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Uncertain filtering
I was born not knowing and have had only a little time to change that here and there. —Feynman

Filtering is a common problem in time series and statistics.

I Kalman filters for tracking space shuttles.

I Hidden Markov models for speech recognition.

I Estimation of ARMA processes in basic time series.

Essentially, we have a process X which we cannot see, which
affects the state of a process Y , which we can see.

I Almost always, X and (X ,Y ) are Markov processes in ‘nice’
spaces.

Using Bayes’ theorem and a probabilistic model, we calculate the
distribution of X given Y .
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Uncertain filtering
I was born not knowing and have had only a little time to change that here and there. —Feynman

A basic problem in practice is that the probabilistic model is often
unknown.

I The filter dynamically incorporates new observations of Y ,
but requires the joint dynamics of X and Y as inputs.

I Practically, these dynamics are approximated statistically, and
the filter run using this approximation.

I Errors in the dynamics are not necessarily ‘small’, but often
may be quantifiable.

We will consider how to incorporate our uncertainty in the
underlying model into the filter.

I We will work with a conceptually rigorous description of our
uncertainty, which leads to efficient calculations.
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Kalman–Bucy Filtering
I know who I was when I got up this morning, ...

Suppose our ‘signal’ X is a scalar diffusion satisfying

dXt = αtXtdt +
√
βtdBt , X0 = x

and Y is an observation process satisfying

dYt = ctXtdt + dWt , Y0 = 0.

I B,W are independent Brownian motions

I α, β, ct are locally bounded processes, which may depend
(continuously and non-anticipatively) on the path of Y

I Yt = σ(Ys ; s ≤ t) is the observation filtration.

Our aim is to calculate the distribution of Xt |Yt .
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Kalman–Bucy Filtering
... but I think I must have changed several times since then. —Alice (in Wonderland), Lewis Carroll

Suppose X0 = x ∼ N(q0,R0). As our problem is Gaussian, one can
show that

Xt |Yt ∼ N(qt ,Rt)

where

dRt = (βt + 2αtRt − c2
t R

2
t )dt

dqt = αtqtdt + ctRtdVt

dVt = dYt − ctqtdt

This is the Kalman–Bucy filter, and is easily implemented,
assuming we know α, β, c , q0 and R0.
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Risk aversion and nonlinear expectations
Comment oser parler des lois du hasard? Le hasard n’est-il pas l’antithèse de toute loi? —J. Bertrand

In practice, we don’t know the parameters, so it is difficult to
implement this filter

I Equivalently, as these define the generators of the probability
measure on our space, we can say that we do not know what
the measure should be.

I This is a form of ‘Knightian’ uncertainty – developed initially
by Von Kries, Keynes, Knight, Meinong, Nitsche (among
others)

I An axiomatic approach to dealing with these problems is given
by ‘nonlinear expectations’
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Risk aversion and nonlinear expectations
Comment oser parler des lois du hasard? Le hasard n’est-il pas l’antithèse de toute loi? —J. Bertrand

Given a space (Ω,F ,P), a convex expectation is a map
E : L∞(F)→ R such that

I Monotonicity: If ξ ≥ ξ′ P-a.s. then E(ξ) ≥ E(ξ′),

I Constant triviality and equivariance: For any k ∈ R, E(k) = k
and E(ξ + k) = E(ξ) + k,

I Convexity: For any ξ, ξ′, any λ ∈ [0, 1],

E(λξ + (1− λ)ξ′) ≤ λE(ξ) + (1− λ)E(ξ′).

The measure P acts as a ‘reference’ measure.

I γ log E [exp(ξ/γ)] and EQ [·], for Q ∼ P, are examples

I If E is a convex nonlinear expectation, then ρ(ξ) = E(−ξ) is a
convex risk measure.
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Penalty functions and duality
Comment oser parler des lois du hasard? Le hasard n’est-il pas l’antithèse de toute loi? —J. Bertrand

We can describe a convex expectation through its dual:

I Suppose E is lower semicontinuous: If ξn ↑ 0 then E(ξn) ↑ 0.

I Then E has the representation

E(ξ) = sup
Q∼P

{
EQ [ξ]−Z(Q)

}
where the supremum is taken over probability measures
equivalent to P (assuming Z(Q) <∞ for some Q ∼ P).

I Knowing Z is enough to allow us to calculate E for every
random variable
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Penalty functions and duality
Comment oser parler des lois du hasard? Le hasard n’est-il pas l’antithèse de toute loi? —J. Bertrand

This convex expectation can then be used to give robust estimates
of many quantities, by minimizing a loss functional, e.g.

arg infξ̂∈RE(‖ξ − ξ̂‖2 |Yt),

for any random variable ξ.

This formulation is also natural when looking at ‘robust control’
problems, where we are interested in minimizing the maximum
expected cost (among ‘reasonable’ models of costs).

Uncertain Filters: Nonlinear Expectations 9



Statistical uncertainty and expectations
Those who ignore statistics are condemned to reinvent it. —Efron (attrib.)

We still need to choose a penalty Z. This should come from our
uncertainty over the inputs (α, β, c, q0,R0).

To do this, we need to answer two questions:

I Do we have a fixed penalty over the inputs, but then evolve
using standard filtering, or

I do we try and learn the values of the inputs, and so modify
our penalty as we observe new data?

and

I Are the values of α, β, c fixed through time, or

I do the values of the parameters vary dynamically?

Today, we will look at a fixed penalty, with dynamic parameters.
We will also assume c is known.
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Statistical uncertainty and expectations
Those who ignore statistics are condemned to reinvent it. —Efron (attrib.)

I For initial parameters, we have a penalty κ0(q0,R0).

I For a given process (αt , βt), we have a penalty∫
[0,T ]

γt(αt , βt)dt

I κ0 and γ are known functions, which may depend on Y
non-anticipatively, and have minimal value 0.

I A natural choice is given by the negative log-likelihood from
precalibration

Given this, for fixed parameters k, k ′, we define

Z(Q(q0,R0,α,β)) :=
(1

k

(
κ0(q0,R0) +

∫
[0,T ]

γt(αt , βt)dt
))k ′
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Looking only at the current state...
When my information changes, I alter my conclusions. What do you do, sir? —Keynes (attrib.)

For filtering, we don’t want to consider the measure on (Ω,F), but
only the law of Xt |Yt

I For every model under consideration, the law is given by
Xt |Yt ∼ N(qt ,Rt), for some q,R.

I Applying the same logic, we can look for a penalty on q,R, to
obtain

E(f (Xt)|Yt) = sup
q,R

{∫
f (x)φq,R(x)dx −

(1

k
κt(q,R)

)k ′}
where κ is to be determined.

I If we can calculate κ, then we can calculate the convex
expectation of any function of the current state.
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Finding κ through control
When my information changes, I alter my conclusions. What do you do, sir? —Keynes (attrib.)

I We need κ to align with our general penalty Z
I We only need consider the smallest penalty associated with

q,R, that is

κ(q,R) = inf
α,β

{
κ0(q0,R0) +

∫
[0,T ]

γt(αt , βt)dt :

Xt |Yt ∼Q(q0,R0,α,β) N(q,R)
}
,

all others will be ignored by the optimization.

I This yields a control problem for κ.

I The natural space for αt , βt is all nonanticipative functions of
(t,Ys≤t). Standard dynamic programming yields an optimizer
in terms of (t, qt ,Rt).
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A forward control problem
March on, symbolic host! with step sublime, up to the flaming bounds of Space and Time! —Clerk Maxwell

I We can now view our problem as a random control problem,
forwards in time, for a fixed observed path Y .

I The dynamics are given by (for a control α, β)

dRt = (βt + 2αtRt − c2
t R

2
t )dt

dqt = αtqtdt + ctRtdVt

dVt = dYt − ctqtdt

I And we seek to minimize

κ0(q0,R0) +

∫
[0,T ]

γt(αt , βt)dt

subject to the terminal condition (qT ,RT ) = (q,R)
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A forward control problem
March on, symbolic host! with step sublime, up to the flaming bounds of Space and Time! —Clerk Maxwell

I As we look at our problem pathwise, the stochastic integral is
concerning.

I We assume c is known, so we can take the transformation

(q,R)→ w =
( q
R
− ηt ,

1

R
)

where η is a fixed version of
∫
csdYs

I We then find w has dynamics

dw

dt
= f (w , t, αt , βt) =

( −(w1 + ηt)(α + βw2)
−βw2

2 − 2αw2 + c2
t

)
I These have the advantage of being absolutely continuous, but

do not have nice growth.
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A forward control problem
March on, symbolic host! with step sublime, up to the flaming bounds of Space and Time! —Clerk Maxwell

I In our new variables, we can consider the HJB equation for
our control

∂κ̃

∂t
+ H(w , t,∇κ̃) = 0

I The Hamiltonian is

H(w , t, p) = sup
(a,b)∈R×[0,∞)

{
f (w , t, a, b) · p − γ(t, a, b)

}
and domain (w , t) ∈ U × (0,∞), where U = (R× (0,∞)).

I This is a first order control problem, as we are working
pathwise.

Uncertain Filters: Control for κ 16



A forward control problem
March on, symbolic host! with step sublime, up to the flaming bounds of Space and Time! —Clerk Maxwell

I We shall assume c and η are locally bounded, and the
coercivity condition that ∃p > 1 such that ∀T

inf
0≤t≤T

γ(t, a, b)

|a|p + bp
→∞ as |a|+ b →∞

I The initial penalty κ̃0 is assumed finite-valued, bounded
below, locally Lipschitz and explodes on the boundary of U.

I We will look for a solution κ̃ which satisfies these properties
for each t
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A forward control problem
March on, symbolic host! with step sublime, up to the flaming bounds of Space and Time! —Clerk Maxwell

Theorem
The value function κ̃ is the unique locally Lipschitz viscosity
solution to the HJB equation which explodes (uniformly on
compacts in time) near the boundary of U.

I That κ̃ solves the HJB equation (in viscosity sense) is easy,
from standard methods.

I Uniqueness comes from proving a comparison principle,
through a modified ‘doubling the variables’ argument.

I We have infinite speed of propagation and explosive boundary
conditions.

I Bounded controls cause the explosion to be faster.

I Coercivity helps, as we know the optimizer will not travel too
far towards the boundary.
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A forward control problem
March on, symbolic host! with step sublime, up to the flaming bounds of Space and Time! —Clerk Maxwell

I For a fixed path, we then can consider methods to
approximate the value function κ̃.

I We can then change variables to obtain κ, and hence our
nonlinear expectation.

I This gives a ‘robust’ method to estimate expectations of
functions of the current state of X (and all past values of Y ,
with only minor modifications).

I Explosions in κ̃ are natural, as they indicate ‘impossible’
models.
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Filtration consistency
Probability does not exist —de Finetti

Can we define E(φ(XT )|Yt) for T 6= t?

If we are looking towards decision making and control, this should
satisfy

I Relevance: E(IAφ(XT )|Yt) = IAE(φ(XT )|Yt) for all A ∈ Yt
I Recursivity: E(E(φ(XT )|Yt)|Ys) = E(φ(XT )|Ys) for s < t.

Generally, this is not the case for the expectation we have
constructed with Z.

I The difficulty is that our uncertainty does not agree with the
arrow of time.
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Filtration consistency: Pasting?
Probability does not exist —de Finetti

I To enforce dynamic-consistency, we can consider recursively
defining E .

I If E is dynamically consistent, this will not have any effect.

I In discrete time, this generates a variation of the conditional
expectation

~E(φ(XT )|Yt) := ξt = E(ξt+1|Yt)

I In continuous time, we expect that this will satisfy a BSDE in
the observation filtration.

I BSDEs are a natural way to encode changes of measure,
particularly in a non-Markov or infinite dimensional setting.
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Filtration consistency: BSDEs
Probability does not exist —de Finetti

I In the observation filtration, for a fixed reference measure P
we have the dynamics

dYs = csqsds + dVs

I The process V is the innovation process, and has the
predictable representation property (even though it may not
generate the filtration).

I We note that, in the observation filtration, our uncertainty
only comes in through the state estimate q. (Different
parameters also affect V , but not in law.)

I Not knowing q corresponds (again) to a lack of knowledge of
the law of Y .
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Filtration consistency: BSDEs
Probability does not exist —de Finetti

For a formal derivation of the BSDE, we take

ξt+h − ξt = ξt+h − EP [ξt+h|Yt ] + EP [ξt+h|Yt ]− ξt
≈ Zt(Vt+h − Vt)− (ξt − EP [ξt+h|Yt ])

this suggests the drift term

h−1(ξt − EP [ξt+h|Yt ])
= h−1(E(ξt+h|Yt)− EP [ξt+h|Yt ])

= sup
q,R

(
ZtEQ

[Wt+h −Wt

h

]
− h−1

(1

k
κ(q,R)

)k ′)
= sup

q,R

(
Ztct(q − q∗t )− h−1

(1

k
κ(q,R)

)k ′)
where q∗ is the filter state under the reference measure P.
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Filtration consistency: BSDEs
Probability does not exist —de Finetti

I This shows that, without proper scaling, unless k ′ =∞ our
uncertainty over future values will vanish with recursion.

I Rescaling κ with h1/k ′
, we (formally) obtain a nontrivial

BSDE for ~E(φ(XT )|Yt) := ξt ,

dξt = −g(Zt)dt + ZtdVt ; ξT = E(φ(XT )|YT )

where V is the (reference) innovations process and

g(z) = sup
q,R

(
Ztct(q − q∗t )−

(
k−1κ(q,R)

)k ′)
.

I For bounded φ, existence holds via monotonicity

I More generally, minimal supersolutions exist by convexity
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Filtration consistency: BSDEs
Probability does not exist —de Finetti

I By construction, our expectation ~E is Y-consistent.

I There is an interesting ‘double counting’ of the uncertainty in
our definition of ~E .

I We include both our uncertainty in the state XT |YT , but our
uncertainty at Yt about the value we will give at Ys for s > t.
Given c is known, this double counting only appears through
qt .

I This added conservatism is natural from a dynamic risk
management perspective.

I One can use this to give value functions for optimal control
problems with uncertain observation.
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Multidimensional Problems
Behold, these things pass away, that others may replace them —Augustine of Hippo

I In this presentation today, we have only considered scalar
processes.

I In the Kalman–Bucy setting, this can be relaxed, provided we
have some non-degeneracy of our observations (the filtered
variance matrix must remain invertible for all models)

I Appropriate coercivity assumptions follow, even though the
domain of the control problem defining κ becomes more
delicate (R now lives on the space of positive definite
matrices).

I That κ̃ solves the viscosity equation follows as before.

I This allows a very wide range of classical time-series to be
considered.
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Uncertainty in the signal-observation link
Behold, these things pass away, that others may replace them —Augustine of Hippo

I We would like to allow c to also be uncertain.

I In discrete time, this poses no difficulty.

I In continuous time, we have problems due to the pathwise
formulation of our control problem.

I We have been considering using various methods to overcome
this. (Suggestions welcome!)
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Non-Kalman–Bucy settings
Behold, these things pass away, that others may replace them —Augustine of Hippo

I In the setting where X is a finite-state Markov chain,
analogous equations can be found (using the Wonham filter)

I We expect the same results will hold, mutatis mutandis.

I Observations with jumps do not change the problem
significantly in this setting.

I In general, we need to consider optimal control with the Zakai
equation generating the state process.

I We expect this to pose some interesting problems in
stochastic control.
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Learning and uncertainty
Behold, these things pass away, that others may replace them —Augustine of Hippo

I Today we have considered an uncertain-prior model, which
does not include learning

I In discrete time, we have an analogous theory which includes
learning, through a change in the dynamics of κ.

I A derivation of our problem from likelihood theory adds a
term ctqtdYt − (ctqt)

2dt to the dynamics of κ.

I Given c is known, this formally leads to κ solving a stochastic
HJB equation (up to a translation).

I This allows us to combine statistical estimation of our model
with filtering, in a consistent manner.
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Numerical methods
Behold, these things pass away, that others may replace them —Augustine of Hippo

I Given our existence/uniqueness result for the HJB equation,
we are well placed to apply numerical methods. Some
tweaking is needed to use the exploding boundary.

I Basic experiments suggest that, for well-calibrated models, a
form of central limit theorem applies. In particular, κ is
smooth enough to be well approximated by a quadratic, at
least around its minimal value.

I Making this approximation rigorous (through approximation of
control problems) will give fast approximations to this
estimation problem.

I There are also numerical questions surrounding calculation of
~E , as the state variable κ is infinite dimensional.
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Control problems
Behold, these things pass away, that others may replace them —Augustine of Hippo

I Using the expectation ~E in a control problem leads to an
interesting class of problems, combining filtering and control
with uncertainty.

I Understanding how this changes behaviour is of interest, in
particular in what circumstances it leads to ‘exploratory’
behaviour.

I Giving a rigorous mathematical basis for the value of
information as also potentially possible in this framework.
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