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• Localisation error for SPDEs
• Finite difference schemes for the Zakai equation
• Truncated schemes
• Accelerated schemes

The talk is based on M. Gerencsér and I. G. (2017)
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1. Motivation, Nonlinear filtering

Consider a partially observed system Zt = (Xt ,Yt) governed by

dXt =b(Zt) dt + θ(Zt) dWt + ρ(Zt) dVt , X0 = ξ,

dYt =B(Zt) dt + dVt , Y0 = η, (1)

b = b(x , y), B = B(x , y) are Lipschitz continuous vector fields,
θ = θ(x , y), ρ = ρ(x , y) are Lipschitz continuous matrix fields on
Rd+d1 ,
(W ,V ) multidimensional Wiener process,
(ξ, η) is a random vector, independent of (W ,V ).

Task: Calculate the mean square estimate φ̂ of ϕ(Xt) from
observations (Ys)s∈[0,t] =: Yt , i.e.,

E |ϕ̂− ϕ(Xt)|2 = min
f

E |f (Y[0,t])− ϕ(Xt)|2 .
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Clearly,

ϕ̂ = E (ϕ(Xt)|Yt) =

∫
Rd
ϕ(x)Pt(dx) =

∫
Rd
ϕ(x)πt(x) dx ,

where
Pt(dx) := P(Xt ∈ dx |Yt) = πt(x) dx .

One knows that under suitable conditions

πt =
ut∫

Rd ut(x) dx
,

where u is the solution of the Zakai equation:

dut(x) = Ltut(x) dt +Mk
t ut(x) dY k

t , t ∈ [0,T ], x ∈ Rd .
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Aim: Find numerical solutions to the Zakai equation
by finite difference methods

Challenges:
• Zakai equation is in the whole Rd

• It may degenerate (may not be uniformly parabolic)
• Methods of artificial boundary conditions do not work!
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2. Localisation error for SPDEs

Consider

dut(x) =Ltut(x) dt +Mk
t ut(x) dW k

t , t ∈ (0,T ], x ∈ Rd (2)

u0(x) =ψ(x), x ∈ Rd , (3)

where

Lt = aij
t (x)DiDj + bi

t(x)Di + ct(x), Mk
t = σki

t (x)Di + µk
t (x)

with random initial value and coefficients

D := (ψ, a, b, c , σ, µ).
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Assumption I.(stochastic parabolicity)

(αij) := (2aij − σikσjk) ≥ 0

Assumption II. There is an integer m ≥ 0 and a constant K such
that the derivatives in x of (a, b, c) up to order m and of (σ, µ) up
to order m + 1 are continuous in (t, x), are predictable in (ω, t) and
are bounded by a constant K .
For some p ≥ 2 the initial value ψ is W m

p -valued F0-measurable.

Theorem 1. Let Assumptions I-II hold with m > 2 + d/p. Then
(2)-(3) has a unique classical solution u, i.e., u is predictable in
(ω, t), almost surely u ∈ C 0,2

b ([0,T ]× Rd ), and (2)-(3) hold
almost surely for all x ∈ Rd and t ∈ [0,T ].
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Consider also

dūt(x) =L̄t ūt(x) dt + M̄k
t ūt(x) dW k

t , t ∈ (0,T ], x ∈ Rd (4)

ū0(x) =ψ̄(x), x ∈ Rd , (5)

with

L̄ = āij
t (x)DiDj + b̄i

t(x)Di + c̄t(x), M̄k = σ̄ki
t (x)Di + µ̄k

t (x)

such that almost surely

(ψ̄, ā, b̄, c̄ , σ̄, µ̄) = (ψ, a, b, c , σ, µ) for (t, x) := [0,T ]× BR , (6)

where BR := {x ∈ Rd : |x | ≤ R}.
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Aim: estimate the error ūt(x)− ut(x).

Set (ᾱij) := (2āij − σ̄ki σ̄kj).

Assumption III. The derivatives in x of θ :=
√
α and θ̄ :=

√
ᾱ up to

order m + 1 are continuous in x and are bounded by K .

Theorem 2.(L. Gerencsér-I.G. 2017) Let problems (2)-(3) and
(4)-(5) satisfy Assumptions I, II and III with m > d + p/2. Assume
D̄ = D a.s. on [0,T ]× BR for some R > 0. Then for r > 1 and
ν ∈ (0, 1)

E sup
t∈[0,T ]

sup
x∈BνR

|ut(x)− ūt(x)|q ≤ Ne−δR
2
E 1/r (|ψ|qr

W m
p

+ |ψ̄|qr
W m

p
),

where N and δ are positive constants, depending on K , d , T , q, r ,
p and ν.
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Idea of the proof. Consider first the simpler case:

dut(x) + Lut(x)dt = 0, t ∈ [0,T ), x ∈ Rd

uT (x) = ψ(x), x ∈ Rd

with nonrandom terminal value ψ and nonrandom operator

L = aij
t (x)DiDj + bi

t(x)Di .

Then by Feynman-Kac

ut(x) = Eψ(X t,x
T ),

where (X t,x)s∈[t,T ] is given by

dXs = θs(Xs) dWs + bs(Xs) ds, s ∈ [t,T ], Xt = x .
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By standard estimates for X̂ t,x
s := X t,x

s − x we have

P( sup
0≤t≤s≤T

sup
|x |≤R

|X̂ t,x
s | > r) ≤ Ne−δr

2
(1 + Rd+1/2), (7)

for any r ,R > 0, with N = N(d ,K ,M,T ) and
δ = δ(d ,K ,M,T ) > 0, where K is the bound and M is the
Lipschitz constant for a and b.

Thus when |x | ≤ νR , ν ∈ (0, 1), for

τt,x = inf{s ≥ t : |X t,x
s | ≥ R}

we have
P(τt,x ≤ T ) ≤ Ne−δR

2

with N = N(d ,K ,M,T , ν) and δ = δ(d ,K ,M,T , ν) > 0.
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Hence using the stopping times

τt,x = inf{s ≥ t : |X t,x
s | ≥ R}, τ̄t,x = inf{s ≥ t : |X̄ t,x

s | ≥ R}

we have

|ut(x)− ūt(x)| = |E (ψ(X t,x
T )− ψ̄(X̄ t,x

T ))| =

E{1τt,x∧τ̄t,x≤T (ψ(X t,x
T )− ψ̄(X̄ t,x

T ))},

≤ {P(τt,x ≤ T ) + P(τ̄t,x ≤ T )}(sup
x
|ψ(x)|+ sup

x
|ψ̄(x)|)

≤ Ne−δR
2
sup
x

(|ψ(x)|+ ψ̄(x)|).
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The case of SPDEs.
Instead of (2)-(3) consider

dvt(x) = Lvt(x) dt +Mkvt(x) dW k
t + θri (x)Divt(x) dŴ r

t ,

v0(x) = ψ(x),

where θ = (2a − σσ∗)1/2, Ŵ is a d -dimensional Wiener,
independent of F∞ = ∨t≥0Ft . By Theorem 1 there is a classical
solution v = (vt(x)), and one can show that

ut(x) = E (vt(x)|Ft).
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Together with the above SPDE consider

dYt =βt(Yt) dt − σk
t (Yt) dW k

t − θr
t (Yt) dŴ r

t , 0 ≤ t ≤ T , (8)
Y0 =y , (9)

with

βt(y) := −bt(y) + σik
t (y)Diσ

k
t (y) + θri

t (y)Diθ
r
t (y) + σk

t (y)µk
t (y),

for t ∈ [0,T ] and y ∈ Rd .

By the Itô-Wentzell formula for Ut(y) := vt(Yt(y)) we get

dUt(y) = γt(Yt(y))Ut(y) dt+µk(Yt(y))Ut(y) dW k
t , U0(y) = ψ(y)

with
γt(x) = ct(x)− σki

t (x)Diµ
k
t (x).
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Hence

vt(x) = Ut(Y−1
t (x)) and v̄t(x) = Ūt(Ȳ−1

t (x)),

where v̄ , Ȳ and Ū obtained by replacing D with D̄.

Lemma. Let ν ′ = (1 + ν)/2 and set

H :=

[
sup

t∈[0,T ]
sup
|x |≤νR

|Y−1
t (x)| ≤ ν ′R

]
∩

[
sup

t∈[0,T ]
sup
|x |≤ν′R

|Yt(x)| ≤ νR

]

then P(Hc) ≤ Ne−δR
2
and on H we have

vt(x) = v̄t(x) for t ∈ [0,T ] and |x | ≤ νR.
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Hence by Doob’s, Hölder’s and Jensen’s inequalities

E sup
t∈[0,T ]

sup
|x |≤νR

|ut(x)− ūt(x)|q

≤ E sup
t∈[0,T ]∩Q

|E (1Hc sup
s∈[0,T ]

sup
|x |≤νR

|vs(x)− v̄s(x)||Ft)|q

≤ q
q − 1

(P(Hc))1/rE 1/r ′( sup
t∈[0,T ]

sup
x
|vt(x)− v̄t(x)|qr ′) (10)

≤ 2q−1q
q − 1

(P(H))1/rVT (11)

with

VT := E 1/r ′ sup
t∈[0,T ]

sup
x
|vt(x)|qr ′ + E 1/r ′ sup

t∈[0,T ]
sup
x
|v̄t(x)|qr ′

for r > 1, r ′ = r/(r − 1). �
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3. Spatial Finite Difference Schemes for the Zakai equation
Lattice: Gh = hZd , h > 0

duh
t (x) = Lh

t u
h(x) dt + M r ,h

t uh
t (x) dY r

t , uh
0(x) = π0(x), (12)

for t ∈ [0,T ], x ∈ Gh, where

Lh
t ∼ L∗t , Mh,r

t ∼ M r∗
t , Di ∼ δhi ,

δiu(x) = (u(x + hei )− u(x − hei ))/(2h)

Theorem 3. If b, B , θ, ρ have bounded derivatives in x up to
sufficiently high order, and E |π0|pW m

2
<∞ for some p > 0 and

sufficiently large m, then

E sup
t∈[0,T ]

sup
x∈Gh

|uh
t (x)− ut(x)|p ≤ Nh2pE |π0|pW m

2
.

Remark 1. (2) is an infinite system of SDEs
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Discretise further in time: τ := T/n,

Tn = {ti = iτ : i = 1, 2, ..., n}, v0(x) := π0(x)

vi (x) = vi−1(x)+Lh
ti vi (x)τ+Mh,k

ti−1
vi−1(x)ξki , i = 1, 2, ..., n, (13)

x ∈ Gh, where ξi := Yti − Yti−1 .

This is an infinite system of equations.
For sufficiently h > 0 it has a unique solution (vh,τ

i )n
i=0.

Theorem 4. (Gerencsér-I.G. 2017) If b, θ, ρ,B have bounded
derivatives in x up to sufficiently high order, and E |π0|2W m

2
<∞ for

sufficiently large m, then

E max
0≤i≤n

sup
x∈Gh

|uti (x)− vh,τ
i (x)|2 ≤ N(τ + h4)E (|π0|2W m

2
+ 1).
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Clearly if B(x , y) = 0, b(x , y) = 0, θ(x , y) = 0, ρ(x , y) = 0 and
π0(x) = 0 for |x | ≥ r for some r > 0, then (3) is a finite system.

This suggests truncating: For R > 0 set

(BR , bR , θR , ρR , πR
0 ) := ζR(B, b, θ, ρ, π0),

where ζR = ζR(x), x ∈ Rd , is a sufficiently smooth function with
compact support such that ζR = 1 for |x | ≤ R .
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Truncated schemes

v0 := πR ,

vi (x) = vi−1(x) + Lh,R
ti vi (x)τ + Mh,k,R

ti−1
vi−1(x)ξri , i = 1, 2, ..., n,

(14)
For sufficiently small τ > 0 for all h and R it has a unique solution
vi = vh,R

i , i = 0, 1, ..., n.
Set GR

h := Gh ∩ supp ζ.

Theorem 5. (Gerencsér-I.G. 2017) Under the conditions of Thm 4,
for every R > 0 and ν ∈ (0, 1) there are constants δ > 0 and N
such that

E max
0≤i≤n

max
x∈GνRh

|uti (x)−vh,τ,R
i (x)|2 ≤ N(e−δR

2
+τ+h4)(E |π0|2W m

2
+1).
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Truncated schemes

v0 := πR ,

vi (x) = vi−1(x) + Lh,R
ti vi (x)τ + Mh,k,R

ti−1
vi−1(x)ξri , i = 1, 2, ..., n,

(14)
For sufficiently small τ > 0 for all h and R it has a unique solution
vi = vh,R

i , i = 0, 1, ..., n.
Set GR

h := Gh ∩ supp ζ.

Theorem 5. (Gerencsér-I.G. 2017) Under the conditions of Thm 4,
for every R > 0 and ν ∈ (0, 1) there are constants δ > 0 and N
such that

E max
0≤i≤n

max
x∈GνRh

|uti (x)−vh,τ,R
i (x)|2 ≤ N(e−δR

2
+τ+h4)(E |π0|2W m

2
+1).
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Accelerated schemes
For an integer k ≥ 1 set k̃ := bk/2c

ṽh,τ,R :=

bk/2c∑
j=0

cjvh/2j ,τ,R ,

(c0, ..., ck̃) = (1, 0, ...., 0)V−1, Ṽ ij = 4−(i−1)(j−1), i , j = 1, ..., k̃+1.

Theorem 6. (L. Gerencsér-I.G.) Let k ≥ 0 be an integer. If
b, θ, ρ,B have bounded derivatives in x up to sufficiently high
order, and E |π0|2W m

2
<∞ for sufficiently large m, then for

ν ∈ (0, 1), R > 0 we have constants δ > 0, N such that

E max
0≤i≤n

max
x∈GνRh

|uti (x)−vh,τ,R
i (x)|2 ≤ N(e−δR

2
+τ+h2k+2)(E |π0|2W m

2
+1).
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Accelerated schemes
For an integer k ≥ 1 set k̃ := bk/2c

ṽh,τ,R :=

bk/2c∑
j=0

cjvh/2j ,τ,R ,

(c0, ..., ck̃) = (1, 0, ...., 0)V−1, Ṽ ij = 4−(i−1)(j−1), i , j = 1, ..., k̃+1.

Theorem 6. (L. Gerencsér-I.G.) Let k ≥ 0 be an integer. If
b, θ, ρ,B have bounded derivatives in x up to sufficiently high
order, and E |π0|2W m

2
<∞ for sufficiently large m, then for

ν ∈ (0, 1), R > 0 we have constants δ > 0, N such that

E max
0≤i≤n

max
x∈GνRh

|uti (x)−vh,τ,R
i (x)|2 ≤ N(e−δR

2
+τ+h2k+2)(E |π0|2W m

2
+1).
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Sketch of proof: We write

|uτ i (x)− v̄h,R,τ
i (x)| ≤ |uτ i (x)− u0,R

τ i (x)|+ |u0,R
τ i (x)− ūh,R

τ i (x)|

+
r∑

j=0

cj |uh/2j ,R
τ i (x)− vh/2j ,R,τ

i (x)|,

where u0,R denotes the solution of the truncated Zakai equation
and ūh,R =

∑r
j=0 cjuh/2j ,R .

The first term is estimated by Theorem 2 on localisation error, the
second by a theorem from (I.G. 2015) on accelerated finite
difference schemes, and for each term in the sum we prove

E max
0≤i≤n

max
x∈Gh

|uh′,R
τ i − vh′,R,τ

i |2 ≤ Nτ(1 + E |ψm|2W m
2

)

with h′ = h/2j . �.
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Conclusion

• The truncation error for parabolic (possibly degenerate) PDEs
and SPDEs is exponentially small.

• The finite different schemes for the truncated systems are fully
implementable. We estimated their error independently of the
truncation.

• We have shown that the error coming form the space
discretisation can be made as small as we wish by Richardson’s
extrapolation, provided the data are sufficiently smooth.
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