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1. Motivation, Nonlinear filtering

Consider a partially observed system Z; = (X;, Y:) governed by

dXt :b(Zt) dt + H(Zt) th + p(Zt) th7 Xo = 5,
dYt :B(Zt) dt+ th, YO =1, (1)
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1. Motivation, Nonlinear filtering

Consider a partially observed system Z; = (X;, Y:) governed by

dXt :b(Zt) dt + H(Zt) th —|— p(Zt) th7 Xo = 5,

dYt :B(Zt) dt+ th, Yo =1, (1)
b = b(x,y), B = B(x,y) are Lipschitz continuous vector fields,
0 =0(x,y), p = p(x,y) are Lipschitz continuous matrix fields on
Rd-i- 1

(w, V) multidimensional Wiener process,
(&,m) is a random vector, independent of (W, V).

Task: Calculate the mean square estimate ¢ of (X;) from
observations (Ys)scpo,q =: Wt i.e.,

E|¢ — (X)) = min E|f(Yio,q) — P(Xo)?
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Clearly,

(%) Pe(dx) = / o(x)me(x) dx,

Rd

b = E(o(X)|Vy) = /

Rd

where

Pi(dx) := P(X¢ € dx|V¢) = m(x) dx.
One knows that under suitable conditions

Ut

- Jra u(x) dx’

where u is the solution of the Zakai equation:

Tt

du(x) = Leu(x) dt + MEu(x)dYE, t€]0, T],x € RY.
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Aim: Find numerical solutions to the Zakai equation
by finite difference methods
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Aim: Find numerical solutions to the Zakai equation
by finite difference methods
Challenges:
e Zakai equation is in the whole RY
e It may degenerate (may not be uniformly parabolic)

e Methods of artificial boundary conditions do not work!
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2. Localisation error for SPDEs

Consider

dug(x) =Liue(x) dt + M u(x)dW)K, te€(0,T], xe R? (2)
UO(X) :d}(X)a X € Rd? (3)

where
Le = al(x)DiDj + bi(x)D; + ce(x), ME = o (x)D; + 1 (x)
with random initial value and coefficients

D :=(v,a,b,c,o,u).
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Assumption |.(stochastic parabolicity)
(a¥) := (237 — o'oY > 0

Assumption |I. There is an integer m > 0 and a constant K such
that the derivatives in x of (a, b, ¢) up to order m and of (o, 1) up
to order m+ 1 are continuous in (t, x), are predictable in (w, t) and
are bounded by a constant K.

For some p > 2 the initial value 1 is W -valued Fop-measurable.
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Assumption |.(stochastic parabolicity)
(a¥) := (237 — o'oY > 0

Assumption |I. There is an integer m > 0 and a constant K such
that the derivatives in x of (a, b, ¢) up to order m and of (o, 1) up
to order m+ 1 are continuous in (t, x), are predictable in (w, t) and
are bounded by a constant K.

For some p > 2 the initial value 1 is W -valued Fop-measurable.

Theorem 1. Let Assumptions I-1l hold with m > 2+ d/p. Then
(2)-(3) has a unique classical solution u, i.e., u is predictable in
(w, t), almost surely u € Cg’z([O, T] x R9), and (2)-(3) hold
almost surely for all x € R and t € [0, T].
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Consider also

di(x) =L:0:(x) dt + MG (x) dW), t€(0,T], xeR? (4)
L_IO(X) :1/_}()()7 X € Rd? (5)

with

L =3/ (x)DiD; + Bi(x)D; + &(x), M* =K (x)D; + fik(x)
such that almost surely

(¢,3,b,¢,5, 1) = (v,a, b, c,o, ) for (t,x):=[0, T] x Br, (6)

where Bg := {x € R : |x| < R}.
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Aim: estimate the error T:(x) — ue(x).
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Set (a¥) := (2a¥ — gkigh).
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Aim: estimate the error T:(x) — ue(x).
Set (a¥) := (2a¥ — gkigh).

Assumption Ill. The derivatives in x of 6 := \/a and 6 := /& up to
order m 4+ 1 are continuous in x and are bounded by K.
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Aim: estimate the error T:(x) — ue(x).
Set (a¥) := (2a¥ — gkigh).
Assumption Ill. The derivatives in x of 6 := \/a and 6 := /& up to

order m 4+ 1 are continuous in x and are bounded by K.

Theorem 2.(L. Gerencsér-1.G. 2017) Let problems (2)-(3) and
(4)-(5) satisfy Assumptions |, Il and Il with m > d 4 p/2. Assume
D =D as. on [0, T] x Bg for some R > 0. Then for r > 1 and

v e (0,1)

E sup sup |ug(x) — (x)|7 < Ne‘éRzEl/r(|¢|%m + |3 m),
te[0,T] x€BLr P P

where N and 0 are positive constants, depending on K, d, T, q, r,
pand v.
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Idea of the proof. Consider first the simpler case:
dus(x) + Lus(x)dt =0, te[0,T), x € RY

ur(x) = 9(x), xR

with nonrandom terminal value ¢ and nonrandom operator
L = a’ (x)D;iDj + bi(x)D;.
Then by Feynman-Kac
ur(x) = EY(X7Y),
where (X**)sc¢, 7] is given by

dXs = 05(Xs) dWs + bs(Xs) ds, se[t, T], Xe= x.
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10

By standard estimates for X := X&™ — x we have

P(_sup sup [KE¥| > r) < NeTo (14 RIFY/2) (1)
0<t<s<T |x|<R

for any r,R > 0, with N = N(d,K,M, T) and
d=0(d,K,M, T) >0, where K is the bound and M is the
Lipschitz constant for a and b.
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10

By standard estimates for X := X&™ — x we have

P( sup sup |[XE¥|>r) < Nef‘s'Z(l + RIT1/2),
0<t<s<T |x|<R

for any r,R > 0, with N = N(d,K,M, T) and
d=0(d,K,M, T) >0, where K is the bound and M is the
Lipschitz constant for a and b.

Thus when |x] < VR, v € (0,1), for

Tex = inf{s >t | X2*

> R}

we have )
P(rex < T) < Ne °F

with N = N(d, K, M, T,v) and 6 = §(d, K, M, T,v) > 0.

(7)
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Hence using the stopping times
Tex = inf{s >t : [XEX| > R}, Fex=inf{s >t:|X¥| >R}
we have
|ue(x) = Te(x)| = [E((XT) = D(XF))| =
E{lr nrensT(0(XF) = D(X7))},

< AP(rex < T) + P(Fex < T)Hsup [0(x)] + sup (X))

< Ne~F* sup([v (x)| + P(x)])-
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The case of SPDEs.
Instead of (2)-(3) consider

dvi(x) = Lve(x) dt + M vie(x) dWE + 67 (x)Djve(x) d W],

vo(x) = ¥ (x),

where 6 = (2a — 00*)'/2, W is a d-dimensional Wiener,
independent of F = V¢>0F:. By Theorem 1 there is a classical
solution v = (v¢(x)), and one can show that

1/2

ue(x) = E(ve(x)|Fe).
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Together with the above SPDE consider

dYe =pi(Ve) dt — o (Vo) dWE = 01(Ye) dW, 0<t<T, (8)
Y0:y7 (9)

with
Be(y) := —be(y) + o (y)Dick(y) + 07 (y) Difi(y) + ot (y)uk(y),
for t € [0, T] and y € R¥.

By the It6-Wentzell formula for Us(y) := ve(Yi(y)) we get

dUs(y) = 7e(Ye(y)) Ue(y) dt+u*(Ye(y)) Ue(y) dWE,  Uo(y) = 9(y)

with '
7e(x) = ce(x) — o (x) Dipeg ().
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Hence
ve(x) = U(Y; 1 (%)) and 7(x) = Ue(Y; (%)),

where 7, Y and U obtained by replacing D with D.
Lemma. Let v = (1+v)/2 and set

H:= | sup sup |Y'(x)|<VR|N| sup sup |Yi(x)] <vR
te[0,T] |x|<vR te[0,T] [x|<v'R

then P(HS) < Ne=*R* and on H we have

ve(x) = %(x) for t €0, T] and |x| < VR.
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Hence by Doob's, Hdlder's and Jensen's inequalities

E sup sup [ue(x) — Te(x)|
te[0,T] |x|<vR

<E sup |E(lne sup sup |vs(x) — %(x)]1F)|

te[0, T]NQ s€[0,T] |x|<vR
< T (P(H)Y EY (sup_sup|ve(x) ~ %(x)|*")  (10)
qg—1 te[o,T] x
qg—1
< 2 p(H)) Ve (1)
g—1
with
Vr = EY" sup sup|ve(x)|7" + EY" sup sup |v:(x)|9"
te[0,T] x te[0,T] x
forr>1,r =r/(r—1). O
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3. Spatial Finite Difference Schemes for the Zakai equation
Lattice: Gy, = hZ9, h >0

dui’(x) = L?uh(x) dt + Mt"hui’(x) dyy, ué’(x) =mo(x), (12)
for t € [0, T], x € Gy, where
Lhrr, MM~ M D~

dju(x) = (u(x + her) — u(x — he;))/(2h)
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3. Spatial Finite Difference Schemes for the Zakai equation
Lattice: Gy, = hZ9, h >0

dui’(x) = L?uh(x) dt + Mtr’hui’(x) dyy, ué’(x) =mo(x), (12)
for t € [0, T], x € Gy, where
L?NL; M?J’\‘Mtr*v DiNélhv

dju(x) = (u(x + her) — u(x — he;))/(2h)

Theorem 3. If b, B, 8, p have bounded derivatives in x up to
sufficiently high order, and E|7r0|pW2m < oo for some p > 0 and

sufficiently large m, then

E sup sup |uf(x) — ue(x)|P < NW?PE|mg|0m.
te[0,T] x€Gy, 2
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3. Spatial Finite Difference Schemes for the Zakai equation
Lattice: Gy, = hZ9, h >0

dui’(x) = L?uh(x) dt + Mtr’hui’(x) dyy, ué’(x) =mo(x), (12)
for t € [0, T], x € Gy, where
L?NL; M?J’\‘Mtr*v DiNélhv

dju(x) = (u(x + her) — u(x — he;))/(2h)

Theorem 3. If b, B, 8, p have bounded derivatives in x up to
sufficiently high order, and E|7r0|pW2m < oo for some p > 0 and
sufficiently large m, then

E sup sup |uf(x) — ue(x)|P < NW?PE|mg|0m.
te[0,T] x€Gy, 2

Remark 1. (2) is an infinite system of SDEs
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Discretise further in time: 7:= T/n,
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17

Discretise further in time: 7:= T /n,
To={ti=it:i=1,2,..,n}, v(x) = mo(x)

vi(x) = v,-_;l(x)—&—Lfl_v,-(x)7'—|—l\/lgf<1 vioa(x)Ek =12,

x € Gp, where & == Yy, — Y.

This is an infinite system of equations.
For sufficiently h > 0 it has a unique solution (v/"7)7_.

Y n7 (13)
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Discretise further in time: 7:= T /n,
To={ti=it:i=1,2,..,n}, v(x) = mo(x)

vi(x) = viet () +LEvi )T+ MP visi(x)EE, i =1,2,..,n, (13)

x € Gp, where & == Yy, — Y.

This is an infinite system of equations.
For sufficiently h > 0 it has a unique solution (v/"7)7_.

Theorem 4. (Gerencsér-1.G. 2017) If b, 0, p, B have bounded
derivatives in x up to sufficiently high order, and E|7T0|%/V2m < oo for

sufficiently large m, then

E max sup |ug,(x) — v (x)]2 < N(7 + h*)E(|mo[3ym + 1).
oglgnxe(@h 2
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Clearly if B(x,y) =0, b(x,y) =0, 0(x,y) =0, p(x,y) =0 and
mo(x) = 0 for |x| > r for some r > 0, then (3) is a finite system.
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18

Clearly if B(x,y) =0, b(x,y) =0, 0(x,y) =0, p(x,y) =0 and
mo(x) = 0 for |x| > r for some r > 0, then (3) is a finite system.

This suggests truncating: For R > 0 set
(BY,b",0%, p, mg') := Cr(B. b, 0, p, o),

where (g = (r(x), x € RY, is a sufficiently smooth function with
compact support such that (g = 1 for |x| < R.
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Truncated schemes

Vi(X) = Vi—l(X) + LZ-’RVI'(X)T + MZT{R‘//—I(X)&.;) = 1727 -y 1,

(14)

For sufficiently small 7 > 0 for all h and R it has a unique solution
Vi = v,-h’R, i=0,1,...,n.

Set Gf = Gp Nsupp(.
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Truncated schemes
v = 7F,
h,R h,k,R .
vi(x) = vic1(x) + Ly vi(x)T + My v (x)E7, i =1,2,..,n,
(14)

For sufficiently small 7 > 0 for all h and R it has a unique solution
Vi = v,-h’R, i=0,1,...,n.
Set Gf = Gp Nsupp(.

Theorem 5. (Gerencsér-1.G. 2017) Under the conditions of Thm 4,
for every R > 0 and v € (0, 1) there are constants 6 > 0 and N
such that

E max max_ |ug(x)—v""R()[2 < N(e R 4r+h*) (E|mo3ym+1).
0<i<n xeGYR 2
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Accelerated schemes y
For an integer k > 1 set k := | k/2]|

Lk/2] )
Ly, J
yhmR . E : ijh/2 ,T,R,
Jj=0

(0 ) = (1,0, .00, 0) VL P = 4= (D=1,

hLhji=1,..
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Accelerated schemes y
For an integer k > 1 set k := | k/2]|

1k/2) ,

~ J

vh,T,R — E C:,'Vh/2 ,T,R’
j=0

(os e ) = (1,0,...,0) V7L VI =4~ 0DUD 1 j— 1 k41

Theorem 6. (L. Gerencsér-1.G.) Let k > 0 be an integer. If
b, 0, p, B have bounded derivatives in x up to sufficiently high
order, and E|7ro|%/vzm < oo for sufficiently large m, then for

v € (0,1), R > 0 we have constants § > 0, N such that

E max max_ |ug,(x)—v/""R(x)[2 < N(e "R 4r+-h52)(E|mo[fypm-+1).

0<i<n xeGyR
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Sketch of proof: We write
luri(x) = 7 FT O] < Juri(x) — uZR 0] + %R (x) — 257 (%)

th h/2i R,
+21\u/ x) = /2R ()],

where 1% denotes the solution of the truncated Zakai equation
—hR _ N\~ h/2 R
and o™ —ijocju/ :

The first term is estimated by Theorem 2 on localisation error, the
second by a theorem from (I.G. 2015) on accelerated finite
difference schemes, and for each term in the sum we prove

E R— .h,’R’T2<N 1 E 2m
GRS T Bl )

with o = h/2. a.
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Conclusion

e The truncation error for parabolic (possibly degenerate) PDEs
and SPDEs is exponentially small.

e The finite different schemes for the truncated systems are fully
implementable. We estimated their error independently of the
truncation.

e We have shown that the error coming form the space
discretisation can be made as small as we wish by Richardson’s
extrapolation, provided the data are sufficiently smooth.
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