, 7e'¥) dr

o —1T(t—2 Re(e ()
= / / iT) ; ,u(z/) 4?2 dr

5 — 2

I+ 9 10 !
_ _2€ng/ 0 t R€< Z)) /L(Z/) dQZ/
C

Z—Z




Recall: ¢ € L°°, 0 =1 near 0f), u = 0 near 0f).
Assume supp(p) C 2 CC Q.

Define Tj): £'(Qy) — D/(C x R x Sl)a
u(z") — (Tou)(z,t,€'?) = Dy(2, t, €'P).



Recall: ¢ € L°°, 0 =1 near 0f), u = 0 near 0f).
Assume supp(p) C 2 CC Q.

Define Tj : £'(Qg) — D'(C x R x S1),
u(2') — (Top)(z,t, €'9) = @y(z, t, €'%).
Schwartz kernel of T

_0elp
/

Koz, t, €%, 2" = ( )5’(15 — 2 Re(e'%2")).

Z—z
First factor is smooth for z ¢ Q, 2/ € Q) =

1y is a generalized Radon transform and thus
a Fourier integral operator (FIO).



Define T;;" : £'(Q)
0) = D'(R x S!) by

u(2") — (T3
O |
(T, 1)(t,e'%) =@
= Qo(z0, t, €"P)



Define 7;;" : £'(Qy) — D'(R x SH by

() — (T p)(t, €'%) = Qo(20, 1, €'%),

e 7" is a weighted and differentiated version
of the Radon transform on C ~ R2.

1
OTSO is an FIO of order %, TSO e I2(C), with
same canonical relation as std. Radon transft.

C=N*"{t= 2Re(ewz/)}, C T*R x SY) x T*Qy,

e (' is a canonical graph.



e (' is independent of z3, but symbol

o 1
ey (—1€77) sgn(T)|T]2
Upmn(T() ) — 2 — Z’ ;

1S not.

e The factor (zg—2')~! is smooth and # 0, but
causes

(i) A fall-off in detectability of jumps,
at rate ~ d(2/, z) "'

(ii) Artifacts, esp. when i has singularities
at 2’ close to zj, due to the large magnitude
and phase gradient of (z5 — 2/)~..
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e 2 CONductivity phantom: a small circular inclusion.
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Weighted ‘averages’ in z
Let a(zg) be a C-valued weight on 0¢). Form

" 1 N
(3) Tt @) = — /(3 Gl tp)alzo) da,

2y

Let T3 be the operator ; — wy.



Weighted ‘averages’ in z
Let a(z)) be a C-valued weight on 0¢). Form

1

D) @te) =5 [ Golen o) alzo) dao
T )OO

Let 7§ be the operator ;. — wy.
Then T¢ € [2(C) and (T9)*T¢ € U(Qp), with
Tprin ((T6L>* T(?) (Z/a C/> — 27T2|O‘(Z,>’2|C/‘7 2 e (o,

where

1 d
Oé(Z/> _ . CZ(ZO) ZO) Z/ c 0
211 Joq zo — 2

is the Cauchy (line) integral of a(-)




Pick a = 1/v2 on 99 in (2). ([yqadz=0!)
Then o(7/) = 1/v/2 on Qy and

(TO* T8 = (—A)2 mod W0(),



Pick a = 1/v2 on 992 in (3). ([ynadz=0!)
Then o(7/) = 1/v/2 on Qy and
|
(T§) T = (=4)2 mod W'(Qy),
Gives local-tomography type imaging of p,
good for detection of singularities of o from

the singularities of w (which correspond to
high frequency behavior of w).



v Re (20, t, €%) for a = 1/(2v/2)



menes: Reconstruction from @%(-, -) for a = 1/4/2.



So far, microlocal analysis does not seem to
be needed: can express wj in terms of the
Radon transform.

However: the figures above were created
after filtering out certain artifacts.



So far, microlocal analysis does not seem to
be needed: can express wj in terms of the
Radon transform.

However: the figures above were created
after filtering out certain artifacts.

Singularities of W0, W occur at
(i) t =0 for any p with singularities, and

(ii) at other values of ¢, ¢, depending on .

Explained by wave-front set analysis of the
higher order terms in the Neumann series,
which are multilinear FIOs.



51, ) = / T (20, 7€) dr

//KZQ t ezgp Z 2 ) /L( /) . M(Z//) dZZ/dQZ//
Bilinear operator acting on u ® u, w/ kernel

296" (t 4+ 2 Re(e'?(2 — 2'")))
(2" = 20)(z" = 7)

- 1
Klzo(t, e'?: 2. Z//) — - (

P8 (t + 2 Re(e'¥ (2 — z”))))
(Z/ ZO)(_N 2/)2



e WF(w,) can be described in terms of
(n + 1)-fold scatterings of W F'(u).

e Still to do: estimates to control smoothness
of w,, for n > 3.



e WF(w,) can be described in terms of
(n + 1)-fold scatterings of W F'(u).

e Still to do: estimates to control smoothness
of w,, for n > 3.

e Can currently do this for n = 1,2 under
prior on o which includes pws with jumps
across curved interfaces.

e Rigorous justification of the Neumann se-
ries will require a mixture of multilinear
microlocal and harmonic analysis.



rgue . OtTOKE phantoms within low conductivity skull:
Clot (left), haemorrhage (right).



-

mare s StTOKE phantoms reconstructions: Clot (left),
haemorrhage (right).



