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Testing for integrability

I How do we test whether a given system is integrable?

I What are the integrability conditions?

I Can we describe all integrable systems of a certain type (classification
problem)?

I Can we give a complete picture of all possible integrable systems of all
orders (global classification)?

To answer these challenging questions we ought to decide what integrability is.

In order to classify equations we have to define the equivalence relation and
ideally give a method to check whether two given equations are equivalent or
not.



Testing for integrability. Various approaches to classification

I 1975 Wahlquist, Estabrook: Pseudo-potentials (a method to find Lax
representations) for a given equation

I 1976 Kulish: Perturbative analysis of conservation laws.

I 1977 Ablowitz, Segur: Painlevé test for integrability

I 1979 Shabat, Sokolov, AVM, Yamilov, Svinolupov, Adler: Symmetry approach to
classification of integrable PDEs and differential-difference systems

I 1980 Fokas: existence of a higher symmetry as criteria for integrability

I 1987 Hietarinta: classification of bi-linear (Hirota) representations

I 1997 Kodama, AVM: Asymptotic integrability

I 1998 Sanders, Wang: Symbolic method. Global results in classification of
integrable equations

I 2002 AVM, Novikov: Perturbative symmetry approach

I 2003 Adler, Bobenko, Suris: classification of 3-D consistent integrable difference
equations

I 2009 Ferapontov, Novikov, Roustemoglou, ... :Integrable deformations of
hydrodynamic type systems

I 2011 AVM, Wang, Xenitidis, Garifullin, Yamilov, ...: Integrable partial difference
equations.

I Algebraic entropy, singularity confinement, numerical simulations, ...



Symmetry

God, Thou great symmetry,
Who put a biting lust in me
From whence my sorrows spring,
For all the frittered days
That I have spent in shapeless ways
Give me one perfect thing.

Anna Wickham, 1921.



Symmetries of Partial differential equations

Let us consider a partial differential equation with one dependent variable u
and two independent variables t, x

Φ(t, x , u, ut , ux , utt , utx , uxx , . . .) = 0 (1)

where the lower indexes denote partial derivatives
(ux = ∂x u, ut = ∂tu, utt = ∂2

t u, uxt = ∂x∂tu, etc ) and function Φ depends on
a finite number of arguments. We shall assume that Φ is polynomial (or, in
some cases, a locally holomorphic) function of its arguments. The ring of all
polynomial (or locally holomorphic) functions of variables
t, x , u, ut , ux , utt , utx , uxx , . . . we shall denote R0.

R0 = [C; x , t, u; Dx ,Dt ]

Definition
A function g = g(t, x , u, ut , ux , utt , utx , . . .) ∈ R0 is a symmetry (a generator of
a symmetry) of equation (1) if for any solution u of (1) function

ū = u + εg +O(ε2)

satisfies equation

Φ(t, x , ū, ūt , ūx , ūtt , ūtx , ūxx , . . .) = O(ε2).



Symmetries of Partial differential equations

The latter is equivalent to the following equation

∂Φ

∂u
g +

∂Φ

∂ux
Dx (g) +

∂Φ

∂ut
Dt(g) +

∂Φ

∂utt
D2

t (g) +
∂Φ

∂utx
DtDx (g) · · · = 0

or
Φ∗(g) = 0

where Φ∗ is the Fréchet derivative of Φ. For any a ∈ R0 the Fréchet derivative
a∗ is defined as linear differential operator

a∗ =
∂a

∂u
+

∂a

∂ux
Dx +

∂a

∂ut
Dt +

∂a

∂utt
D2

t +
∂a

∂utx
DtDx . . . .

In each case the sum is finite since a has a finite number of arguments.
Derivations Dx ,Dt can be written in the form

Dx =
∂

∂x
+
∞∑

i,j=0

ui+1,j
∂

∂ui,j
, Dt =

∂

∂t
+
∞∑

i,j=0

ui,j+1
∂

∂ui,j
,

where ui,j = ∂ i+j u
∂x i∂t j .



Dynamical variables

I Equation Φ∗(g) = 0 should be satisfied on all solutions of Φ = 0, t.e.
modulo Φ = 0 and its differential consequences (such as Dx Φ = 0,
DtΦ = 0, . . .).

I g 6= 0 modulo Φ = 0 and its differential consequences.

In other words, we should consider a differential ideal JΦ ⊂ R0 generated by
the element Φ

JΦ = {
m,n∑

p,q≥0

ap,qDp
x Dq

t (Φ) | ap,q ∈ R0, m, n ∈ Z≥0}

and the quotient ring RΦ = R0/JΦ.

A symmetry is a non-zero element g ∈ RΦ such that Φ∗(g) = 0 (in RΦ).



Dynamical variables. Evolutionary PDEs

Let us consider evolutionary PDEs

ut = f (x , u0, u1, . . . , un). (2)

Here we adopt notations uk = ∂k
x u. As dynamical variables we can take the

infinite set x , u0, u1, u2 . . ..

Any t-derivative can be re-expressed in terms of the dynamical variables and

R0/〈ut − f 〉 ' R = [C; x , t; u; Dx ]

where 〈ut − f 〉 ⊂ R0 is a differential ideal and Dx is reduced to

Dx =
∂

∂x
+
∞∑
i=0

ui+1
∂

∂ui
; Dx t = 0,Dx x = 1, ∂x u0 = u1,Dx u1 = u2 . . . .

In R the derivation Dt : R 7→ R is reduced to

Dt =
∂

∂t
+
∞∑
i=0

D i
x (f )

∂

∂ui
; Dtt = 1,Dtx = 0,Dtu0 = f ,Dtu1 = Dx f . . . .



Dynamical variables. Evolutionary PDEs

Equation ut = f (x , u0, u1, . . . , un)⇐⇒ two commuting derivations
[Dx ,Dt ] = 0⇐⇒ two compatible infinite dimensional dynamical systems

Dx u0 = u1, Dtu0 = f ,

Dx u1 = u2, Dtu1 = Dx (f ),

· · · · · ·
Dx uk = uk+1, Dtuk = Dk

x (f ),

· · · · · · .

Example

KdV
ut = u3 + 6uu1 ⇐⇒

Dx u0 = u1, Dtu0 = u3 + 6u0u1,

Dx u1 = u2, Dtu1 = u4 + 6u2
1 + 6u0u2,

Dx u2 = u3, Dtu2 = u5 + 18u1u2 + 6u0u3,

· · · · · · .



Dynamical variables. Evolutionary PDEs

Definition
A derivation Y of R (a vector field) is called evolutionary if [Dx ,Y ] = 0.

Theorem
Let Y =

∑∞
i=0 Yi

∂
∂ui
, Yk ∈ R be an evolutionary derivation, then Yi = D i

x Y0 .

Proof: [Dx ,Y ](uk ) = Dx (Yk )− Y (uk+1) = Dx (Yk )− Yk+1 = 0⇒ Yk = Dk
x (Y0). �

Thus, an evolutionary derivation can be written as

DG =
∞∑
i=0

D i
x (G)

∂

∂ui
, G ∈ R ,

and G is called the characteristic of the evolutionary derivation DG )

Theorem
Let DG ,DH be two evolutionary derivations, then the derivation [DG ,DH ] is also
evolutionary with the characteristic function K = DG (H)−DH (G) = H∗(G)− G∗(H).

With evolutionary derivation DG we associate the infinite dimensional dynamical

system (uk )τ = Dk
x (G) and a PDE uτ = G .



Dynamical variables. Hyperbolic (elliptic) equations

Let us consider hyperbolic (elliptic) PDEs

Φ = uzz̄ − f (z , z̄ , u, uz , uz̄ ) = 0 (3)

where z and z̄ are two independent variables (if z , z̄ are complex conjugated,
then (3) is elliptic, if they are real, then it is a hyperbolic equation).
If u is a solution to the equations, then using the equation we can express any
mixed derivative ∂k

z ∂
n
z̄ u in terms of z , z̄ , u, uz , uz̄ , uzz , uz̄ z̄ , ...:

uzz̄ = f , uzzz̄ =
∂f

∂z
+
∂f

∂u
uz +

∂f

∂uz
uzz +

∂f

∂uz̄
f , . . . .

Let us introduce more convenient notations

u0 = ū0 = u, uk =
∂k u

∂zk
, ūk =

∂k u

∂z̄k
.

Let R = (C; z , z̄ , u, u1, ū1, u2, ū2, . . .) denotes a ring of (locally holomorphic)
functions. In this notations z and z̄ derivatives D, D̄ of any a ∈ R can be
written in the form

D(a) =
∂a

∂z
+ u1

∂a

∂u0
+ u2

∂a

∂u1
+ · · ·+ f

∂a

∂ū1
+ D̄(f )

∂a

∂ū2
+ · · ·

D̄(a) =
∂a

∂z̄
+ ū1

∂a

∂ū0
+ ū2

∂a

∂ū1
+ · · ·+ f

∂a

∂u1
+ D(f )

∂a

∂u2
+ · · ·



Dynamical variables. Hyperbolic (elliptic) equations

Thus we have two derivations D, D̄ in R which can be defined recursively:

D =
∂

∂z
+
∞∑

k=0

uk+1
∂

∂uk
+
∞∑

k=1

D̄k−1(f )
∂

∂ūk

D̄ =
∂

∂z̄
+
∞∑

k=0

ūk+1
∂

∂ūk
+
∞∑

k=1

Dk−1(f )
∂

∂uk

Derivations D, D̄ commute [D, D̄] = 0. They correspond to two compatible infinite
dimensional dynamical systems

D(u) = u1, D(u1) = u2, D(ū1) = f , D(u2) = u3, D(ū2) =
∂f

∂z̄
+ū1

∂f

∂u0
+f

∂f

∂u1
+ū2

∂f

∂ū1
, . . .

D̄(u) = ū1, D̄(u1) = f , D̄(ū1) = ū2, D̄(u2) =
∂f

∂z
+u1

∂f

∂u0
+u2

∂f

∂u1
+f

∂f

∂ū1
, D̄(ū2) = ū3, . . .

Theorem
If a vector field

X = G
∂

∂u
+
∞∑

k=1

Gk
∂

∂uk
+
∞∑

k=1

Ḡk
∂

∂ūk

commutes with D and D̄, then

Gk = Dk (G), Ḡk = D̄k (G). (4)



Dynamical variables. Hyperbolic (elliptic) equations

Proof.
Indeed, if [D,X ] = 0, [D̄,X ] = 0 then

(DX − XD)(uk ) = D(Gk )− X (uk+1) = D(Gk )− Gk+1 = 0,⇒ Gk = Dk (G),

(D̄X − X D̄)(ūk ) = D̄(Ḡk )− X (ūk+1) = D̄(Ḡk )− Ḡk+1 = 0,⇒ Ḡk = D̄k (Ḡ).

Conditions (4) are necessary, but not sufficient. We also need to check that
[D,X ](ūk ) = 0, [D̄,X ](uk ) = 0. It leads to

[D,X ](ū1) = D(Ḡ1)− X (f ) = DD̄(G)− f∗(G) = Φ∗(G) = 0.

The latter is nothing, but the condition that G is a generator of a symmetry for
equation Φ = 0 (3). Thus all coefficients Gk , Ĝk of the derivation X
commuting with D, D̄ can be expressed in terms of a characteristic function
G ∈ R. It is natural to denote

DG = G
∂

∂u
+
∞∑

k=1

Dk (G)
∂

∂uk
+
∞∑

k=1

D̄k (G)
∂

∂ūk
. (5)



Symmetries of PDEs

Having represented a PDE Φ = 0 as a compatible system of two infinite
dimensional dynamical systems corresponding to derivations Dx ,Dt in a certain
set of dynamical variables, a symmetry can be viewed as a third infinite
dimensional system, which is compatible with the first two.

Definition
We shall say that a derivation D of the ring RΦ is a local symmetry of PDE
Φ = 0 if

1. [Dx ,D] = [Dt ,D] = 0;

2. D(x) = D(t) = 0.

In the evolutionary case ut = f these conditions mean that derivation is
evolutionary D = DG and its characteristic satisfies the linearised equation

(Dt − f∗)G = 0.

The characteristic function G and the corresponding PDE uτ = G are also
often called symmetry of equation ut = f .

We say that a system is integrable if it possesses an infinite
algebra of symmetries.



Dynamical variables and symmetries

Non-evolutionary equations, such as the Boussinesq equation

utt = uxxxx + (u2)xx

can be re-written in the form of a system of evolutionary equations as

ut = v , vt = uxxxx + (u2)xx ,

with dynamical variables V = {u, v , ux , vx , uxx , vxx , . . .}. Or as

ut = wx , wt = uxxx + (u2)x ,

with dynamical variables W = {u,w , ux ,wx , uxx ,wxx , . . .}. Or as

ut = zxx , zt = uxx + u2,

with dynamical variables Z = {u, z , ux , zx , uxx , zxx , . . .}.

It is interesting to note that in the dynamical variables V the corresponding
evolutionary system has only a finite number of symmetries, but in the
variables W or Z the number of commuting is infinite.



Symmetries of PDEs

Examples:

1. Heat equation ut = u2, symmetries

uτ = 1, utn = un, uη = 2tu2 + xu1.

2. The Hopf equation ut = uux :

utk = uk ux , uτ = f (u, x + tu)u1

3. Burgers equation ut = uxx + 2uux , symmetries

uτ = 1+2tu1, uη = 2tu2+xu1−u, ut2 = u2+2uu1, ut3 = u3+3uu2+3u2
1+3u2u1

4. The KdV equation ut = uxxx + 6uux . A few symmetries

uτ = 1+6tu1, uη = 3t(u3+6uu1)+xu1−2u, ut5 = u5+10u3u+20u1u2+30u2u1, . . .

5. Sine-Gordon equation uzz̄ = sin u:

uτ3 = u3 +
1

2
u3

1 , uτ5 = u5 +
5

2
u2

1u3 +
5

2
u1u2

2 +
3

8
u5

1 , . . .



Symmetry reductions

Having a symmetry we can find symmetry reduction: restrict on invariant
solutions.
Let G be a generator of a symmetry, then condition G = 0 consistent with the
equation and leads to symmetry reduction from PDE to a finite system of
ODEs.
Example: KdV ut = u3 + 6uu1. Let us take a symmetry with a generator

G = au1 + b(u3 + 6uu1) + (u5 + 10u3u + 20u1u2 + 30u2u1), a, b ∈ R.

Setting G = 0 we get an ODE of 5th order. We can express u5, u6, ... in terms
of dynamical variables u, u1, u2, u3, u4 and reduce the infinite dimensional
system

Dx u0 = u1, Dtu0 = u3 + 6u0u1,

Dx u1 = u2, Dtu1 = u4 + 6u2
1 + 6u0u2,

Dx u2 = u3, Dtu2 = u5 + 18u1u2 + 6u0u3,

· · · · · · .

to two compatible systems of order 5. According S.P.Novikov, its solution can
be expressed in theta functions for genus 2 algebraic curve. Degeneration of
the curve leads to 2-soliton solutions.



Local conservation laws

For a PDE Φ(x , t, u, ux , ut , uxx , . . .) = 0 a local conservation law is defined as a
pair of two functions ρ(x , t, u, ux , ut , . . .), σ(x , t, u, ux , ut , . . .) satisfying
equation

∂tρ(x , t, u, ux , ut , . . .) = ∂xσ(x , t, u, ux , ut , . . .)

on all solutions of the PDE. Functions ρ and σ are called density and flux of
a local conservation law.
Having a conservation law we can find constant of motion (analogs of first
integrals in the ODE case).
Example: The KdV equation ut = uxxx + 6uux is itself a conservation law with
ρ1 = u. It is easy to check that ρ2 = u2, ρ3 = 2u3 − u2

1

∂

∂t
u =

∂

∂x
(u2 + 3u2),

∂

∂t
u2 =

∂

∂x
(2uu2 − u2

1 + 4u3),

∂

∂t
(2u3 − u2

1) =
∂

∂x
(9u4 + 6u2u2 + u2

2 − 12uu2
1 − 2u1u3),

If, for example vanishes rapidly u(x , t)→ 0 as x → ±∞, so that
∫∞
−∞ ρk dx

converges, then
d

dt

∫ ∞
−∞

ρk dx = 0.



Local conservation laws

In dynamical variables and our derivations Dx ,Dt associated with the PDE our
(pre)-definition of local conservation laws is a pair σ, ρ ∈ R, such that

Dt(ρ) = Dx (σ). (6)

If we take any element h ∈ R and define ρ = Dx (h) then condition (6) will be
satisfied in a trivial way with σ = Dt(ρ). Such densities we call trivial.

Definition
Considering R as a linear space over the base field C we say that

1. Two elements r1, r2 ∈ R are equivalent r1 ∼ r2 if r1 − r2 ∈ Dx (R).

2. A quotient linear space R̂ = R/∼ is called a space of functionals.

3. Elements of R̂ are called densities.

4. A non-zero element ρ ∈ R̂ is called a density of a local conservation law
(or simply a conserved density) if Dt(ρ) = Dx (σ) for some σ ∈ R which is
called a flux of the conservation law.



Evolutionary case

In what follows

I we shall consider evolutionary equations ut = F (x , u, u1, . . . , un) only,

I we shall assume that all functions do not depend on the variable t
explicitly and thus R = [C; x ; u; Dx ],

I the differential field of fractions, corresponding to R will be denoted as F .

In this case the derivation Dx is quite simple

Dx =
∂

∂x
+
∞∑
i=0

ui+1
∂

∂ui

and Ker(Dx ) = C.

For equation ut = F (x , u, u1, . . . , un), n > 1 we will find a sequence of
necessary conditions for the existence of local symmetries.

In order to proceed we need some facts from the theory of differential operators
and formal series.



Ring of differential operators

Let F [Dx ] be the algebra of differential operators over F . Elements A ∈ F [Dx ]
are of the form

A = AN DN
x + AN−1DN−1

x + · · ·+ A1Dx + A0, AN 6= 0, An ∈ F , N ∈ Z≥0

and N is called the order of the operator N = ordA. The coefficient AN is
called the leading coefficient AN = Lc(A).

The Fréchet derivative

a∗ =
M∑

k=0

∂a

∂uk
Dk

x ∈ F [Dx ], a = a(x , u, u1, . . . , uM ) ∈ F , ∂uM a 6= 0

is an example of a differential operator of order M.

The order |a| of an element a ∈ F is defined as |a| = orda∗.



Ring of differential operators.

The multiplication in F [Dx ] is given by the Leibniz rule

aDk
x ◦ bDn =

k∑
s=0

(
k
s

)
aDs

x (b)Dn+k−s
x , k ∈ N,

(
k
s

)
=

k(k − 1) · · · (k − s + 1)

s!

This multiplication is associative, but not commutative.

Let A be a differential operator

A =
N∑

k=0

ak Dk
x

then a conjugated operator A+ is defined as

A+ =
N∑

k=0

(−1)k Dk
x ◦ ak =

N∑
k=0

(−1)k
k∑

s=0

(
k
s

)
Ds

x (a)Dk−s
x .

This conjugation is an involution in algebra F [Dx ]: (A ◦ B)+ = B+ ◦ A+.



Ring of differential operators.

Definition
A variational derivative δu(a), a ∈ F is

δu(a) = a+
∗ (1) =

|a|∑
k=0

(−1)k Dk
x

(
∂a

∂uk

)
.

The linear operator δu := E is called the Euler operator.

Theorem
1. If a ∈ DxF then δu(a) = 0.
2. If a(x , u, u1, . . . , uk ) ∈ F is holomorphic in a neighbourhood of the point
(x , 0, . . . , 0) and δu(a) = 0, then there exists b ∈ F such that Dx b = a.

If a is not holomorphic at u = 0, for instance a = u1u−1, but δu(a) = 0, then a
solution of equation Dx b = a can be found in an extension of F . In this
example b = log u.



Ring of differential operators.

Definition
The order of a conserved density ordρ is defined as ordρ = deg(δuρ)∗.

It is invariant definition of the order of a conserved density in a sense that if
ρ1 ∼ ρ2, then ordρ1 = ordρ2.

Let us list a few useful identities concerning Fréchet and variational derivatives.

Theorem
Let a, b ∈ F , then

1. (ab)∗ = ab∗ + ba∗ ,

2. (Dx (a))∗ = Dx ◦ a∗ = Dx (a∗) + a∗ ◦ Dx ,

3. (Db(a))∗ = (a∗(b))∗ = Db(a∗) + a∗ ◦ b∗ ,

4. (δua)∗ = (δua)+
∗ ,

5. δu(Db(a)) = Db(δua) + b+
∗ (δua) .



Ring of differential operators.

Corollary

Let ρ be a density of a conservation law of an evolutionary equation ut = F ,
then

(Dt + F +
∗ )δuρ = 0 .

Definition
Any non-zero solution γ ∈ F of equation

(Dt + F +
∗ )γ = 0

is called a co-symmetry of the equation ut = F .

Theorem
Let γ, |γ| = n be a co-symmetry of equation ut = F such that γ∗ = γ+

∗ . Then
there exists ρ ∈ F such that γ = δuρ and δuDt(ρ) = 0.

Moreover

ρ = u

∫ 1

0

γ(x , ξu, ξu1, . . . , ξun) dξ,

if the integral converges.



Skewfield of formal series.

For further consideration we will need formal pseudo-differential series, which
for simplicity we shall call formal series (of order N = ordA ∈ Z)

A = aN DN
x +aN−1DN−1

x + · · ·+a1Dx +a0 +a−1D−1
x + · · · , aN 6= 0, an ∈ F .

or A =
N∑

i=−∞

ai D
i
x .

The coefficient aN is called the leading coefficient, Lc(A) = aN .
Multiplication is defined exactly in the same way as for differential operators

aDk
x ◦ bDn =

∞∑
s=0

(
k
s

)
aDs

x (b)Dn+k−s
x , k ∈ Z,

(
k
s

)
=

k(k − 1) · · · (k − s + 1)

s!
,

but now we allow index k to be negative. If k is a positive integer, then the
sum is finite. For negative k the sum is infinite (formal).
Example:

D−1
x ◦ a = aD−1

x − Dx (a)D−2
x + D2

x (a)D−3
x + · · · .



Skewfield of formal series.

Theorem
A set of all formal series with coefficients in the differential field F

F((Dx )) = {
N∑

i=−∞
ai D

i
x | an ∈ F , N ∈ Z}

form a skewfield.

Proof.
We need to show that any non-zero element of F((Dx )) is invertible. Indeed, if

A =
N∑

i=−∞
ai D

i
x = aN

1 +

−1∑
n=−∞

a−1
N an+N Dn

x

DN
x

then

A−1 = D−N
x ◦

∞∑
k=0

− −1∑
n=−∞

a−1
N an+N Dn

x

k

◦ a−1
N .

Obviously in A−1 = b−N D−N
x + b−N D−N

x + · · · each coefficient bk is a finite sum.
Moreover b−N−k is a differential polynomial of the coefficients aN , . . . , aN−k .

In particular any differential operator A ∈ F [Dx ] is invertible and its inverse

A−1 ∈ F((Dx )).



Skewfield of formal series.

Example: For series

A = amDm
x + am−1Dm−1

x + · · ·+ a0 + a−1D−1
x + · · ·

we can find uniquely the inverse element

B = b−mD−m
x + b−m−1D−m−1

x + · · · , bk ∈ F

such that A ◦ B = B ◦ A = 1. Indeed, multiplying A and B and equating the
result to 1 we find that amb−m = 1, i.e. b−m = 1/am, then at D−1

x we have

mamDx (b−m) + amb−m−1 + am−1b−m = 0

and therefore

b−m−1 = −am−1

a2
m
−mDx (

1

am
) , etc.

First k coefficients of the series B can be uniquely determined in terms of the
first k coefficients of A.



Skewfield of formal series.

Moreover, if (am)
1
m ∈ F we can find the m-th root of the series A, i.e. a series

C = c1Dx + c0 + c−1D−1
x + c−2D−2

x + · · ·

such that C m = A and if we know first k coefficients of the series A we can
find the first k coefficients of the series C .
Example. Let A = D2

x + u. Assuming

C = c1Dx + c0 + c−1D−1
x + c−2D−2

x + · · ·

we compute

C 2 = C ◦ C = c2
1 D2

x + (c1Dx (c1) + c1c0 + c0c1)Dx +

c1Dx (c0) + c2
0 + c1c−1 + c−1c1 + · · · ,

and compare the result with A. At D2
x we find c2

1 = 1 or c1 = ±1. Let c1 = 1.
At Dx we get 2c0 = 0, i.e. c0 = 0. At D0

x we have 2c−1 = u, at D−1
x we find

c−2 = −u1/4, etc.,

C = A1/2 = Dx +
u

2
D−1

x − u1

4
D−2

x + · · · .

We can easily find as many coefficients of C as required.



Skewfield of formal series.

Definition. The residue of a formal series A =
∑

k≤n ak Dk
x , ak ∈ F is by

definition the coefficient at D−1
x :

res (A) = a−1 .

The logarithmic residue of A is defined as

res log A =
an−1

an
.

For a formal series

A = amDm
x + am−1Dm−1

x + · · ·+ a0 + a−1D−1
x + · · ·

First k residues

r−1 = res A−
1
m , r0 = res log A, r1 = res A

1
m , r2 = res A

2
m , . . . rk−2 = res A

k−2
m

can be expressed in terms of first k coefficients of the series and vise versa.



Skewfield of formal series.

Theorem
For any two formal series A,B of order n and m, respectively, the logarithmic
residue satisfies the following identity:

res log(A ◦ B) = res log(A) + res log(B) + nDx (log(bm)).

For any derivation DG of the differential field F and any formal series A we
have

DG ( res log A) = res (DG (A) ◦ A−1).

We will use the following important Adler’s
Theorem.(M.Adler) For any two formal series A,B the residue of the
commutator belongs to Im Dx :

res[A,B] = Dx (σ(A,B)),

where

σ(A,B) =

p+q+1>0∑
p≤ord(B), q≤ord(A)

(
p + q + 1

q

) p+q∑
s=0

(−1)s Ds
x (aq)Dp+q−s

x (bq) .



Formal recursion operator

Let me recall that according my definition, integrable equations are equations
possessing higher local symmetries and/or conservation laws.

We are going to show that for an evolutionary differential equation

ut = F , F = F (x , u, u1, . . . , un) ∈ F , |F | = n > 1, (7)

existence of a symmetry uτ = G(x , u, . . . , um) of high order m = |G | > n implies
existence of an “approximate” solution R ∈ F((Dx )) of the formal operator equation

DF (R)− [F∗,R] = 0, (8)

while existence of symmetries of arbitrary high order guarantee existence of a formal
series R satisfying equation (8). We shall also show that existence of two high order
local conserve densities ρ1, ρ2 also implies existence of an approximate solution of
equation (8). As well, if equation (7) is linearisable by a differential substitution, then
it admits a formal recursion operator.

Thus, conditions of solvability for equation (8) will provide us with necessary
integrability conditions for equation (7). These conditions will lead us to a canonical
sequence of local conserved densities for equation (7), and the first one is of the form

ρ−1 =

(
∂F

∂un

)− 1
n

.

Ultimately we aim to answer the questions: whether a given equation is integrable

and what is a complete list of integrable equations?



Recursion operator

The name formal recursion operator is motivated by the concept of recursion
operators, which are pseudo-differential operators R satisfying equation
DF (R)− [F∗,R] = 0. Such operators do exist (AKNS, Lenard, Olver):

Burgers eq. ut = u2 + 2uu1, RBur = Dx + u + u1D−1
x ,

KdV eq. ut = u3 + 6uu1, RKdV = D2
x + 4u + 2u1D−1

x ,
Sawada-Kotera eq. ut = u5 + 5uu3 + 5u1u2 + 5u2u1, RSK = D6

x + 6uD4
x +

+9u1D3
x + (9u2 + 11u2)D2

x + (10u3 + 21uu1)Dx + 5u4 + 16uu2 + 6u2
1 + 4u3+

+(u5 + 5uu3 + 5u1u2 + 5u2u1)D−1
x + u1D−1

x ◦ (2u2 + u2).

Theorem
Let R be a recursion operator for ut = F and G be a symmetry, such that R(G) ∈ F .
Then R(G) is also a symmetry.

Proof. Indeed, the Lie bracket [F ,R(G)] = DF (R(G))− DR(G)(F ) =

DF (R)(G) + RDF (G)− F∗R(G) = DF (R)(G) + R([F ,G ]) + RDG (F )− F∗R(G) =

(DF (R) + RF∗ − F∗R)(G) + R([F ,G ]) = 0. �

Applying Rk to a seed symmetry G1 we can, in principle, construct an infinite

sequence of symmetries Gn = R(Gn−1).



Co-recursion operator

Theorem
Let R be a recursion operator for equation ut = F and γ be its co-symmetry such that
R+(γ) ∈ F , then R+γ is also a co-symmetry of the equation.

In this sense R+ is a co-recursion operator.

Proof. Indeed, DF (γ) = −F +
∗ (γ) and thus,

DF (R+γ) = DF (R+)γ+R+DF (γ) = −F +
∗ R+(γ)+R+F +

∗ (γ)−R+F +
∗ (γ) = −F +

∗ (R+γ). �

Example
For the KdV equation R+ = D2

x + 4u − 2D−1
x ◦ u1. Taking γ0 = 1

2
we get

γk = (R+)kγ0:

γ1 = u, γ2 = u2 + 3u2, γ3 = u4 + 10u2u + 5u2
1 + 10u3, . . . .

There is the issue of locality, i.e. to show that R+(γk ) ∈ F which in this case is
equivalent to (γk )∗ = (γk )+

∗ .



Formal recursion operator

Formal recursion operators, i.e. formal series satisfying equation

DF (R)− [F∗,R] = 0.

form an algebra, which we will denote R(F ):

Theorem
Let R1,R2 ∈ R(F ), ord(R1) = n 6= 0. Then

I α1R1 + α2R2 ∈ R(F ), α1, α2 ∈ C,
I R1 ◦ R2 ∈ R(F ),

I R
k
n

1 ∈ R(F ), k ∈ Z.

Moreover,

Theorem
Let R ∈ R(F ), ordR = m 6= 0. Then R(F ) = C((R−

1
m )).

Meaning: If a formal series R̂ ∈ R(F ), ordR̂ = k, then

R̂ =
k∑

i=−∞
αi R

i
m , αi ∈ C .



Formal recursion operator

Lemma
Let ut = F (x , u, . . . , un), |F | = n > 2 and
R = rmDm

x + · · · ∈ R(F ), ordR = m. Then

rm = βm

(
∂F

∂un

)m
n

, βm ∈ C .

Proof. The leading term in DF (R)− [F∗,R] is(
−n

(
∂F

∂un

)
Dx (rm) + mrmDx

(
∂F

∂un

))
Dn+m−1

x .

Here we use the condition that n > 2, in this case ordDF (R) 6 m < n + m − 1
and this term does not contribute in the equation for the coefficient at
Dn+m−1

x . Now it is obvious that

−n

(
∂F

∂un

)
Dx (rm)+mrmDx

(
∂F

∂un

)
= 0⇐⇒ rm = βm

(
∂F

∂un

)m
n

, βm ∈ C .�



Canonical densities

For a formal series R ∈ F((Dx )), ord(R) = m 6= 0 the sequence of canonical densities
ρ−1, ρ0, ρ1, . . . is defined as

ρ−1 = res R−
1
m = r

− 1
m

m ,

ρ0 = res log R =
rm−1

rm
,

ρk = res R
k
m , k ∈ N.

Theorem
If R, ord(R) = m 6= 0 is a formal recursion operator (R ∈ R(F )), then canonical
densities are densities of local conservation laws for equation ut = F

DF (ρi ) ∈ Dx (F), i = −1, 0, 1, 2, . . . .

Proof. It follows from Adler’s Theorem that

DFρk = DF res R
k
m = res DF R

k
m = res [F∗,R

k
m ] = Dxσ(F∗,R

k
m ), k 6= 0

.

DF (ρ0) = DF res log R = res (DF (R)R−1) = res ([F∗R
−1,R]) = Dxσ(F∗R

−1,R). �



Formal recursion operator

If there exists a formal recursion operator for equation

ut = F (x , u, . . . , un), |F | = n > 2 then ρ−1 =
(
∂F
∂un

)− 1
n

must be a density of a

conservation law.

Example

It is known that equation ut = unun is integrable and possesses a recursion
operator for n = 2, 3. Does it possess a formal recursion operator for n > 3? In
this case ρ1 = u−1 and we have to verify that

(u−1)t = −un−2un ∈ Dx (F).

Taking the variational derivative we observe that

δu(un−2un) = (−1)nDn
x (un−2) + (n − 2)un−3un

is zero for n = 2, 3 and different from zero for n > 3. Conclusion: for n > 3
this equation does not possess a formal recursion operator.

Example

I For Burgers equation: ρ−1 = 1, ρ0 = 0, ρk = Dx ((Dx + u)k−1u) ∈ Dx (F).

I For the KdV equation:
ρ−1 = 1, ρ0 = 0, ρ1 = 2u, ρ2 = 2u1, ρ3 = 2u2 + u2, . . .



Approximate formal recursion operator

Now we are going to discuss approximate solutions of the equation

DF (R)− [F∗,R] = 0, (9)

in terms of formal series (R ∈ F((Dx ))).
Definition. A set of k-approximate solutions of the equation (9) is defined as

Rk = {A ∈ F((Dx )) | ord(DF (A)− [F∗,A]) 6 ordF∗ + ordA− k} .

It is clear that

F((Dx )) = R1 ⊃ R2 ⊃ R3 ⊃ · · · ⊃ R∞ = R(F ).

Lemma
A formal series R, ordR = n 6= 0 belongs to Rk if and only if
R

m
n ∈ Rk , m ∈ Z.



Approximate formal recursion operator

Theorem
Suppose equation ut = F has a symmetry G ∈ F of order k, then G∗ ∈ Rk .

Proof. Taking the Fréchet derivative of the Lie bracket [F ,G ] = 0 we get

(DF (G)− DG (F ))∗ = DF (G∗)− [F∗,G∗]− DG (F∗) = 0

and thus

ord(DF (G∗)− [F∗,G∗]) = ordDG (F∗) 6 ordF∗ = ordF∗ + ordG∗ − k . �

We can take a fraction power G
1
k
∗ in order to obtain an approximate recursion

operator of order 1, which also belongs to Rk due to the Lemma.

Corollary

If equation ut = F admits symmetries of arbitrary high order, then there exist a
formal recursion operator R ∈ F((Dx )) of any fixed order N satisfying equation

DF (R) = [F∗,R] .



Formal recursion operator

For equation ut = F of order n, since F does not depend on t explicitly, F is a
symmetry of order n and thus F∗ ∈ Rn. Thus we know first n − 1 coefficients
of R and the same number of canonical conserved densities

ρ−1 = res F
− 1

n
∗ , ρ0 = res log F∗, ρ1 = res F

1
n
∗ , . . . , ρn−3 = res F

n−3
n
∗ .

Theorem

I Any equation ut = F of order n > 2 has an approximate formal recursion
operator R ∈ Rn.

I It has an approximate recursion operator with k > n if and only if

DF (ρi ) = Dx (σi ), σi ∈ F , i = −1, 0, . . . , k − n − 2.

I Canonical densities ρi , i > n − 2 can be found explicitly in terms of the
coefficients ∂F

∂uj
, j = 0, 1, . . . , n of the Fréchet derivative F∗ and

σ−1, . . . σi−n+1.



Formal recursion operator

Example
Let ut = F (x , u, u1, u2) then R = F∗ ∈ R2. Indeed

ord(DF (F∗)− [F∗,F∗]) 6 2 = ord(F∗) + ord(R)− 2.

Let us denote F2 = ∂F
∂u2

,F1 = ∂F
∂u1

,F0 = ∂F
∂u

. We have ρ−1 = res R−
1
2 = F

− 1
2

2 .

In order to find solution in R3 we represent R = F∗ + aDx and substitute in

DF ( res R−
1
2 ) = res [F∗,R

− 1
2 ]

‖ ‖

Dx (σ−1) = Dx (−F
− 1

2
2 a)

therefore

σ−1 = −F
− 1

2
2 a

Thus
ord(DF R−

1
2 − [F∗,R

− 1
2 ]) 6 −2 = 2− 1− k, ⇒ k = 3.

Thus R = F∗ − σ−1F
1
2

2 Dx = F2D2
x + (F1 − σ−1F

1
2

2 )Dx ∈ R3 and moreover

ρ0 = (F1 − σ−1F
1
2

2 )F−1
2 . Making the next correction to R we would find

ρ1 = ρ−1F0 −
ρ2

0

4ρ−1
+

1

2
ρ0σ−1 −

1

2
ρ−1σ0.



Solved problems of classification of integrable equations

The problem of complete description and classification of all integrable equations of
the form

uxt = f (u),
ut = f (x , t, u, ux , uxx )
ut = uxxx + f (x , u, ux , uxx ),
ut = a(x , u, ux , uxx )uxxx + f (x , u, ux , uxx ),
ut = uxxxxx + f (x , u, ux , uxx , uxxx , uxxxx ),

have been solved (Shabat, Sokolov, Svinolupov, Meshkov, Heredero, Zhiber). There
are plenty results for systems of equations. In particularly all systems of two equations

ut = A(u)uxx + F(u, ux ), u = (u, v)T , DetA(u) 6= 0

possessing an infinite hierarchy of conservation laws have been classified (AVM,
Shabat, Yamilov).
Differential-difference equations with conservation laws where studied

(un)t = F (un−1, un, un+1),
(un)t = F (un−2, un−1, un, un+1, un+2).

The first one was completely classified by Yamilov, the problem of classification for the
second type of equations was recently (partially) solved by V.Adler.
This method can also be applied to the study of integrable difference equations.
Integrability conditions for quadrilateral equations

Q(un,m, un+1,m, un,m+1, un+1,m+1) = 0

was found by AVM, Wang and Xenitidis.



Example of classification

I would like to illustrate the method on a simple enough example of the
Korteweg-de Vries type equation

ut = uxxx + f (u, ux )

and make a few steps towards the proof of the following statement:

Theorem
Equation

ut = F = u3 + f (u, u1) (10)

admits an infinite algebra of symmetries if and only if it is one from the
following list

ut = u3 −
α2

2
u3

1 + (α1 exp(2αu) + α2 exp(−2αu) + α0) u1, (11)

ut = u3 + α3u3
1 + α2u2

1 + α1u1 + α0, (12)

ut = u3 +
(
α2u2 + α1u + α0

)
u1, (13)

ut = u3 + α2u1 + α1u + α0. (14)

where α, αk ∈ C are arbitrary constants.



Example of classification

Existence of symmetries implies the existence of a formal recursion operator R
satisfying the equation

Dt(R)− [F∗,R] = 0. (15)

In our case

F∗ = D3
x + f1Dx + f0 , f1 =

∂f

∂u1
, f0 =

∂f

∂u

has constant leading coefficient and the next coefficient (at D2) is zero. Thus

canonical densities ρ−1 = res R−
1
3 = 1, ρ0 = res log R = 0 thus

R = F∗ + r−1D−1
x + · · · .

Taking R = D3
x + f1Dx + f0 + r−1D−1

x + · · · we can easily find that

R
1
3 = Dx +

1

3
f1D−1

x +
1

3
(f0 − Dx (f1)) D−2

x + · · ·

R
2
3 = D2

x +
2

3
f1 +

1

3
(2f0 − Dx (f1)) D−1

x + · · ·

and thus canonical densities are

ρ1 = res R
1
3 =

1

3
f1 , ρ2 = res R

2
3 =

1

3
(2f0 − Dx (f1)) , ρ3 = res R = r−1.



Example of classification

Thus our conditions are (after obvious re-scaling):

ρ1 = ∂f
∂u1
, Dtρ1 = Dxσ1 , σ1 ∈ F ,

ρ2 = ∂f
∂u0
, Dtρ2 ∈ Dx (F),

ρ3 = σ1, Dtρ3 ∈ Dx (F).

Applying the Euler operator δ/δu to Dtρ1 we find an explicit form

0 =
δ

δu
Dt

(
∂f

∂u1

)
= 3u4

(
u2
∂4f

∂u4
1

+ u1
∂4f

∂u3
1∂u

)
+ · · ·

of the first integrability condition. Equation

u2
∂4f

∂u4
1

+ u1
∂4f

∂u3
1∂u

= 0

gives rise to
f (u1, u) = λu3

1 + A(u)u2
1 + B(u)u1 + C(u),

where λ is a constant.
For such f the first condition turns out to be equivalent to

λA′ = 0, B ′′′ + 8λB ′ = 0,

(B ′C)′ = 0, AB ′ + 6λC ′ = 0.



Example of classification

The second integrability condition has the form

Dt

(
∂f

∂u

)
= D(σ2).

Using this fact we can derive a few more differential relations between A(u),
B(u), C(u). Solving them all together we obtain the following list of equations

ut = uxxx + c1ux + c2u + c3 ,

ut = uxxx + (c1u2 + c2u + c3)ux ,

ut = uxxx + c1u3
x + c2u2

x + c3ux + c4 ,

ut = uxxx −
1

2
u3

x + (c1e2u + c2e−2u + c3) ux ,

where c1, c2, c3, c4 are arbitrary constants. In the latter equation we normalize
λ to −1/2 by a scaling. Only these equations have passed through the first two
necessary integrability conditions (Dt(ρ1),Dt(ρ2) ∈ Im(D)). Actually all these
equations are integrable, i.e. possess infinitely many commuting symmetries,
higher conservation laws, have Lax’s representations, etc. In this particular case
first two integrability conditions proved to be sufficient for the classification.



Example of classification

Integrability conditions for more general equation ut = uxxx + f (x , u, ux , uxx )
are:

Dt

(
∂f
∂u2

)
= Dxσ0 ,

Dt

(
∂f
∂u1
− 1

3

(
∂f
∂u2

)2
)

= Dxσ1

Dt

(
∂f
∂u
− 1

3

(
∂f
∂u2

)(
∂f
∂u1

)
+ 2

27

(
∂f
∂u2

)3

+ 1
3
σ0

)
= Dxσ2

Dt(σ1) = Dx (σ3).



Difference equations

Quadrilateral equations:

Q(u0,0, u1,0, u0,1, u1,1) ∈ C[u;S, T ], JQ = 〈Q;S, T 〉 ⊂ C[u;S, T ],

Difference fields:

FQ = Frac(C[u;S, T ]/JQ ), Fs = Frac(C[u;S]), Ft = Frac(C[u; T ]), .

Definition
An element K ∈ FQ is called a symmetry of the equation
Q(u0,0, u1,0, u0,1, u1,1) = 0 if in FQ

Q∗(K) = 0, Q∗ =
∑

i,j∈{0,1}

∂Q

∂ui,j
S iT j .



Difference equations

Definition
Let A be a formal series of order N

A = aNSN + aN−1SN−1 + · · ·+ a1S + a0 + a−1S−1 + · · · , ak ∈ FQ .

The residue res(A) and logarithmic residue res ln(A) are defined as

res(A) = a0, res ln(A) = ln(aN ) .

Theorem
Let A = aNSN + aN−1SN−1 · · · and B = bMSM + bM−1SM−1 · · · be two
Laurent formal series of order N and M respectively. Then

res[A,B] = (S − 1)(σ(A,B)),

where σ(A,B) ∈ FQ

σ(A,B) =
N∑

n=1

n∑
k=1

S−k (a−n)Sn−k (bn)−
M∑

n=1

n∑
k=1

S−k (b−n)Sn−k (an).



Theorem
If a quadrilateral difference equation possess an infinite sequence of symmetries
Kn ∈ Fs of increasing order 0 < ord+(Kp+1)− ord+(Kp) = N then it has a
formal recursion operator R of order N.

Theorem
Let Q(u0,0, u1,0, u0,1, u1,1) = 0 be a quadrilateral difference equation.
(i) If there exist two s–pseudo-difference operators R and P such that

Q∗ ◦R = P ◦ Q∗,

then R is a recursion operator of the difference equation.
(ii) The above relation is valid if and only if

T (R)−R = [Φ ◦R,Φ−1] ,

where Φ = (Qu1,1S + Qu0,1 )−1 ◦ (Qu1,0S + Qu0,0 ), and

P = (Qu1,0S + Qu0,0 ) ◦R ◦ (Qu1,0S + Qu0,0 )−1.



Theorem
If a (formal) recursion operator R is represented by a first order formal series
R = r1S + r0 + r−1S−1 + · · · , then

(i) (T − 1)(ln r1) = (S − 1)S−1

(
ln

Qu1,1

Qu1,0

)
,

(ii) (T − 1)(r0) = (S − 1)S−1(r1F ),

(iii) (T − 1)(r−1S−1(r1) + r 2
0 + r1S(r−1)) = (S − 1)(σ2),

where

σ2 = S−1(r1 F )
{
S−1(r0) + r0 − S−2 (r1 F )

}
−

−(1 + S−1)
(

r1 G S−1 (r1 F )
)
,

and F ,G denote

F =
Qu0,1S−1(Qu1,0 )− Qu0,0S−1(Qu1,1 )

Qu1,0S−1(Qu1,1 )
, G =

Qu0,0

Qu1,0

.



Problem 1:Find conditions on a ∈ FQ , such that the difference equation a = T (b)− b
is solvable in FQ , and if so find b ∈ FQ (same for a = S(b)− b).

Problem 2: Determine whether the kernel spaces Ker(T − 1) and Ker(S − 1) are
trivial: Ker(T − 1) = Ker(S − 1) = C? If not, give a description of these spaces.

Kernel spaces Ker(T − 1) and Ker(S − 1) can be nontrivial
It depends on the choice of Q. For example, if

Q = uu11 − (u10 − 1)(u01 − 1)

then (
u20

u10 − 1

)(
u − 1

u10

)
∈ Ker(T − 1)

and FQ has a nontrivial subfield of T –constants.

If a ∈ Ft the answer is well known:

a ∈ Im(T − 1) + C ⇔
∑
n∈Z
T −n ∂a

∂u0n
= 0,

element b ∈ Ft can be easily found and Ker(T − 1) = C.



un,mun+1,m + un,m+1un+1,m+1 + un+1,mun+1,m+1 = 0

Canonical conservation laws (∆m = T − 1, ∆n = S − 1):

∆m

(
log

un,mun−1,m

u2
n+1,m

)
= ∆n

(
log

un,mun−1,m

un,m+1(un−1,m + un,m+1)

)

∆m (S + 1)
un−2,m

un,m
= ∆n

(
un,m+1un−2,m

un,m(un−1,m + un,m+1)
− un−1,m

un,m+1
− 1

)

∆m

{
(S + 1)

(
u2

n−2,m

u2
n,m

+
un−3,mun−2,m

un−1,mun,m

)
+ 2

un−2,mun−1,m

un,mun+1,m

}
= ∆nσ

Coefficients of the formal recursion operator

r1 =
un,mun−1,m

u2
n+1,m

r0 = (S + 1)
un−2,m

un,m

r−1 =
un−3,mun,m

u2
n−1,m

+
u2

n,m

un−2,mun−1,m



First symmetry
dun,m

dt1
=

un,mun−1,m

un+1,m

Second symmetry

dun,m

dt2
=

un,mu2
n−1,m

u2
n+1,m

+
un−2,mun−1,m

un+1,m
+

un−1,mu2
n,m

un+1,mun+2,m



Open problems:

I Foundation of the theory (differential-difference algebra).

I Connection of symmetry approach and Lax-Darboux structure.

I Classification of Lax structures.

I Classification of the corresponding elementary Darboux maps.

I Lenard’s scheme for D∆Es and P∆Es.

I Integrability conditions for non-quadrilateral equations.

I Integrability conditions for systems of D∆Es and P∆Es.

I Classification of integrable D∆Es of order higher than (−1,+1).

I Classification of integrable P∆Es and system of P∆Es.

I Non-local extensions and non-evolutionary equations.

I Integrability conditions for multi-dimensional equations.

I Differential and difference equations in “non-commutative” cases.

I Theory of normal forms for approximately integrable systems.

I Connection with differential and difference Galois theory.


