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Bi-Hamiltonian structures of KdV-type

It was observed (Olver and Rosenau, 1996) that many PDEs
admit a bi-Hamiltonian structure which is indeed defined by a
trio of mutually compatible Hamiltonian operators.
Examples: the scalar case

P1 = ∂x, Q1 = 2u∂x + ux, R3 = ∂3x.

Poisson pencil of KdV hierarchy (Magri (1978)):

Πλ = Q1 + ε2R3 − λP1 = 2u∂x + ux − λ∂x + ε2∂3x

Poisson pencil of Camassa–Holm hierarchy:

Π̃λ = Q1 − λ(P1 + ε2R3) = 2u∂x + ux − λ(∂x + ε2∂3x).



Examples: the 2-component case

P1 =

(
0 ∂x
∂x 0

)
, Q1 =

(
2u∂x + ux v∂x

∂xv −2∂x

)
,

R2 =

(
0 −∂2x
∂2x 0

)

I Πλ = Q1 + ε2R3 − λP1 AKNS (or two-boson) hierarchy;

I Π̃λ = Q1 − λ(P1 + ε2R3) two-component Camassa-Holm
hierarchy.

We say the pencils of the type of Πλ (or Π̃λ) to be
bi-Hamiltonian structures of KdV-type.



Classification of bi-Hamiltonian structures of KdV type

The problem: classify compatible trios of Hamiltonian operators
P1, Q1, Rn where P1 and Q1 are homogeneous first-order
Hamiltonian operators (Dubrovin and Novikov, 1983)

P1 = gij∂x + Γijk u
k
x, Q1 = hij∂x + Ξijk u

k
x,

and Rn is a homogeneous Hamiltonian operator

Rn =

n∑
l=0

Aijn,l(u, ux, . . . , u(l))∂
(n−l)
x

of degree n > 1 (Dubrovin and Novikov 1984), where Aijn,l are
homogeneous polynomials of degree l in ux, . . . , u(l),
x-derivative has degree 1.
Homogeneous operators are form-invariant with respect to point
transformations ũi = ũi(uj).



A strategy for the classification

The above pencils can be thought as a deformation of a Poisson
pencil of hydrodynamic type.

Due to the general theory of deformations the only interesting
cases are n = 2 and n = 3. In the remaining case the
deformations can always be eliminated by Miura type
transformations (Liu and Zhang, 2005).

Our strategy: knowing the normal forms of R2 and R3 we find
all possible compatible first-order Poisson pencils of
hydrodynamic type P1 − λQ1. This yields bi-Hamiltonian
structures of KdV type with n = 2 (or n = 3).



Homogeneous Hamiltonian operators, degree 2

Second-order operators R2 have been completely described in
the non degenerate case det(`ij) 6= 0 (Potemin 1987, 1991, 1997;
Doyle 1993):

R2 = ∂x`
ij∂x,

where `ij = Tijku
k + T 0

ij , and Tijk, T
0
ij are constant and

completely skew-symmetric, without further conditions.

When m = 2 there is only one homogeneous second-order
Hamiltonian operator (up to point transformations):

R2 =

(
0 1
−1 0

)
∂2x.



Homogeneous Hamiltonian operators, degree 3

Third-order operators R3 have been classified (det(`ij) 6= 0) in
the m-component case with m = 1 (in this case the operator
can be reduced to ∂3x by a point transformation (Potemin 1987,
1991, 1997; Doyle 1993) and m = 2, 3, 4 (Ferapontov, Pavlov, V.
2014, 2016).

R3 = ∂x

(
`ij∂x + cijk u

k
x

)
∂x,

where, introducing cijk = `iq`jpc
pq
k , the following conditions

must be fulfilled:

cnkm =
1

3
(`nm,k − `nk,m),

`mn,k + `nk,m + `km,n = 0,

cmnk,l = −`pqcpmlcqnk.



The geometry of third-order operators

Projective-geometric interpretation: gij is the Monge form of a
quadratic line complex, cijk is the
corresponding tangential line complex. A
quadratic line complex is a subvariety of the
Plücker’s variety of all lines of Pm(C).

Differential-geometric interpretation: cijk = giscsjk is a flat
metric connection with torsion of the first
Cartan type.



Example of Monge metric in the case m = 3

g11 = −[R12(u
2
)
2
+ R13(u

3
)
2
+ 2B12u

2
u
3
+ 2H12u

2
+ 2H13u

3
+ D1],

g22 = −[R12(u
1
)
2
+ R23(u

3
)
2
+ 2B22u

1
u
3
+ 2H21u

1
+ 2H23u

3
+ D2],

g33 = −[R23(u
2
)
2
+ R13(u

1
)
2
+ 2B32u

1
u
2
+ 2H31u

1
+ 2H32u

2
+ D3],

g12 = R12u
1
u
2
+ B12u

1
u
3
+ B22u

2
u
3 − B32(u

3
)
2
+ H12u

1
+ H21u

2
+ (E2 − E1)u

3
+ F12,

g13 = R13u
1
u
3
+ B12u

1
u
2 − B22(u

2
)
2
+ B32u

2
u
3
+ H13u

1
+ H31u

3
+ (E1 − E3)u

2
+ F13,

g23 = R23u
2
u
3 − B12(u

1
)
2
+ B22u

1
u
2
+ B32u

1
u
3
+ H23u

2
+ H32u

3
+ (E3 − E2)u

1
+ F23,



Classification results for operators of degree 3

m = 2: three normal forms of homogeneous third-order
Hamiltonian operators up to point transformations
(Ferapontov, Pavlov, V, JGP 2014)

R
(1)
3 =

(
0 1
1 0

)
∂3x, R

(2)
3 = ∂x

(
0 ∂x

1
u1

1
u1
∂x

u2

(u1)2
∂x + ∂x

u2

(u1)2

)
∂x,

R
(3)
3 = ∂x

(
∂x ∂x

u2

u1

u2

u1
∂x

(u2)2+1
2(u1)2

∂x + ∂x
(u2)2+1
2(u1)2

)
∂x.



Classification results for operators of degree 3

m = 3: six normal forms of homogeneous third-order
Hamiltonian operators up to reciprocal transformations of
projective type (Ferapontov, Pavlov, V, JGP 2014)

g(1) =

(
(u2)2 + c −u1u2 − u3 2u2

−u1u2 − u3 (u1)2 + c(u3)2 −cu2u3 − u1

2u2 −cu2u3 − u1 c(u2)2 + 1

)
,

g(2) =

(
(u2)2 + 1 −u1u2 − u3 2u2

−u1u2 − u3 (u1)2 −u1

2u2 −u1 1

)
,

g(3) =

(
(u2)2 + 1 −u1u2 0
−u1u2 (u1)2 0

0 0 1

)
,

g(4) =

(
−2u2 u1 0
u1 0 0
0 0 1

)
, g(5) =

(
−2u2 u1 1
u1 1 0
1 0 0

)
, g(6) =

(
1 0 0
0 1 0
0 0 1

)
.

m = 4: 38 normal forms, Ferapontov, Pavlov, V. 2016 (IMRN).



Results: trios P1, Q1, R2

m = 1: nothing new, KdV and Camassa-Holm hierarchies.

We focus on the m = 2-component case.
In what follows ci are constants, Levi-Civita conditions:

gisΓjks = gjsΓiks

Γijk + Γjik = ∂kg
ij

Theorem: P1 is compatible with R2 if and only if

g11 = c1u
1 + c2, (1a)

g12 =
1

2
c3u

1 +
1

2
c1u

2 + c5 (1b)

g22 = c3u
2 + c4. (1c)

The above metric is flat for every value of the parameters. Any
Q1 with a metric hij of the above form makes a trio P1, Q1, R2.



Results: trios P1, Q1, R
(1)
3

Theorem: P1 is a Hamiltonian operator compatible with R
(1)
3 if

and only if

g11 =c1u
1 + c2u

2 + c3,

g12 =c4u
1 + c1u

2 + c5

g22 =c6u
1 + c4u

2 + c7

(2)

together with the Levi-Civita conditions

c1c4 − c2c6 = 0, c3c4 − c7c2 = 0, c3c6 − c1c7 = 0. (3)

The above conditions imply the flatness of g.
There is a 5 parameter family of mutually commuting pairs P1,

Q1 that commute with R
(1)
3 .



Results: trios P1, Q1, R
(2)
3

Theorem: P1 is a Hamiltonian operator compatible with R
(2)
3 if

and only if

g11 = c1u
1 + c2u

2, (4a)

g12 = c4u
1 +

c3
u1

+
c2(u

2)2

2u1
, (4b)

g22 = 2c4u
2 +

c6
u1
− c1(u

2)2

u1
+ c5, (4c)

together with the Levi-Civita conditions

c2c6 + 2c1c3 = 0, c2c5 = 0, c1c5 = 0. (5)

The above conditions imply the flatness of g.
There exists a 4 parameter family of mutually commuting pairs

P1, Q1 that commute with R
(2)
3 .



Results: trios P1, Q1, R
(3)
3

Theorem: P1 is a Hamiltonian operator compatible with R
(3)
3 if

and only if

g11 = c1u
1 + c2u

2 + c3, (6a)

g12 = c4u
1 − c2

2u1
+
c3u

2

u1
+
c2(u

2)2

2u1
, (6b)

g22 = 2c4u
2 +

c1
u1

+
c5u

2

u1
− c1(u

2)2

u1
+ c6, (6c)

together with the Levi-Civita conditions

c2c5 + 2c1c3 = 0, c2c6 − 2c3c4 = 0, c1c6 + c4c5 = 0, (7)

The above conditions imply the flatness of g.
There exists a 4 parameter family of mutually commuting pairs

P1, Q1 that commute with R
(3)
3 .



Known examples with R2

I The Kaup–Broer system (Kupershmidt 1985):{
u1t = ((u1)2/2 + u2 + βu1x)x,
u2t = (u1u2 + αu1xx − βu2x)x,

(8)

I In De Sole, Kac, Turhan 2014, a six-parameter family of
pairwise compatible Hamiltonian operators defined by the
cohomology spaces of curves is considered. A subset of
these operator belongs to our class, with R2.



Known examples with R
(1)
3

I A version of the Dispersive Water Waves system
(Antonowicz-Fordy, 1989):

u1t =
1

4
u2xxx +

1

2
u2u1x + u1u2x,

u2t =u1x +
3

2
u2u2x

I Coupled Harry-Dym hierarchy (Antonowicz-Fordy, 1988):

u11 =

(
1

4(u2)1/2

)
xxx

− α
(

1

(u2)1/2

)
x

u2t =u1
(

1

(u2)1/2

)
x

+
u1x

2(u2)1/2



New example with R
(2)
3

Two identical copies of the metric which solves the

compatibility problem with R
(2)
3 , g and h.

Metric g of P1 parametrized by ci.
Metric h of Q1 parametrized by di.

Choosing c3 = 0, d3 = 1, c2 = 2, c4 = 1, d4 = 0, d5 = 0 we
obtain the bi-Hamiltonian system

u1t2 = 2u2u1x + u1u2x

u2t2 = u1u1x + 2u2u2x −
u1xu

1
xx

(u1)2
+
u1xxx
u1

,



Another new example with R
(2)
3

Choosing c4 = 0, c1 = −1, c6 = −1, c2 = 0, d2 = 0, d1 = 0 we
obtain the bi-Hamiltonian system

u1t2 =
3

2

u2x
u1
− 3

2

u2u1x
(u1)2

− u1xxx
(u1)3

+ 9
u1xu

1
xx

(u1)4
− 12

(u1x)3

(u1)5

u2t2 =
3

2

(1− (u2)2)u1x
(u1)3

+
3

2

u2u2x
(u1)2

− 30u2(u1x)3

(u1)6
+ 10

u2x(u1x)2

(u1)5

+ 12
u2x(u1)2x
(u1)5

+−3u2xu
1
xx

(u1)4
− 2

u2u1xxx
(u1)4

− u2xxu
1
x

(u1)4
.



New examples with R
(3)
3

Choosing

c1 = 1, c2 = −1, d3 = 1, c3 = 0, c4 = 0

one easily gets the first non trivial flows of the associated
bi-Hamiltonian hierarchy. Too big to be shown.

The multiparametric families of solutions allow for a great
variety of bi-Hamiltonian systems.



Dubrovin and Zhang’s perturbative approach

Our pencils can be regarded as deformations of a Poisson pencil
of hydrodynamic type. The classification of deformations with
respect to the Miura group

ũi = f i(u1, . . . , un) +
∑
k≥1

εkF ik(u, ux, . . . , u(k)), (9)

has been obtained in recent years in the semisimple case (see
Liu and Zhang (2005) and Carlet, Posthuma, Shadrin (2015)).

Deformations are uniquely determined by their dispersionless
limit and by n functions of one variable, the central invariants.
Deformations with vanishing central invariants can be
transformed to their dispersionless limit, and are trivial.



Central invariants of the examples with R
(2)
3

First example, canonical coordinates:

λ1 = (u1 + u2)2, λ2 = (u1 − u2)2,

central invariants:

s1 = − 1

8
√
λ1
, s2 =

1

8
√
λ2
.

Second example, canonical coordinates:

λ1 =
u2 + 1

u1
, λ2 =

u2 − 1

u1

central invariants:

s1 =
1

2
, s2 = −1

2
.



Central invariants of the example with R
(3)
3

In the example with R
(3)
3 (not shown), canonical coordinates:

λ1 = −1

2

(u2)2 − 1

u2
, λ2 =

1

2

4 (u1)2 − 4u1u2 + (u2)2 − 1

2u1 − u2
,

central invariants:

s1 =
1

2

λ1
√

(λ1)2 + 1− (λ1)2 − 1

(λ1)2 + 1
,

s2 =− 1

2

λ2
√

(λ2)2 + 1 + (λ2)2 + 1

(λ2)2 + 1
.

This means that all the new examples of Poisson pencils
obtained in the previous Section are not Miura-trivial.



Symbolic computations

Within the REDUCE CAS (now free software) we use the
packages CDIFF and CDE, freely available at
http://gdeq.org.

CDE (by RV) can compute symmetries and conservation laws,
local and nonlocal Hamiltonian operators, Schouten brackets of
local multivectors, Fréchet derivatives (or linearization of a
system of PDEs), formal adjoints, Lie derivatives of
Hamiltonian operators.

Cooperation with AC Norman (Trinity College, Cambridge) to
improvements and documentation of REDUCE’s kernel.



Thank you!
Contacts: raffaele.vitolo@unisalento.it


