# Periods of meromorphic quadratic differentials and Goldman bracket

**Dmitry Korotkin** 

Concordia University, Montreal

Geometric and Algebraic aspects of integrability, August 05, 2016

#### References

- ▶ D.Korotkin, *Periods of meromorphic quadratic differentials* and Goldman bracket, to appear
- M.Bertola, D.Korotkin, C.Norton, Symplectic geometry of the moduli space of projective structures in homological coordinates, arXiv:1506.07918
- D.Korotkin, P.Zograf, "Prym class and tau-functions", Contemporary Math. (2013)
- A.Kokotov, D.Korotkin, Tau-functions on spaces of Abelian differentials and higher genus generalization of Ray-Singer formula, J.Diff.Geom., 82, 35-100 (2009)

## Main equation

- $ightharpoonup C_g$  Riemann surface of genus g.
- ▶ "Schrödinger equation" on C<sub>g</sub>:

$$\varphi'' - u\varphi = 0$$

where  $\varphi$  is a (-1/2)-differential (locally), and -2u - meromorphic projective connection on  $C_g$  with n simple poles.

Parametrization of space of all "potentials":

$$\varphi''+(\frac{1}{2}S_0+Q)\varphi=0$$

 $S_0$  - "base" projective connection, Q - meromorphic quadratic differential with n simple poles.

## Canonical symplectic structure on $T^*\mathcal{M}_g$

- ▶ Moduli space of pairs  $(C_g, Q)$  is  $Q_{g,n} = T^*\mathcal{M}_{g,n}$ ; dim $Q_{g,n} = 6g 6 + 2n$
- ▶  $\{q_i\}_{i=1}^{3g-3+n}$  any complex coordinates on  $\mathcal{M}_{g,n}$  (say, 3g-3 entries of period matrix and  $(v_1/v_2)(y_k)$ );  $\{v_i\}$  normalized abelian differentials.  $\{d\ q_i\}_{i=1}^{3g-3+n}$  basis in cotangent space;  $\{p_i\}_{i=1}^{3g-3+n}$  coordinates of cotangent vector in this basis.
- Symplectic structure and symplectic potential:

$$\omega_{\textit{can}} = \sum_{i=1}^{3g-3+n} \textit{dp}_i \wedge \textit{dq}_i \qquad \quad \theta_{\textit{can}} = \sum_{i=1}^{3g-3+n} p_i \, \textit{dq}_i$$



## Homological Darboux coordinates

Let all zeros of Q be simple:  $\{x_i\}_{i=1}^{4g-4+n}$ . Canonical cover (spectral, Hitchin, Seiberg-Witten...)  $\widehat{C}$ :

$$v^2 = Q$$

in  $T^*C_g$ ; 4g-4+2n branch points at  $\{x_i,y_i\}$ ; genus 4g-3+n; involution  $\mu:\widehat{C}\to\widehat{C}$ 

▶ Decomposition of  $H_1(\widehat{C}, \mathbb{Z})$  into even and odd parts:

$$H_1(\widehat{C},\mathbb{Z}) = H_- \oplus H_+$$

where dim  $H_{+}=2g$ , dim  $H_{-}=6g-6+2n$ . Generators of  $H_{-}$ :  $\{a_{i}^{-},b_{i}^{-}\}_{i=1}^{3g-3+n}$ ; intersection  $a_{i}^{-}\circ b_{j}^{-}=\delta_{ij}$ .

▶ Homological coordinates  $A_i = \int_{a_i^-} v$ ,  $B_i = \int_{b_i^-} v$ .



#### Canonical cover

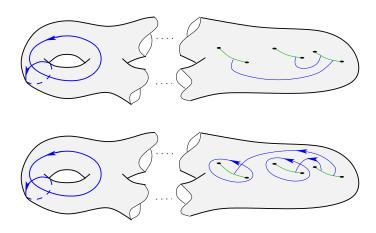


Figure: Canonical basis of cycles on the canonical cover  $\widehat{C}$ 

## Homological and canonical symplectic structures

▶ Homological symplectic structure on  $T^*\mathcal{M}_g$ :

$$\omega_{hom} = \sum_{i=1}^{3g-3+n} dA_i \wedge dB_i$$

Theorem 1.

$$\omega_{hom} = \omega_{can}$$

Thus  $(A_i, B_i)$  are Darboux coordinates for  $\omega_{can}$  on the main stratum of  $T^*\mathcal{M}_g$  (all zeros of Q are simple).

# Symplectic structure on the space of projective connections

- ▶ Space  $\mathbb{S}_g$ : pairs  $(C_g, S)$ , S holomorphic projective connection on  $C_g$ . Affine bundle over  $\mathcal{M}_g$ .
- ▶ Given the "base" projective connection  $S_0$  on  $C_g$  which holomorphically depends on moduli of  $C_g$ , write any S as  $S = S_0 + 2Q$ , for some holomorphic quadratic diff. Q.
- ▶ The map  $F^{S_0}: \mathcal{Q}_g \to \mathbb{S}_g$  is used to induce symplectic structure on  $\mathbb{S}_g$  from  $\omega_{can}$ .
- ▶ Equivalence:  $S_0 \equiv S_1$  if corresponding symplectic structures on  $S_q$  coincide. Generating function  $G_{01}$ :

$$\delta_{\mu} extbf{G} = \int_{ extbf{\emph{C}}_a} \mu ( extbf{\emph{S}}_1 - extbf{\emph{S}}_0)$$



### Equivalent projective connections

- ▶ Schottky projective connection  $S_{Sch}(\cdot) = \{w, \cdot\}$ , where w is the Schottky uniformization coordinate;  $\{\cdot, \cdot\}$  Schwarzian derivative.
- ▶ main example: Bergman projective connection  $S_B$ . Canonical bimeromorphic differential B(x, y) on  $\mathbb{C}_g$ :  $\oint_{a_{x}} B(\cdot, y) = 0$ ,

$$B(x,y) = \left(\frac{1}{(\xi(x) - \xi(y))^2} + \frac{1}{6}S_B(\xi(x)) + \dots\right)d\xi(x)d\xi(y)$$

 ${\it B}$  depends on Torelli marking (choice of canonical basis in homologies on  ${\it C}$ )

- ▶ Generating function from  $S_{Sch}$  to  $S_B$ : Zograf's F-function  $F = \mathcal{Z}'_B(1)$ ;  $\mathcal{Z}_B$  Bowen's zeta-function of Schottky group.
- ▶ Generating function corresponding to change of Torelli marking defining  $S_B$  is given by  $\det(C\Omega + D)$  (cocycle of determinant of Hodge vector bundle).



#### Main tool: Variational formulas

For any  $s_i \in H_-$  define  $s_i^* \in H_ (s_i \circ s_j^* = \delta_{ij})$ ;  $\mathcal{P}_i = \int_{s_i} v$ . Then

$$\frac{\partial B(x,y)}{\partial \mathcal{P}_i} = \frac{1}{2} \int_{t \in s_i^*} \frac{B(x,t)(B(t,y))}{v(t)}$$

where z(x) and z(y) are kept constant.

$$\begin{split} \frac{\partial v_j(x)}{\partial \mathcal{P}_i} &= \frac{1}{2} \int_{t \in s_i^*} \frac{v_j(t)(\mathcal{B}(t, x))}{v(t)} \\ \frac{\partial \Omega_{jk}}{\partial \mathcal{P}_i} &= \frac{1}{2} \int_{t \in s_i^*} \frac{v_j v_k}{v} \end{split}$$

## Poisson bracket for potential u(z)

- Let  $S_0 = S_B$ ;  $\psi = \phi \sqrt{v}$ ;  $z(x) = \int_{x_0}^x v$  "flat" coordinate on  $C_g$  and  $\widehat{C}$ .
- ▶ Main equation:  $\psi_{zz} u(z)\psi = 0$  where

$$u(z)=-1-\frac{1}{2}\frac{S_B-S_V}{Q}$$

and 
$$S_{\nu}(\cdot) = \{ \int^{x} \nu, \cdot \}$$

- ► Invariant matrix form (on  $\widehat{C}$ ):  $d\Psi = \begin{pmatrix} 0 & v \\ uv & 0 \end{pmatrix} \Psi$
- ▶ Define  $h(x, y) = \frac{B^2(x, y)}{Q(x)Q(y)}$

## Poisson bracket for potential u(z) (continued)

$$\frac{4\pi i}{3}\{u(z),u(\zeta)\}=\mathcal{L}_zh^{(\zeta)}(z)-\mathcal{L}_\zeta h^{(z)}(\zeta)$$

where

$$\mathcal{L}_{z} = \frac{1}{2}\partial_{z}^{3} - 2u(z)\partial_{z} - u_{z}(z)$$

is known as "Lenard" operator in KdV theory;

$$h^{(y)}(x) = \int_{x_1}^x h(y,\cdot)v(\cdot)$$

The first example of holomorphic Poisson bracket on a Riemann surface (get as a Dirac bracket from Atiyah-Bott symplectic structure??).

## Monodromy representation and Goldman bracket

- ▶ Fundamental group:  $\pi_1(C_g \setminus \{y_i\}_{i=1}^n, x_0)$  with generators  $(\gamma_i, \alpha_j, \beta_j)$  and relation  $\prod_{j=1}^g \alpha_j \beta_j \alpha_j^{-1} \beta_j^{-1} \prod_{i=1}^n \gamma_i = id$
- ▶ Monodromy matrices:  $M_{\alpha_i}$ ,  $M_{\beta_i}$ ,  $M_{y_i}$  with relation

$$\prod_{i=1}^{n} M_{y_i} \prod_{j=1}^{g} M_{\beta_j}^{-1} M_{\alpha_j}^{-1} M_{\beta_j} M_{\alpha_j} = I$$

▶ Goldman's bracket on character variety  $V_{g,n}$ :

$$\{\operatorname{tr} M_{\gamma}, \operatorname{tr} M_{\tilde{\gamma}}\} = \frac{1}{2} \sum_{p \in \gamma \cap \tilde{\gamma}} (\operatorname{tr} M_{\gamma_p \tilde{\gamma}} - \operatorname{tr} M_{\gamma_p \tilde{\gamma}^{-1}})$$



## Relation to results of S.Kawai, Math Ann (1996)

- ▶ Kawai: "canonical symplectic structure on  $T^*\mathcal{M}_g$  implies Goldman bracket if  $S_0 = S_{Bers}$ ".
- ▶ Together with our results:  $S_B$  and  $S_{Bers}$  are in the same equivalence class; implies existence of generating function.
- Conjecture:

$$G = -6\pi i \log rac{\mathcal{Z}'[\Gamma_{C_0,\eta}](1)}{\det(\Omega - \overline{\Omega}_0)}$$

where  $\mathcal{Z}$  is the Selberg zeta-function  $\mathcal{Z}(s) = \prod_{\gamma} \prod_{m=0}^{\infty} (1-q_{\gamma}^{s+m})$  corresponding to quasi-fuchsian group  $\Gamma_{C_0,\eta}$ ;  $\Omega$  and  $\Omega_0$  are period matrices of  $C_0$  and C.

## Tau-function of Scrödinger equation

► Motivation: Jimbo-Miwa tau-function for Schlesinger system:  $\frac{d\Psi}{dx} = \sum_{i=1}^{N} \frac{A_i}{x-x_i} \Psi$ :

$$\frac{\partial \log \tau_{JM}}{\partial x_i} = \frac{1}{2} \mathrm{res}|_{x_i} \frac{\mathrm{tr}(d\Psi \Psi^{-1})^2}{dx}$$

 A straightforward analog of this definition in the case of Schrödinger equation (no isomonodromy!)

$$\frac{\partial \log \tau}{\partial \mathcal{P}_{s_i}} := \frac{1}{4\pi i} \int_{s_i^*} \left( \frac{\operatorname{tr}(d\Psi\Psi^{-1})^2}{v} + 2v \right)$$

where  $\mathcal{P}_{s_i} = \int_{s_i} v$ ; this gives rise to Bergman tau-function

$$\frac{\partial \log \tau}{\partial \mathcal{P}_{\mathcal{S}_i}} = -\frac{1}{4\pi i} \int_{\mathcal{S}_i^*} \frac{\mathcal{S}_B - \mathcal{S}_V}{V}$$

$$\tau^{\sigma} = \det^{6}(C\Omega + D) \tau \qquad \tau(\epsilon Q) = \epsilon^{1/6(5g - 5 + n)} \tau(Q)$$

### Open: "Yang-Yang" function

•  $(\varphi_i, l_i)$  - complexified Fenchel-Nielsen Darboux coordinates on character variety  $V_{g,n}$ .

$$\omega_{ extit{can}} = \sum_{i} extit{d} \, extit{I}_{i} \wedge extit{d} arphi_{i} = \sum_{i} extit{d} p_{i} \wedge extit{d} q_{i}$$

$$dG_{YY} = \sum_{i} I_{i} d\varphi_{i} - \sum_{i} \rho_{i} dq_{i}$$

(Nekrasov-Rosly-Shatashvili);  $G_{YY}$  - "Yang-Yang" function (depends on pants decomposition on the Character variety side; transforms with dilogarithms; depends also on Torelli marking; transforms as a section of Hodge line bundle).

## Simplest example: genus 0 with 4 simple poles

Poles: 
$$0, 1, t, \infty$$
;  $B(x, y) = \frac{dx dt}{(x-t)^2}$ ,  $S_B = 0$ ;

$$Q = \frac{\mu}{x(x-1)(x-t)}(dx)^2$$

Poisson structure:

$$\{\mu,t\}=\frac{t(1-t)}{4\pi i}$$

Equation (Heun):

$$\varphi'' + \frac{\mu}{x(x-1)(x-t)}\varphi = 0$$

Homological coordinates:

$$\sqrt{\mu} \int_{a,b} \frac{dx}{\sqrt{x(x-1)(x-t)}}$$