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Motivation

• Important aspect in stochastic modelling: jumps
• Rough paths à la Lyons very successful in dealing with continuous
stochastic processes (e.g. F-Victoir book 2010)

- continuous semimartingales
- continuous Gaussian processes (ρ-variation of covariance ....)
- Markov processses (with generator L = ∂i

(
aij (x) ∂j

)
...)

• Pathwise view on general (a.k.a. càdlàg) semimartingale theory?
• What can we say about “general” rough paths, allowing for jumps?

• Hölder rough path theory subset of Hairer’s regularity structures. Not
true for p-variation rough path (with or without jumps).

• Even without jumps: advantages of p-variation over Hölder in
applications?
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Background I: “general” Young integration

• Given X ,Y ∈ Dp, i.e. càdlàg and of finite p-variation, p < 2
• Theorem (Young) Write π for finite partition of [0,T ]. Then

∃ lim
|π|→0

∑
[s,t]∈π

Y −s Xs,t =:
∫ T

0
Y −dX

• Same limit if Y −s replaced by Ys .
• Local expansion with precise error estimate (Young inequality)
• Convergence in RRS sense does not require càdlàg. But if either is
càdlàg, as above, get MRS convergence.
• If X ∈ BV and both càdlàg, limit agrees with RS integral

∫
(0,T ]

• NB: We insist on left-point evaluation of integrand. If evaluate
integrand at arbitrary r ∈ [s, t] get, assuming no common jumps, only
RRS convergence. (Nice survey by Dudley–Norvaisa ’98.)
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Background II: general semimartingales

• Let X càdlàg semimartingale, with X (ω) ∈ D2+ , let Y càdlàg adapted

• Theorem: The Itô integral
∫
Y −dX has the presentation∫ T

0
Y −dX = lim

n
∑

[s,t]∈πn

Y −s Xs,t

• Actually same result if Y −s replaced by Ys .

• Theorem (Lépingle’s BDG) Let M be a local càdlàg martingale.
Then, for p = 2+ and ϕ convex, moderate

E ϕ
(
‖M‖p-var;[0,∞)

)
� E ϕ

(
[M ]1/2

∞

)
• Theorem For nice coefficients vector fields: existence, uniqueness for
differential equations driven by general semimartingales.
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cont’d: semimartingale stability

• Theorem (Kurtz-Protter, 91) Let X , (X n)n≥1,H, (Hn)n≥1 be càdlàg
adapted processes (with respect to some filtrations Fn). Suppose
(Hn,X n)n≥1 converges in law (resp. in probability) to (H,X ) in the
Skorokhod topology as n→ ∞, and that (X n)n≥1 is a sequence of càdlàg
semimartingales satisfying UCV. Then X is a semimartingale (with respect
to some filtration F) and (Hn,X n,

∫ ·
0 H

n
t−dX

n
t ) converge in law (resp. in

probability) to (H,X ,
∫ ·

0 Ht−dXt) in the Skorokhod topology as n→ ∞.

• Also applies to differential equations driven by X n under UCV and yields
flexible limit theorems for Itô SDEs. (All this before rough paths.)
• With a extra work, also gives Wong-Zakai result for continuous driving
semimartingales. But: UCV typically fails for homogenization problems.

• Reminder on UCV: A sequence of semimartingales (X n) satisfies
uniformly controlled variation (UCV) condition if (in essence) one has
decompositions X n = Mn + An with uniform control on [Mn] and the
BV-norm of An. (Various localizations built in the actual definition).
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cont’d: Marcus canoncial SDEs

• Idea/intuition: transform X ∈ Dp ([0,T ]) into a X̃ ∈ Cp-var
([

0, T̃
])

, by
”stretching” time when

∆sX 6= 0

and replace the jumps by straight line connecting Xs− with Xs

• In case of càdlàg semimartingales, implement as∫ T

0
f (X ) � dX : =

∫ T

0
f (Xt−) dXt +

1

2

∫ T

0
Df (Xt−) d [X ,X ]ct

+ ∑
t∈(0,T ]

∆tX

{∫ 1

0
f (Xt− + θ∆tX )− f (Xt−)

}
dθ

• Also works for differential equations: dY = f (Y ) � dX etc
(“Marcus canonical SDE”, a.k.a. “geometric solutions”)

• Theorem (Kurtz, Pardoux, Protter ’95) Wong-Zakai theorem for
such canonical SDEs, with general driving semimartingales
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Background III: (continuous) rough paths

• Consider p ∈ [2, 3) and X = (X , X) ∈ Cp-var (not necessarily geometric)

• For nice F , set Y = F (X ) and Y ′ = DF (X ) have

sup
π

∑
[s,t]∈π

|Rs,t |p/2 < ∞ where Rs,t := Ys,t − Y ′sXs,t

• Theorem (Lyons ’98) The following rough integral is well-defined

∃ lim
|π|→0

∑
[s,t]∈π

YsXs,t + Y ′sXs,t =:
∫ T

0
YdX

Moreover, for nice vector fields have existence, uniqueness for differential
equations (RDEs) driven by continuous rough paths. Locally Lipschitz
continuity of solution map in p-variation rough path metrics, also p ≥ 3.

• Non-geometric case p ≥ 3: branched rough paths (Gubinelli)
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Background V: the work of D. Williams (’01)

• Marcus canonical (a.k.a. geometric) solutions in the Young regime.
• Forward solution, in sense of Young integral equation, similar to Itô.
• Then considers X multidimensional Lévy, constructs stochastic area A

such that
sup

π
∑

[s,t]∈π

|As,t |p/2 < ∞ a.s.

• Transforms (X (ω) , A (ω)) on [0,T ] into X̃(ω) ∈ Cp-var[0, T̃ (ω)]

• Solves RDE dỸ = f (Ỹ )dX̃ (ω). Undoing time-stretching defines the
solution to

dY = f (Y ) d(X , A)

• So-constructed solution coincides with Marcus canoncial SDE solution.
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• Williams’ work begs the definition of a “general” rough path
• Definition (F-Shekhar ’15): Fix p ∈ [2, 3). We call X = (X , X)

a general (a.k.a. càdlàg) rough path, in symbols X ∈ Dp, if

t 7→ X0,t càdlàg & X ∈ Dp & sup
π

∑
[s,t]∈π

|Xs,t |p/2 < ∞

• In Marcus resp. Williams setting insert in straight lines =⇒

lim
s↑t

Xs,t =: ∆tX = ∆tA︸︷︷︸
= 0

+
1

2
(∆tX )⊗2

• Definition cont’d: Say X ∈ Dp is geometric if values in G 2(Rd ) and
Marcus-like if in addition

log ∆tX = (∆tX , ∆tA) ∈ Rd ⊕ {0} ⊂ g2(Rd )

• Non-linear rough path spaces: Dp
M ⊂ Dp

g ⊂ Dp.
• Extension to all p < ∞.
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Elementary examples: geometric càdlàg rough path

• Consider a pure jump path: ∆iX := ∆τiX 6= 0 for times (τi )

Lifts ”canonically” to a Marcus-like rough path X ∈ Dp
M (any p > 0)

X0,t = ⊗i :τi≤t exp ∆iX =

(
X0,t , ∑

i<j

∆iX ⊗ ∆jX +
1

2 ∑
i

(∆iX )⊗2

)

• Pure area jump path: X ≡ 0 and ∆iX =∆iA 6= 0 at times τi

Xt = ⊗i :τi≤t exp ∆iA = exp

(
∑

i :τi≤t
∆iA

)

(Note that, for any p > 0, have X ∈ Dp
g but /∈ Dp

M.)

P.K.Friz (TU and WIAS Berlin) Rough paths with jump etc. 11/07/17 10 / 27



Elementary examples: non-geometric càdlàg rough paths

• Consider X ∈ D1[0,T ], i.e. càdlàg BV, with X0 = 0. Enhanced with

X0,t =
∫
(0,t]

X− ⊗ dX ,

obtain a (non-geometric) rough path (X , X) = X ∈ D1 (but /∈ D1
g),

Xs,t =
∫
(s,t]

(Xr− − Xs)⊗ dXr

• Similar for p ∈ [1, 2) using Young integration

• Càdlàg not so important, cf. earlier remarks on Young integration
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Semimartingales as càdlàg rough paths

• Assume X is d-dimensional semimartingale lifted to X∗ = (X , X∗)
where ∗ distinguishes between Itô- and Marcus lift:

XI
s,t :=

∫ t

s
X−s,r ⊗ dXr (Itô)

XM
s,t :=

∫ t

s
Xs,r � ⊗dXr (Marcus)

• Theorem (F-Chevyrev ’17) A general multidimensional
semimartingale, enhanced with (Marcus resp. Itô) interated integals yields
a random, càdlàg (geometric resp. branched) p-rough path: ∀p ∈ (2, 3),

XM (ω) ∈ Dp
M and XI (ω) ∈ Dp a.s.

If X is a càdlàg local martingale, then “rough” BDG holds:

E ϕ
(
|||X∗|||p-var;[0,∞)

)
� E ϕ

(
|[M ]∞|1/2

)
• Unifies previous works of Lépingle, Williams, Coutin-Lejay, F-Victoir ...
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Semimartingales as rough paths, idea of proof

• Showing a.s. XI (ω) ∈ Dp is equivalent to XM (ω) ∈ Dp. Indeed, the
difference

(XM
s,t)

i ,j − (XI
s,t)

i ,j = [X i ,X j ]cs,t + ∑
r∈(s,t]

∆rX
i∆rX

j

. is a.s. BV, hence of finite p/2-variation for p > 2, as required.

• Key steps in the argument:
(1) establish BDG for Marcus lift in uniform norm.
(2) Control moments of p-rough norm with a certain interpolation

estimate. Define greedy (stopping times) partition (τδ
j )

∞
j=0 based on

“≥ δ-oscillations”. Define ν(δ) := inf{j ≥ 0 | τδ
j = ∞} and exploit

||X||pp-var .∑
k

2−pkν(2−k).

(3) Adaption of Lépingle’s arguments. �
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“General” rough integration with jumps

Theorem (F-Shekhar ’15) Consider a càdlàg rough path
X = (X , X) ∈ Dp for p ∈ [2, 3). Set

Yt = F (Xt) , Y ′t = DF (Xt)

(have notion of càdlàg controlled rough path ...) Set also

X̃s,t = Xs,t + ∆sX ⊗ Xs,t .

Then the following rough integral is well-defined∫ T

0
Y−dX := lim

|π|→0
∑

[s,t]∈π

Ys−Xs,t + Y ′s−X̃s,t ∼ ∑
[s,t]∈π

YsXs,t + Y ′sXs,t

(and gives rise to càdlàg controlled rough path ...)

P.K.Friz (TU and WIAS Berlin) Rough paths with jump etc. 11/07/17 14 / 27



Rough vs. Itô stochastic integration

As before, Yt = F (Xt) , Y ′t = DF (Xt).

• Theorem (Chevyrev-F): Let X = X (ω) be general (a.k.a. càdlàg)
semimartingale with Itô lift XI (ω) ∈ Dp. Then∫ T

0
Ys−dXs =

∫ T

0
Ys−dXI

s a.s

Extends to adapted càdlàg controlled rough path (Y ,Y ′). Implies that
forward solution to RDEs, in sense of rough integral equation, with
random driving rough path XI (ω) are classical Itô SDE solutions.

• Unifies previous works where X is Brownian motion, continuous semimartingale, Levy process etc ...
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RDEs with jumps: basic observations in BV case (p = 1)

• Differential equations without solution: let Xt = 1{t≥1} on [0, 2], and
consider the following equation,

Yt = 1 +
∫
(0,t]

YsdXs (in LS sense)

Evaluation at time 1 gives Y1 = 1 + Y1. Contradiction.

• Better to study the forward/Itô equation: Yt = 1 +
∫
(0,t] Y

−
s dXs ,

with explicit (“Doléans-Dade”) solution

Yt = exp (Xt)Π0<s≤t exp−∆sX (1 + ∆sX ) .

• Or geometric solution for Marcus equation: dYt = Yt � dXt ,

given by Yt = exp (Xt) .
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RDEs with jumps: basic observations cont’d

• Let Y be either (forward / geometric) solution from the previous slide.
Easy to see that (local Lipschitz) continuity of the solution map (“Itô
map”)

‖Y − Ȳ ‖1−var . ‖X − X̄‖1−var

• In case of geometric solution could use ∞-norm but this is an artefact of
the scalar situation here.

• Time-change commutes with solution map. Hence trivial to rephrase in
Skorokhod J1 variant of 1-variation distance. Applies e.g. to piecewise
constant approximations of driver.

• But: if X ε denotes a mollification of a (discontinuous) càdlàg BV path
X , it cannot possibly converge in J1-type Skorokhod metric. Fortunately,
Skorokhod M1-type works.
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Rough path metrics

Recall rough path p-variation metric

ρp-var;[s,t](x, x̄) = max
1≤k≤N

sup
D⊂[s,t]

(
∑
ti∈D

∣∣∣xkti ,ti+1
− x̄kti ,ti+1

∣∣∣p/k
)k/p

. (1)

Introduce Skorokhod-J1 variant given by

σp(x, x̄) = inf
λ∈Λ

max{|λ|, ρp(x ◦ λ, x̄)}

and Skorokhod-M1 variant given by

αp-var(x, x̄) = lim
δ→0

σp-var(x
φ,δ, x̄φ̄,δ) (2)

where xφ,δ involves δ-stretching time such as to connect all jumps with via
path-function φ. (Example: log-linear connector, think: Marcus)
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Limit theorem for canonical RDEs

Definition (Canonical RDE)

Let x be a geometric càdlàg rough path and φ a path-function. For nice
vector fields V , let ỹ be the unique solution to the continuous RDE

dỹt = V (ỹt)dx
φ
t , ỹ0 = y0 ∈ Re .

We define y := ỹ ◦ τx ∈ Dp-var([0,T ], Re) as solution to the canonical
RDE

dyt = V (yt) � d(xt , φ), y0 ∈ Re , (3)

where τx “undoes the time-stretching” used to define x
φ
t .

In the particular case that φ is the log-linear path function, we call it
Marcus canonical RDE and write

dyt = V (yt) � dxt , y0 ∈ Re .
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Limit theorem for canonical RDEs cont’d

• Theorem (Chevyrev-F ’17) For nice vector fields V , the
afore-mentioned canoncial RDE has a unique solution and the solution map

(y0, (x, φ)) 7→ y

is locally Lipschitz (w.r.t. αp-var in driving rough path /path-function). In
particular,

lim
n→∞
|yn0 − y0|+ αp-var(x

n, x) = 0 (4)

implies that

sup
n
||yn||p-var < ∞, and lim

n→∞
ynt = yt for all continuity points t of x.

• Get flow of diffeomorphisms and corresponding continuity results.
• Solution to Marcus canonical RDE dyt = V (yt) � dxt with random
driving rough path XM (ω) yields Marcus canonical SDE solution.
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Application to Marcus canonical SDEs

• Theorem (Chevyrev-F ’17) Let (X n)n≥1 be a sequence of
semimartingales such that X n converges in law (resp. in probability) to a
semimartingale X in the Skorokhod topology. Suppose moreover that
(X n)n≥1 satisfies the Kurtz-Protter UCV condition. Then the lifted
processes (Xn)n≥1 converge in law (resp. in probability) to the lifted
process X in the Skorokhod space D([0,T ],G 2(Rd )), and for every
p > 2, (||Xn||p-var)n≥1 is a tight collection of real random variables. (Here
all lifts are in Marcus sense, but similar result for Itô lift!)

• By interpolation, for every p′ > p and for φ a nice pathfunction, one
sees (Xn, φ)→ (X, φ) in law (resp. in probability) w.r.t. metric αp′-var.

• This applies e.g. to Xn := mesh (1/n)-piecewise constant approximation
of X and φ log-linear, gives Wong-Zakai result for Marcus canonical SDEs
driven by general semimartingales à la Kurtz-Protter-Pardoux (’95).
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• By interpolation, for every p′ > p and for φ a nice pathfunction, one
sees (Xn, φ)→ (X, φ) in law (resp. in probability) w.r.t. metric αp′-var.

• This applies e.g. to Xn := mesh (1/n)-piecewise constant approximation
of X and φ log-linear, gives Wong-Zakai result for Marcus canonical SDEs
driven by general semimartingales à la Kurtz-Protter-Pardoux (’95).
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Canonical theory, comments

• Feature of the canonical/Marcus-type approach: can rely on body of
results of continuous (rough path) theory

• Recover classical results (such as e.g. Kurtz-Protter-Pardoux) as
benchmark, but can easily go beyond. Example: construct geometric
càdlàg rough path with arbitrary p > 1 directly via suitable Lie-group
valued Levy processes (F-Shekhar) or semimartingales ... similar in
non-geometric setting (Butcher groups instead of free nilpotent groups)

• Methodology well-adapted to (also non-linear) SPDEs with càdlàg rough
noise because it can be played back - whenever available - to a
(rough)pathwise SPDE theory with continuous drivers (think:
Lions-Souganidis stochastic viscosity theory, Lions-Perthame-Souganidis
stochastic conservation laws with rough flux ... also works of
F-Gassiat-Lions-Souganidis, Gess-Souganidis, Hofmanova)
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Limit theorem for forward RDEs

• Recall definition of rough integral against càdlàg rough path in terms of
compensated RS-sums. Gives meaning to the “forward” rough differential
equation

Yt = y0 +
∫ t

0
V (Y −s )dXs . (5)

• Theorem (F-Zhang ’17): For nice vector fields V , this RDE has a
unique solution and the solution map

(y0, x) 7→ Y

is locally Lipschitz, w.r.t. Skorokhod J1 type rough path metirc σp-var.
Moreover, have local expansion of solution with estimates.

• Forward solution to RDEs, in sense of rough integral equation, with
random driving rough path XI (ω) are classical Itô SDE solutions.
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Forward/Itô theory, comments (deterministic)

• Cannot rely on continuous (rough path) theory, redo everything! Behind
the scene: a sewing lemma with non-regular controls. Might be useful
elsewhere (e.g. rough conservation law context, Deya et al.)
• In contrast to canonical (a.k.a. geometric) theory: local estimates!

• Effectively an Itô-version of Lyons’ famous limit theorem. Applies e.g. to
Xn := mesh (1/n)-piecewise constant approximation of X and so provides
an immediate proof of the convergence of (higher-order) Euler schemes to
rough differential equations. (Continuous case due to Davie when p < 3.)
• Extension to branched (càdlàg) rough path drivers possible
• Every piecewise constant path can be lifted to branched rough path.
Branched DE driven by such object reduces to discrete recurrence relation.
Existence and uniqueness trivial in the case.
• However, have a entire scale of p-variation metrics for branched rough
path capable of controlling the output in the uniform metric. Applies
potentially to quantify stability of (very) deep neuronal networks (joint
with C. Bayer). Practicality to be seen ...
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• Effectively an Itô-version of Lyons’ famous limit theorem. Applies e.g. to
Xn := mesh (1/n)-piecewise constant approximation of X and so provides
an immediate proof of the convergence of (higher-order) Euler schemes to
rough differential equations. (Continuous case due to Davie when p < 3.)
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Forward RDEs with random drivers

Back to a stochastic setting, p ∈ [2, 3) for simplicity.

Theorem (F-Zhang ’17) Given random rough paths Xn → X weakly (or
in probability) under the uniform (or Skorokhod) metric, with
{|||Xn|||p-var;[0,T ] : n ≥ 1} tight for some p < 3. Assume

dY n = F (Y n
−)dXn

and similarly for Y , driven by dX, with the same initial value y0. Then the
random forward RDE solution Y n converges weakly (or in probability) to
Y in uniform (or Skorokhod) sense. Moreover,

{‖Y n‖p,[0,T ] (ω) : n ≥ 1}

is tight and one also has the weakly (or in probability) convergence in
p′-variation (or Skorokhod) metric for any p′ > p.

P.K.Friz (TU and WIAS Berlin) Rough paths with jump etc. 11/07/17 25 / 27



Random forward solutions, comments (stochastic)

• Recall UCV implies tightness in (rough path) 2+-variation for Itô-lifted
semimartingales.
• Recover precisely the Kurtz-Protter result for convergence of SDEs with
UCV approximate semimartingale drivers (benchmark!)

• Sanity check: try Donsker (rescaled random walk =⇒ Brownian
motion). Under second moment assumption, conclude corresponding weak
limit theorem for SDEs.
• Since limit driving rough path is continuous, can do the same with
discrete Hölder rough path (Kelly ’16; see also Erhard-Hairer’s
discretisations of regularity structures ’17), need 6+ moments.
• Could be helped with Besov (rough path / model) spaces with
integrability < ∞, but best to use p-variation (as long as dim(t) = 1, case
of rough paths, and certainly in presence of jumps). Should be useful to
reduce moment assumptions in the (homogenization) works of
(Kelly-)Melbourne ’16

P.K.Friz (TU and WIAS Berlin) Rough paths with jump etc. 11/07/17 26 / 27



Random forward solutions, comments (stochastic)

• Recall UCV implies tightness in (rough path) 2+-variation for Itô-lifted
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My coauthors

This talk based on work with

Atul Shekhar (KTH Stockholm), joint paper [General Rough
integration, Levy Rough paths and a Levy–Kintchine type formula] to
appear in Ann. Prob.

Ilya Chevyrev (Oxford), joint paper [Canonical RDEs and general
semimartingales as rough paths] on arXiv

Huilin Zhang (Shandong University and TU Berlin), paper
[Differential Equations driven by Rough Paths with Jumps], soon on
arXiv

Thank you for your attention!
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